JP3766326B2 - 光照射受光装置 - Google Patents
光照射受光装置 Download PDFInfo
- Publication number
- JP3766326B2 JP3766326B2 JP2001375625A JP2001375625A JP3766326B2 JP 3766326 B2 JP3766326 B2 JP 3766326B2 JP 2001375625 A JP2001375625 A JP 2001375625A JP 2001375625 A JP2001375625 A JP 2001375625A JP 3766326 B2 JP3766326 B2 JP 3766326B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- measured
- infrared light
- beam splitter
- reflected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
Description
【発明の属する技術分野】
本発明は、被計測物体に光を照射し、前記被計測物体からの反射光を受光する光照射受光装置に関し、特に、前記被計測物体の三次元形状計測やパターン計測に適用して有効な技術に関するものである。
【0002】
【従来の技術】
従来、カメラを用いて被写体(被計測物体)の三次元形状を入力する方法には、さまざまな方法があり、例えば、アクティブ型計測法が多く用いられている。
前記アクティブ型計測法は、例えば、図11に示すように、発光手段3から発光される人工的な光を被計測物体2に照射し、前記被計測物体2からの反射光をカメラ等の撮像手段4で受光し、処理することによって、前記被計測物体2の三次元形状を求める方法である。このとき、前記被計測物体2の三次元形状は、例えば、飛行時間法(Time of Flight法)を用いて求める。
【0003】
前記飛行時間法を用いて三次元形状を求めるには、例えば、前記発光手段3でパルス光を発光して前記被計測物体2に照射し、前記撮像手段4で、シャッターを高速に切りながら前記被計測物体2を撮影する。
このとき、前記発光手段3から照射された光は、前記被計測物体2の部位毎に、前記発光手段3から被計測物体2までの距離と、前記被計測物体2から前記撮像手段4までの距離の和に応じて、前記撮像手段2に到達するまで時間(走行時間)にばらつきが生じる。例えば、図11に示したような、L字型の被計測物体2に光を照射したときには、前記被計測物体2の後方、言い換えると前記発光手段3及び撮像手段4から遠い部分で反射した光は、前記被計測物体の前方、言い換えると前記発光手段3及び撮像手段4に近い部分で反射した光よりも走行時間が長くなる。そのため、前記被計測物体2の後方で反射した光は、前記撮像手段4に到達する時間に遅れが生じ、シャッター時間内に前記撮像手段4に届く光量が少なくなる。
【0004】
すなわち、前記撮像手段4で撮像された画像は、前記発光手段3及び前記撮像手段4から遠い部分で反射された光を受光した領域が暗くなり、被計測物体2の形状に対応した輝度の濃淡値が得られる。
そこで、前記撮像画像の輝度の濃淡値から、前記被計測物体の各部位と撮像手段の間の距離を算出して前記被計測物体の形状を求める。
【0005】
前記アクティブ型計測法は、高信頼性及び高精度であるため、実用段階に供されている技術も多い。
しかしながら、従来のアクティブ型計測法では、前記発光手段3と前記撮像手段4が、空間的に異なる位置にあり、前記発光手段3から照射される光の光軸と、前記撮像手段で受光する光の光軸が空間的に異なる。そのため、前記被計測物体2の形状によっては、図12に示すように、前記撮像手段4で撮像する範囲θ1を照射するように前記発光手段3の照射角θ2を設定しても、前記発光手段3からの光があたらない領域(オクルージョン領域)S3が発生することがある。前記オクルージョン領域S3には光があたらないため、前記オクルージョン領域S3内の形状を計測できないという問題がある。
【0006】
また、図12に示したような配置の場合、前記発光手段3で、前記撮像手段4で撮影する範囲θ1を照射するには、照射角θ2で光を照射する必要があるが、このとき、前記被計測物体2の、前記撮像手段4で撮影されない領域S4にも光が照射される。
前記発光手段3から照射される光の単位面積あたりの光量は、照射面積に反比例するため、図12に示したように、前記撮像手段4で撮影されない領域S4にも光を照射すると、前記発光手段3で発光した光の光量に無駄が生じる。そのため、限られた出力の照明光を有効に利用できないという問題がある。
【0007】
また、前記撮像手段4は、レンズを交換する、あるいはズームレンズを用いることにより、撮影範囲を変更することが可能である。このとき、前記撮像手段4で広角の撮影をする場合には、図13に示すように、照射光の光軸AX2が前記撮像手段4で受光する光の光軸AX1と異なっていても、前記撮像手段4の撮影範囲θ1の広さに合わせて、前記発光手段3の照射角θ2を広くすることで、前記被計測物体2の全体に光を照射することができる。
【0008】
しかしながら、図13に示した状態で、例えば、前記撮像手段4の撮影範囲θ1を狭くして、図14に示すように、被計測物体2の一部S5を拡大して撮影する場合、前記発光手段3の照射角θ2も狭くして、光量を増大し、無駄な光を少なくすることが考えられるが、前記照射光の光軸AX2が受光する光の光軸AX1とずれている場合には、図14に示したように、照射範囲と撮影範囲にずれが出て、撮影範囲内に光のあたらない領域S5’ができてしまうという問題がある。
【0009】
また、図14に示したような、照射範囲と撮影範囲のずれをなくすためには、前記撮影範囲の変更に合わせて、前記発光手段3の光軸も調整する必要があり、作業の手間がかかるという問題がある。また、前記発光手段3で発光する光が赤外光などの不可視光の場合には、調節作業が困難であるという問題がある。
前記アクティブ型計測方法における各問題は、前記発光手段3から照射される光の光軸と前記撮像手段4で受光する光の光軸が異なるために生じる問題であるため、前記照射する光の光軸と受光する光の光軸を一致させることで解決できる。
【0010】
前記照射する光の光軸と受光する光の光軸を一致させる方法としては、図15に示すように、ハーフミラー10を用いる方法が提案されている。
前記ハーフミラー10を用いる場合、例えば、前記発光手段3で発光した光をハーフミラー10に入射し、前記ハーフミラー10で反射した光を前記被計測物体2に照射する。また、前記被計測物体2で反射した光は、前記被計測物体2に照射される光と同じ光軸を通り再び前記ハーフミラー10に入射されるので、前記ハーフミラー8を透過した光を前記撮像装置4で受光し、撮像することで、前記各問題を解決することができる。
【0011】
しかしながら、前記ハーフミラー10は、入射した光の光量の半分が透過し、残りの半分が反射するため、前記発光手段3で発光した光の光量Pの半分だけが前記被計測物体2に照射されることになる。また、前記被計測物体2で反射した光も、光量の半分だけが前記ハーフミラー10を透過して前記撮像手段4で受光される。そのため、前記被計測物体2に照射した光の光量の100%が反射したとしても、前記撮像手段4で受光する光の光量は、前記発光手段3で発光した光の光量Pの4分の1になり、ロスが多いという問題があった。
【0012】
【発明が解決しようとする課題】
前記従来の技術で説明したように、照射する光の光軸と受光する光の光軸が異なる場合には、図12及び図14に示したように、オクルージョン領域が発生するという問題や、撮影領域外に照射される無駄な光があるという問題があった。
また、図15に示したようなハーフミラー10を用いた方法では、光のロスが多いという問題があった。
【0013】
本発明の目的は、発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、オクルージョン領域をなくすことが可能な技術を提供することにある。
本発明の他の目的は、発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、撮像範囲と照射範囲の調節を容易にすることが可能な技術を提供することにある。
本発明の他の目的は、発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、発光手段で発光した光のロスを低減することが可能な技術を提供することにある。
本発明の他の目的は、発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、オクルージョン領域をなくし、かつ、撮影範囲と照射範囲の調節を容易にするとともに、発光手段で発光した光のロスを低減することが可能な技術を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述及び添付図面によって明らかする。
【0014】
【課題を解決するための手段】
本願において開示される発明の概要を説明すれば、以下のとおりである。
第1の発明は、被計測物体に照射する赤外光を発光する赤外光発光手段と、前記被計測物体で反射した赤外光を受光して撮像する第1撮像手段と、前記被計測物体に照射する赤外光の光軸と、前記第1撮像手段で受光する赤外光の光軸を一致させる光軸一致手段と、前記第1撮像手段で撮像する像の焦点を調節する焦点調節手段と、前記被計測物体で反射した光を赤外光と可視光に分離する光分離手段と、前記光分離手段によって分離した可視光を受光して撮像する第2撮像手段を備える光照射受光装置であって、前記赤外光発光手段は、直線偏光の赤外光を発光する赤外光源と、前記赤外光源で発光した赤外光の照射角を調節する照射角調節手段とを備え、前記光軸一致手段は、入射する光の偏光面の向きに応じて光を反射あるいは透過させる偏光ビームスプリッタと、入射した直線偏光を円偏光に変換し、入射した円偏光を直線偏光に変換するλ/4波長板とを備え、前記光分離手段及び前記λ/4波長板は、前記偏光ビームスプリッタと前記被計測物体との間に、前記被計測物体側から、前記光分離手段、前記λ/4波長板の順に配置されている光照射受光装置である。
【0025】
第2の発明は、前記第1の発明において、前記光分離手段は、赤外光を透過し、可視光を反射するコールドミラーであり、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、及び前記偏光ビームスプリッタは、前記被計測物体と前記第1撮像手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタで反射する向きになり、かつ、前記偏光ビームスプリッタで反射した光が前記被計測物体に照射されるように配置され、前記第2撮像手段は、前記被計測物体からの可視光が前記コールドミラーで反射する方向に配置されている光照射受光装置である。
【0026】
第3の発明は、前記第1の発明において、前記光分離手段は、赤外光を透過し、可視光を反射するコールドミラーであり、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、及び前記偏光ビームスプリッタは、前記被計測物体と前記赤外光発光手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタを透過する向きになるように配置され、前記第1撮像手段は、前記被計測物体で反射し、前記コールドミラー及び前記λ/4波長板を通った赤外光が前記偏光ビームスプリッタで反射する方向に配置され、前記第2撮像手段は、前記被計測物体からの可視光が前記コールドミラーで反射する方向に配置されている光照射受光装置である。
【0027】
第4の発明は、前記第1の発明において、前記光分離手段は、赤外光を反射し、可視光を透過するホットミラーであり、前記ホットミラーと前記焦点調節手段は、前記被計測物体と前記第2撮像手段とを結ぶ直線上に、前記被計測物体側から前記焦点調節手段、前記ホットミラーの順に配置され、前記λ/4波長板及び前記偏光ビームスプリッタは、前記被計測物体からの赤外光が前記ホットミラーで反射する方向であり、かつ、前記ホットミラーと前記第1撮像手段とを結ぶ直線上に、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタで反射する向きになり、かつ、前記被計測物体に照射されるように配置されている光照射受光装置である。
【0028】
第5の発明は、前記第1の発明において、前記光分離手段は、赤外光を反射し、可視光を透過するホットミラーであり、前記ホットミラーと前記焦点調節手段は、前記被計測物体と前記第2撮像手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記ホットミラーの順に配置され、前記偏光ビームスプリッタ及び前記λ/4波長板は、前記ホットミラーと前記赤外光発光手段との間に、前記ホットミラー側から、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタを透過するような向きに配置され、前記第1撮像手段は、前記被計測物体で反射し、前記ホットミラー及び前記λ/4波長板を通った赤外光が、前記偏光ビームスプリッタで反射する方向に配置されている光照射受光装置である。
【0029】
前記第1の発明から前記第5の発明までによれば、前記赤外光源で発光した赤外光、すなわち前記被計測物体に照射する赤外光の光軸と、前記被計測物体で反射し、前記撮像手段で受光される赤外光の光軸を同一軸上にすることができる。そのため、前記撮像手段で撮像する範囲内に、前記赤外光が照射されない領域(オクルージョン領域)が発生することを防げる。
【0030】
また、前記赤外光発光手段に、前記照射角調節手段を設けることにより、前記被計測物体の赤外光が照射される領域を、前記撮像手段で撮影する範囲にあわせることができる。そのため、前記赤外光源で発光した赤外光が前記撮像手段で撮影する範囲外に照射されたり、前記図14に示したように、撮影範囲と照射領域にずれが生じたりすることを防げ、前記赤外光源で発光した赤外光の光量を有効に利用することができる。またこのとき、前記被計測物体に照射する赤外光の光軸と、前記被計測物体で反射し、前記撮像手段で受光される赤外光の光軸が同一軸上であるため、撮像範囲の変更をした場合に、照射する赤外光の照射角を調節するだけでよく、赤外光の照射範囲の調節が容易である。
【0031】
また、前記光軸一致手段として、前記偏光ビームスプリッタ及び前記λ/4波長板を用い、前記赤外光源で発光した赤外光を、前記偏光ビームスプリッタで反射あるいは透過させて被計測物体に照射することにより、前記赤外光源で発光した赤外光の光量のほぼ100%を前記被計測物体に照射することができる。このとき、前記被計測物体に照射される赤外光は、前記λ/4波長板で偏光面が45度回転し、円偏光に変わって照射される。
【0032】
また、前記被計測物体で反射した赤外光(反射光)は、一般に、前記被計測物体に照射したときの円偏光のほかに、無偏光が混合した状態である。前記反射光に含まれる円偏光は、前記λ/4波長板で、前記赤外光源で発光した赤外光の偏光面と直交する偏光面の直線偏光になるので、前記偏光ビームスプリッタで透過あるいは反射し、前記撮像手段で受光される。このとき、前記撮像手段で受光される赤外光の光量は、前記円偏光と無偏光の割合によるが、前記被計測物体で反射した赤外光の光量の50%から100%になる。
【0033】
また、前記被計測物体では、照射した赤外光のほとんどが反射するため、前記撮像手段で受光される赤外光の光量は、前記赤外光源で発光した赤外光の光量の50%から100%になる。そのため、従来のハーフミラーを用いた装置に比べ、光のロスを低減することができ、光を有効に利用することができる。
また、前記被計測物体に前記赤外光を照射する場合には、前記被計測物体で反射する光に、前記被計測物体が存在する空間の可視光(外光)も含まれているため、前記光分離手段を設けて赤外光と可視光を分離することにより、前記第1撮像手段では、赤外光だけの像を撮像することができる。
【0034】
またこのとき、前記光分離手段で分離された可視光の像を前記第2撮像手段で撮像することにより、前記被計測物体の色情報を取得できる。そのため、前記第2撮像手段で撮影する範囲を前記第1撮像手段で撮影する範囲と一致させておくことにより、前記被計測物体の形状及び色を測定することができ、前記被計測物体を認識しやすくなる。
また、前記光分離手段として、赤外光を透過し、可視光を反射するコールドミラーを用いることができる。このとき、前記光照射受光装置の各構成要素は、前記第2の発明に示したように配置する。
【0035】
前記第2の発明に示した配置の場合、前記赤外光源で発光した赤外光は、前記偏光ビームスプリッタで反射し、前記λ/4波長板で偏光面を45度回転して円偏光に変わり、前記コールドミラーを透過して前記被計測物体に照射される。
前記被計測物体で反射した円偏光の赤外光は、前記コールドミラーを透過した後、前記λ/4波長板を通過する。このとき、前記λ/4波長板は、通過する赤外光の円偏光成分を、前記赤外光源で発光した赤外光の偏光面と直交する偏光面の直線偏光に変換する。そのため、前記偏光ビームスプリッタを透過し、前記第1撮像手段で受光される。
一方、前記被計測物体で反射した可視光は、前記コールドミラーで反射し、前記第2撮像手段で受光される。
また、前記光分離手段として、前記コールドミラーを用いた場合、前記光照射受光装置の各構成要素は、前記第2の発明に示した配置に限らず、前記第3の発明に示したような配置でもよい。
【0036】
前記第3の発明に示した配置の場合、前記赤外光源で発光した赤外光は、前記偏光ビームスプリッタを透過し、前記λ/4波長板で偏光面を45度回転して円偏光に変わり、前記コールドミラーを透過して前記被計測物体に照射される。
前記被計測物体で反射した円偏光の赤外光は、前記コールドミラーを透過した後、前記λ/4波長板を通過する。このとき、前記λ/4波長板は、通過する赤外光の円偏光成分を、前記赤外光源で発光した赤外光の偏光面と直交した偏光面の直線偏光に変換する。そのため、前記偏光ビームスプリッタで反射し、前記第1撮像手段で受光される。
一方、前記被計測物体で反射した可視光は、前記コールドミラーで反射し、前記第2撮像手段で受光される。
また、前記光分離手段は、前記コールドミラーに限らず、赤外光を反射し、可視光を透過するホットミラーを用いることもできる。前記ホットミラーを用いるときには、前記光照射受光装置の各構成要素は、前記第4の発明に示したように配置する。
【0037】
前記第4の発明に示した配置の場合、前記赤外光源で発光した赤外光は、前記偏光ビームスプリッタで反射し、前記λ/4波長板で偏光面を45度回転して円偏光に変わり、前記ホットミラーで反射した後、前記被計測物体に照射される。
前記被計測物体で反射した円偏光の赤外光は、前記ホットミラーで反射した後、前記λ/4波長板を通過する。このとき、前記λ/4波長板は、通過する赤外光の円偏光成分を、前記赤外光源で発光した赤外光の偏光面と直交する偏光面の直線偏光に変換する。そのため、前記偏光ビームスプリッタを透過し、前記第1撮像手段で受光される。
一方、前記被計測物体で反射した可視光は、前記ホットミラーを透過し、前記第2撮像手段で受光される。
また、前記光分離手段として、前記ホットミラーを用いる場合、前記光照射受光装置の各構成要素は、前記第4の発明に示した配置に限らず、前記第5の発明に示したような配置であってもよい。
【0038】
前記第5の発明に示した配置の場合、前記赤外光源で発光した赤外光は、前記偏光ビームスプリッタを透過し、前記λ/4波長板で偏光面を45度回転して円偏光に変わり、前記ホットミラーで反射した後、前記被計測物体に照射される。
前記被計測物体で反射した円偏光の赤外光は、前記ホットミラーで反射した後、前記λ/4波長板を通過する。このとき、前記λ/4波長板は、通過する赤外光の円偏光成分を、前記赤外光源で発光した赤外光の偏光面と直交する偏光面の直線偏光に変換する。そのため、前記偏光ビームスプリッタで反射し、前記第1撮像手段で受光される。
一方、前記被計測物体で反射した可視光は、前記ホットミラーを透過し、前記第2撮像手段で受光される。
【0053】
以下、本発明について、図面を参照して実施の形態(実施例)とともに詳細に説明する。
なお、実施例を説明するための全図において、同一機能を有するものは、同一符号をつけ、その繰り返しの説明は省略する。
【0054】
【発明の実施の形態】
(実施形態1)
図1は、本発明による実施形態1の光照射受光装置の概略構成を示す模式図である。
図1において、1Aは光照射受光装置、2は被計測物体、3は発光手段、301は光源、302は照射角調節手段、4は撮像手段、5は光軸一致手段、501は偏光ビームスプリッタ、502はλ/4波長板、6は焦点調節手段である。また、図1に示した矢印のうち、実線の矢印は被計測物体に照射する光の進路を示し、破線の矢印は受光する光の進路を示す。また、実線の矢印に添えたsはs偏光であることを示し、破線の矢印に添えたpはp偏光であることを示す。
【0055】
本実施形態1の光照射受光装置1Aは、図1に示すように、被計測物体2に照射する光を発光する発光手段3と、前記被計測物体2で反射した光を受光して撮像する撮像手段4と、前記被計測物体2に照射する光の光軸と前記撮像手段4で受光する光の光軸とを一致させる光軸一致手段5と、前記撮像手段4で撮像する像の焦点を調節する焦点調節手段6とにより構成されている。
また、前記発光手段3は、単色かつ直線偏光の光を発光する光源301と、前記光源301で発光した光の照射角を調節する照射角調節手段302とを備える。
【0056】
また、前記光軸一致手段5は、入射する光の偏光面の向きに応じて、光を反射あるいは透過させる偏光ビームスプリッタ501と、入射した直線偏光を円偏光に変換し、入射した円偏光を直線偏光に変換するλ/4波長板502とを備え、前記λ/4波長板502は、前記偏光ビームスプリッタ501と前記被計測物体2との間に配置されている。
【0057】
また、本実施形態1の光照射受光装置1Aでは、図1に示したように、前記光軸一致手段5及び前記焦点調節手段6は、前記被計測物体2と前記撮像手段4とを結ぶ直線上に、前記被計測物体2側から、前記焦点調節手段6、前記光軸一致手段5の順に配置されている。
【0058】
また、前記光源301は、発光した光の偏光面が前記偏光ビームスプリッタ501で反射される向きになり、かつ、前記偏光ビームスプリッタ501で反射した光が前記被計測物体2に照射されるように配置され、前記照射角調節手段302は、前記光源301と前記偏光ビームスプリッタ501の間に配置されている。
【0059】
本実施形態1の光照射受光装置では、前記光源301で発光した単色かつ直線偏光の光は、前記照射角調節手段302で照射角を調節した後、前記偏光ビームスプリッタ501に入射する。このとき、前記偏光ビームスプリッタ501に入射する光はs偏光であるため、前記偏光ビームスプリッタ501で反射する。
前記偏光ビームスプリッタ501で反射した照射光は、前記λ/4波長板502で円偏光に変換された後、前記焦点調節手段6を通して前記被計測物体2に照射される。
【0060】
このとき、前記光源301で発光する光は直線偏光であり、前記偏光ビームスプリッタ501でほぼ100%反射するため、前記光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射することができる。
前記被計測物体2に光を照射する場合、少なくとも、前記撮像手段4で撮影する範囲(撮影画角)の全域に照射する必要があるが、前記光を照射する領域が広すぎる場合は、単位面積あたりの光量が低下して光の利用効率が低下するとともに、撮影した画像の精度が低下する。そのため、前記照射角調節手段により、前記被計測物体2の光が照射される領域が、前記撮影画角と同等あるいは撮影画角よりもやや広くなるように調節する。
【0061】
図2及び図3は、本実施形態1の光照射受光装置1Aの動作を説明するための模式図であり、それぞれ、前記被計測物体に照射する光の照射角の調節方法を説明するための模式図である。
前記光照射受光装置1Aを用いて、例えば、図2に示すように、前記焦点調節手段6により、前記撮像手段4で撮影する範囲を、前記被計測物体2の一部の狭い領域S1に設定した場合、前記光源301で発光した光が、前記狭い領域S1内全体を照射していればよい。そのため、前記照射角調節手段302により、前記狭い領域S1と同じ領域、あるいは前記狭い領域S1よりもやや広い領域を照射するように照射角を調節する。
【0062】
また、前記光照射受光装置1Aを用いて、例えば、図3に示すように、前記焦点調節手段6により、前記撮像手段4で撮影する範囲を、前記被計測物体2の広い領域S2に設定した場合は、前記光源301で発光した光で、前記広い領域S2内全体を照射しなければならない。そのため、前記照射角調節手段302により、前記広い領域S2と同じ領域、あるいは前記広い領域S2よりもやや広い領域を照射するように照射角を調節する。
また、前記撮像手段4の撮影範囲は、前記焦点調節手段6の調節により、図2及び図3に示した場合以外も考えられるが、その場合も、前記撮像手段4の撮影範囲に合わせて、前記照射角調節手段302により光の照射範囲を調節する。
【0063】
このように、前記焦点調節手段6の焦点距離を変化させて、前記撮像手段4の撮影範囲(撮影画角)を変更したときに、その変化に合わせて、前記照射角調節手段302により光の照射角(照射領域)を変更することにより、前記光照射受光装置1Aから照射する光のほとんどを前記撮影画角内に照射でき、照射した光の光量をほぼ100%利用することができる。そのため、前記発光手段3で発光した光を有効に利用することができる。
【0064】
また、前記被計測物体2に照射した光と、前記被計測物体2で反射した光が同じ光路を通るため、前記撮像手段4で撮影する範囲を変更するときに、前記照射角調節手段302で照射角を調節するだけでよい。そのため、撮影範囲を効率よく照射するための制御が容易になる。またこのとき、前記照射角調節手段302を、前記焦点調節手段6と連動させることにより、前記撮像手段4で撮影する範囲に照射することができ、光量を有効に利用することができる。
【0065】
一方、前記被計測物体2に照射した光は反射し、図1に示したように、再び前記焦点調節手段6を通して前記λ/4波長板502に入射する。
前記被計測物体2からの反射光は、一般に、円偏光と無偏光が混合した状態であり、前記円偏光は前記λ/4波長板502で直線偏光に変換される。このときの直線偏光の偏光面は、前記光源301で発光した光の偏光面に対して90度回転した状態、すなわちp偏光であるため、前記偏光ビームスプリッタ501を透過し、前記撮像手段4で受光される。
【0066】
一方、前記無偏光は偏光面がランダムな光であり、前記λ/4波長板502により各偏光面が均一に回転するだけなので、無偏光のまま前記偏光ビームスプリッタ501に入射される。このとき、前記無偏光の一部、すなわち偏光面が前記偏光ビームスプリッタ501を透過する向きの成分だけが透過し、残りの成分は反射する。そのため、前記撮像手段4で受光する光の光量は、前記被計測物体2で反射した光の円偏光と無偏光の混合比に依存するが、前記被計測物体2で反射した光の光量の、おおよそ50%から100%となる。
【0067】
本実施形態1の光照射受光装置1Aでは、前記被計測物体2に照射する光の光軸を、前記撮像手段4で受光する光の光軸と一致させているため、前記撮像手段4で撮影する領域内に光があたらない領域(オクルージョン領域)が発生しない。
また、前記光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射でき、前記被計測物体2で反射した光の光量の50%から100%を前記撮像手段4で受光することができるので、従来のハーフミラーを用いた装置に比べ、撮像に利用できる光量を増加することができる。
【0068】
図4は、本実施形態1の光照射受光装置の具体的な構成例を示す模式図である。
本実施形態1の光照射受光装置1Aは、主に、前記被計測物体2の三次元形状を測定したり、パターン認識をしたりするのに用いられる三次元形状測定装置として用いられ、前記光源301として、図4に示すように、パルスレーザ光を発光する半導体レーザ発振器301を用いる。
【0069】
また、前記撮像手段4は、高速のシャッター動作及び光を増幅するゲート付きMCP401及びリレーレンズ402が設けられた撮像カメラ403を用いる。また、必要に応じて前記λ/4波長板502と前記撮像カメラ403の間に、前記半導体レーザ発振器301で発光したレーザパルス光の波長以外の波長の光を除去するバンドパスフィルタ404を設ける。
また、前記焦点調節手段6は、例えば、焦点距離の短いCマウントレンズ601と、焦点距離延長レンズ602を組み合わせて用いる。
【0070】
図4に示した三次元形状測定装置の動作を簡単に説明すると、まず、前記半導体レーザ発振器301でレーザパルス光を発光する。前記レーザパルス光は、前記照射角調節手段302で、前記レーザパルス光の照射角が前記撮像カメラで撮影する範囲(撮像画角)と同等あるいはやや広くなるように調節して前記偏光ビームスプリッタ501に入射する。
【0071】
このとき、前記半導体レーザ発振器301は、前記レーザパルス光がs偏光になるように配置されており、前記偏光ビームスプリッタ501で反射し、前記λ/4波長板502で円偏光になり、前記焦点延長レンズ602及び前記Cマウントレンズ601を通って前記被計測物体2に照射される。
前記被計測物体2に照射され、反射したレーザパルス光は、再び前記Cマウントレンズ601及び焦点距離延長レンズ602を通り、前記λ/4波長板502に入射する。
【0072】
このとき、反射した前記レーザパルス光のうち円偏光の光は、前記半導体レーザ発振器301で発光したレーザパルス光の偏光面と直交する偏光面のパルス光になるため、前記偏光ビームスプリッタ501を透過する。また、前記反射したレーザパルス光の無偏光成分は、前記偏光ビームスプリッタ501が透過する偏光面に近い成分が透過する。
【0073】
前記偏光ビームスプリッタ501を透過した光は、前記バンドパスフィルタ404に入射され、前記半導体レーザ光源301で発光したレーザパルス光の波長以外の外光成分が除去される。なお、前記三次元形状測定装置を用いた計測を暗室で行う場合や、前記レーザパルス光の強度が前記外光の強度よりも十分に大きい場合には、前記バンドパスフィルタ404を設けなくてもよい。
前記バンドパスフィルタ404を通過した光は、前記ゲート付きMCP401を用いて高速のシャッター動作をさせながら、前記リレーレンズ402を通して前記撮像カメラ403で光の像を撮影する。
【0074】
このとき、前記被計測物体2の各部位で反射した光には、前記半導体レーザ発振器301から前記被計測物体2までの距離と、前記被計測物体2から前記撮像カメラ403までの距離の和に応じた時間差がある。そのため、高速のシャッター動作をさせながら像を撮影することにより、撮影された画像には、単位時間内に到達した光の光量に応じた濃淡が現われる。
そこで、前記撮像した画像の濃淡値にもとづき、飛行時間法を用いて、撮影した画像の各点に対する前記被計測物体までの距離を求めることにより、前記被計測物体の形状を求めることができる。
【0075】
以上説明したように、本実施形態1の光照射受光装置によれば、前記被計測物体2に照射する光の光軸を、前記撮像手段4で受光する光の光軸と一致させることにより、前記被計測物体2にオクルージョン領域が発生するのを防ぐことができる。
またこのとき、前記照射角調節手段302を用いることにより、前記被計測物体2の撮影領域(撮像画角)と同等あるいはやや広い領域のみに光を照射することができ、光量を有効に利用することができる。
また、前記偏光ビームスプリッタ501及びλ/4波長板502を用いることにより、前記撮像手段4で受光する光の光量が、前記光源301で発光した光の光量の50%から100%になるため、従来のハーフミラーを用いた装置に比べ、光の利用効率を高くすることができる。
【0076】
(実施形態2)
図5は、本発明による実施形態2の光照射受光装置の概略構成を示す模式図である。
図5において、1Bは光照射受光装置、2は被計測物体、3は発光手段、301は光源、302は照射角調節手段、4は撮像手段、5は光軸一致手段、501は偏光ビームスプリッタ、502はλ/4波長板、6は焦点調節手段である。また、図5に示した矢印のうち、実線の矢印は被計測物体に照射する光の進路を示し、破線の矢印は受光する光の進路を示す。また、実線の矢印に添えたpはp偏光であることを示し、破線の矢印に添えたsはs偏光であることを示す。
【0077】
本実施形態2の光照射受光装置1Bは、前記実施形態1の光照射受光装置1Aと同様の構成であり、図5に示すように、前記光源301及び照射角調節手段302を備える発光手段3と、前記撮像手段4と、前記偏光ビームスプリッタ501及び前記λ/4波長板502を備える光軸一致手段5と、前記焦点調節手段6とにより構成されている。そのため、前記各構成要素の説明は省略する。
【0078】
本実施形態2の光照射受光装置1Bにおいて、前記実施形態1の光照射受光装置1Aと異なる点は、前記発光手段3と前記撮像手段4の配置である。
本実施形態2の光照射受光装置1Bでは、前記発光手段3の前記光源301は、発光した光の偏光面が、前記偏光ビームスプリッタ501を透過する向きになるように配置されている。
また、前記撮像手段4は、前記被計測物体からの反射光が、前記偏光ビームスプリッタ501で反射する方向に配置されている。
また、前記光源301は、発光した光の偏光面が前記偏光ビームスプリッタ501で反射される向きになり、かつ、前記偏光ビームスプリッタ501で反射した光が前記被計測物体2に照射されるように配置され、前記照射角調節手段302は、前記光源301と前記偏光ビームスプリッタ501の間に配置されている。
【0079】
本実施形態2の光照射受光装置1Bでは、前記光源301で発光した単色かつ直線偏光の光は、前記照射角調節手段302で照射角を調節した後、前記偏光ビームスプリッタ501に入射する。このとき、前記偏光ビームスプリッタ501に入射する光はp偏光であるため、前記偏光ビームスプリッタ501を透過する。
前記偏光ビームスプリッタ501を透過した照射光は、前記λ/4波長板502で円偏光に変換された後、前記焦点調節手段6を通して前記被計測物体2に照射される。
【0080】
このとき、前記光源301で発光する光は直線偏光であり、前記偏光ビームスプリッタ501でほぼ100%反射するため、前記光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射することができる。
また、前記被計測物体2に光を照射する場合には、前記実施形態1で説明したように、前記照射角調節手段302により、前記被計測物体2の光が照射される領域が、前記撮影画角と同等あるいは撮影画角よりもやや広くなるように調節する。
【0081】
前記被計測物体2に照射した光は反射し、図5に示したように、再び前記焦点調節手段6を通して前記λ/4波長板502に入射する。
前記被計測物体2からの反射光は、一般に、円偏光と無偏光が混合した状態であり、前記円偏光は前記λ/4波長板502で直線偏光に変換される。このときの直線偏光の偏光面は、前記光源301で発光した光の偏光面に対して90度回転した状態、すなわちs偏光であるため、前記偏光ビームスプリッタ501で反射し、前記撮像手段4で受光される。
【0082】
一方、前記無偏光は偏光面がランダムな光であり、前記λ/4波長板502により各偏光面が均一に回転するだけなので、無偏光のまま前記偏光ビームスプリッタ501に入射される。このとき、前記無偏光の一部、すなわち偏光面が前記偏光ビームスプリッタ501で反射する向きの成分だけが反射し、残りの成分は透過する。そのため、前記撮像手段4で受光する光の光量は、前記被計測物体2で反射した光の円偏光と無偏光の混合比に依存するが、前記被計測物体2で反射した光の光量の、おおよそ50%から100%となる。
【0083】
本実施形態2の光照射受光装置1Bでは、前記被計測物体2に照射する光の光軸を、前記撮像手段4で受光する光の光軸と一致させているため、前記撮像手段4で撮影する領域内に光があたらない領域(オクルージョン領域)が発生しない。
また、前記光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射でき、前記被計測物体2で反射した光の光量の50%から100%を前記撮像手段4で受光することができるので、従来のハーフミラーを用いた装置に比べ、撮像に利用できる光量を増加することができる。
本実施形態2の光照射受光装置1Bも、前記実施形態1の光照射受光装置1Aと同様に、主に、前記被計測物体の三次元形状を測定したり、パターン認識をしたりするのに用いられる三次元形状測定装置として用いられるが、その具体的な構成及び動作の説明については省略する。
【0084】
以上説明したように、本実施形態2の光照射受光装置によれば、前記光軸一致手段5を用い、前記被計測物体2に照射する光の方向と同じ方向に反射した光を前記撮像手段4で受光することにより、前記被計測物体2にオクルージョン領域が発生するのを防ぐことができる。
またこのとき、前記照射角調節手段302を用いることにより、前記被計測物体2の撮影領域(撮像画角)と同等あるいはやや広い領域のみに光を照射することができ、光量を有効に利用することができる。
また、前記偏光ビームスプリッタ501及びλ/4波長板502を用いることにより、前記撮像手段4で受光する光の光量が、前記光源301で発光した光の光量の50%から100%になるため、従来のハーフミラーを用いた装置に比べ、光の利用効率を高くすることができる。
【0085】
(実施形態3)
図6は、本発明による実施形態3の光照射受光装置の概略構成を示す模式図である。
図6において、1Cは光照射受光装置、2は被計測物体、3は発光手段、302は照射角調節手段、303は赤外光源、4は第1撮像手段、5は光軸一致手段、501は偏光ビームスプリッタ、502はλ/4波長板、6は焦点調節手段、7Aは光分離手段(コールドミラー)、8は第2撮像手段である。また、図6に示した矢印のうち、実線の矢印は被計測物体に照射する光の進路を示し、破線の矢印は受光する光の進路を示す。また、実線の矢印に添えたsはs偏光であることを示し、破線の矢印に添えたpはp偏光であることを示す。
【0086】
本実施形態3の光照射受光装置1Cは、図6に示すように、被計測物体2に照射する赤外光を発光する発光手段3と、前記被計測物体2で反射した赤外光を受光して撮像する第1撮像手段4と、前記被計測物体2に照射する赤外光の光軸と、前記第1撮像手段4で受光する赤外光の光軸を一致させる光軸一致手段5と、前記第1撮像手段4で撮像する像の焦点を調節する焦点調節手段6と、前記被計測物体2で反射した光を赤外光と可視光に分離する光分離手段7Aと、前記光分離手段7Aによって分離した可視光を受光して撮像する第2撮像手段8とにより構成されている。
【0087】
また、前記発光手段3は、直線偏光の赤外光を発光する赤外光源303と、前記赤外光源303で発光した赤外光の照射角を調節する照射角調節手段302とを備える。
また、前記光軸一致手段5は、入射する光の偏光面の向きに応じて光を反射あるいは透過させる偏光ビームスプリッタ501と、入射した直線偏光を円偏光に変換し、入射した円偏光を直線偏光に変換するλ/4波長板502とを備える。
また、前記光分離手段7A、前記λ/4波長板502は、前記偏光ビームスプリッタ501と前記被計測物体2との間に、前記被計測物体2側から、前記光分離手段7A、前記λ/4波長板502の順に配置されている。
【0088】
また、本実施形態3の光照射受光装置1Cにおいて、前記光分離手段7Aは、赤外光を透過し、可視光を反射するコールドミラーであり、前記焦点調節手段6、前記コールドミラー7A、前記λ/4波長板502、前記偏光ビームスプリッタ501は、図6に示したように、前記被計測物体2と前記第1撮像手段4とを結ぶ直線上に、前記被計測物体2側から、前記焦点調節手段6、前記コールドミラー7A、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置されている。
【0089】
また、前記赤外光源303は、発光した赤外光の偏光面が前記偏光ビームスプリッタ501で反射する向きになり、かつ、前記偏光ビームスプリッタ501で反射した赤外光が前記被計測物体2に照射されるように配置されている。
また、前記第2撮像手段8は、前記被計測物体2からの可視光が前記コールドミラー7Aで反射する方向に配置されている。
【0090】
本実施形態3の光照射受光装置1Cでは、前記赤外光源303で発光した直線偏光の赤外光は、前記照射角調節手段302で照射角を調節した後、前記偏光ビームスプリッタ501に入射する。このとき、前記偏光ビームスプリッタ501に入射する赤外光はs偏光であるため、前記偏光ビームスプリッタ501で反射する。
前記偏光ビームスプリッタ501で反射した赤外照射光は、前記λ/4波長板502で円偏光に変換された後、前記コールドミラー7Aを透過し、前記焦点調節手段6を通して前記被計測物体2に照射される。
【0091】
このとき、前記赤外光源303で発光する赤外光は直線偏光であり、前記偏光ビームスプリッタ501でほぼ100%反射する。また、前記赤外光は前記コールドミラー7Aもほぼ100%透過するため、前記赤外光源301で発光した赤外光の光量のほぼ100%を前記被計測物体2に照射することができる。
また、前記被計測物体2に光を照射する場合には、前記実施形態1で説明したように、前記照射角調節手段302により、前記被計測物体2の光が照射される領域が、前記撮影画角と同等あるいは撮影画角よりもやや広くなるように調節する。
【0092】
前記被計測物体2に照射した光は反射し、図6に示したように、再び前記焦点調節手段6を通して前記コールドミラー7Aに入射する。このとき、前記被計測物体2で反射した光は、前記赤外光と外光(可視光)が含まれているが、赤外光は前記コールドミラー7Aを透過し、可視光は前記コールドミラー7Aで反射する。
前記コールドミラー7Aを透過した赤外光は、再び前記λ/4波長板502に入射する。
【0093】
前記被計測物体2で反射した赤外光は、一般に、円偏光と無偏光が混合した状態であり、前記円偏光は前記λ/4波長板502で直線偏光に変換される。このときの直線偏光の偏光面は、前記光源301で発光した光の偏光面に対して90度回転した状態、すなわちp偏光であるため、前記偏光ビームスプリッタ501で反射し、前記撮像手段4で受光される。
【0094】
一方、前記無偏光は偏光面がランダムな光であり、前記λ/4波長板502により各偏光面が均一に回転するだけなので、無偏光のまま前記偏光ビームスプリッタ501に入射される。このとき、前記無偏光の一部、すなわち偏光面が前記偏光ビームスプリッタ501で反射する向きの成分だけが反射し、残りの成分は透過する。また、前記コールドミラー7Aは赤外光をほぼ100%透過するため、前記撮像手段4で受光する光の光量は、前記被計測物体2で反射した光の円偏光と無偏光の混合比に依存するが、前記被計測物体2で反射した光の光量の、おおよそ50%から100%となる。
【0095】
また、前記コールドミラー7Aで反射した可視光は、図6に示したように、第2撮像手段8で受光し、撮像される。このとき、前記第2撮像手段8は、前記第1撮像手段4で撮影する範囲と同じ範囲を撮影できるように光学的距離を調整しておく。
【0096】
本実施形態3の光照射受光装置1Cでは、前記被計測物体2に照射する赤外光の光軸を、前記第1撮像手段4で受光する赤外光の光軸と一致させているため、前記第1撮像手段4で撮影する領域内に赤外光があたらない領域(オクルージョン領域)が発生しない。
【0097】
また、前記赤外光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射でき、前記被計測物体2で反射した赤外光の光量の50%から100%を前記撮像手段4で受光することができるので、従来のハーフミラーを用いた装置に比べ、撮像に利用できる光量を増加することができる。
【0098】
また、前記コールドミラー7Aを用いて、前記被計測物体2で反射した光から可視光を分離し、前記第2撮像手段8で受光し、撮像することにより、前記第1撮像手段4で撮影した範囲の色情報を取得することができる。そのため、前記被計測物体2の形状及び色情報を測定でき、前記被計測物体2を認識しやすくなる。
【0099】
図7は、本実施形態3の光照射受光装置の具体的な構成例を示す模式図である。
本実施形態3の光照射受光装置1Cは、主に、前記被計測物体の三次元形状を測定したり、パターン認識をしたりするのに用いられる三次元形状測定装置として用いられ、前記赤外光源303として、図4に示すように、パルスレーザ光を発光する半導体レーザ発振器303を用いる。
【0100】
また、前記撮像手段4は、赤外光に感度を有し、高速のシャッター動作及び増幅をするゲート付きMCP401及びリレーレンズ402が設けられた撮像カメラ403を用いる。また、必要に応じて前記λ/4波長板502と前記撮像カメラ403の間に、前記赤外半導体レーザ発振器303で発光したレーザパルス光の波長以外の波長の光を除去するバンドパスフィルタ404を設ける。
また、前記焦点調節手段6は、例えば、焦点距離の短いCマウントレンズ601と、焦点距離延長レンズ602を組み合わせて用いる。
【0101】
図7に示した三次元形状測定装置の動作を簡単に説明すると、まず、前記赤外半導体レーザ発振器303でレーザパルス光を発光する。前記レーザパルス光は、前記照射角調節手段302で、前記レーザパルス光の照射角が前記撮像カメラで撮影する範囲(撮像画角)と同等あるいはやや広くなるように調節して前記偏光ビームスプリッタ501に入射する。
【0102】
このとき、前記赤外半導体レーザ発振器303は、前記レーザパルス光がs偏光になるように配置されており、前記偏光ビームスプリッタ501で反射し、前記λ/4波長板502で円偏光になり、前記コールドミラー7Aを透過し、前記焦点延長レンズ602及び前記Cマウントレンズ601を通って前記被計測物体2に照射される。
【0103】
前記被計測物体2に照射され、反射したレーザパルス光は、再び前記Cマウントレンズ601及び焦点距離延長レンズ602を通り、前記コールドミラー7Aに入射する。
このとき、反射した前記レーザパルス光のうち円偏光の赤外光は、前記コールドミラー7Aを透過し、前記λ/4波長板502で、前記赤外半導体レーザ発振器303で発光したレーザパルス光の偏光面と直交する偏光面のパルス光、すなわちp偏光になる。そのため、前記偏光ビームスプリッタ501を透過する。また、前記反射したレーザパルス光の無偏光成分は、前記偏光ビームスプリッタ501が透過する偏光面に近い成分が透過する。
【0104】
前記偏光ビームスプリッタ501を透過した光は、前記バンドパスフィルタ404に入射され、前記赤外半導体レーザ光源303で発光したレーザパルス光の波長以外の外光成分が除去される。
前記バンドパスフィルタ404を通過した光は、前記ゲート付きMCP401を用いて高速のシャッター動作をさせながら、前記リレーレンズ402を通して前記撮像カメラ403で光の像を撮影する。
【0105】
このとき、前記被計測物体2の各部位で反射した光には、前記半導体レーザ発振器から前記被計測物体までの距離と、前記被計測物体から前記撮像カメラまでの距離の和に応じた時間差がある。そのため、高速のシャッター動作をさせながら像を撮影することにより、撮影された画像には、単位時間内に到達した光の光量に応じた濃淡が現われる。
そこで、前記撮像した画像の濃淡値にもとづき、飛行時間法を用いて、撮影した画像の各点に対する前記被計測物体までの距離を求めることにより、前記被計測物体の形状を求めることができる。
【0106】
一方、前記コールドミラー7Aに入射した可視光は、前記コールドミラー7Aで反射するが、そのままでは撮影した像の左右が入れ替わるため、ミラー9でもう一度反射させ、像の左右を元に戻したあと、前記第2撮像手段8で受光し、撮像する。
【0107】
以上説明したように、本実施形態3の光照射受光装置によれば、前記光軸一致手段5を用い、前記被計測物体2に照射する光の光軸を前記第1撮像手段4で受光する光の光軸と一致させることにより、前記被計測物体2にオクルージョン領域が発生するのを防ぐことができる。
またこのとき、前記照射角調節手段302を用いることにより、前記被計測物体2の撮影領域(撮像画角)と同等あるいはやや広い領域のみに光を照射することができ、光量を有効に利用することができる。
また、前記偏光ビームスプリッタ501及びλ/4波長板502を用いることにより、前記撮像手段4で受光する光の光量が、前記光源301で発光した光の光量の50%から100%になるため、従来のハーフミラーを用いた装置に比べ、光の利用効率を高くすることができる。
また、前記光分離手段(コールドミラー)7Aを用いることにより、前記被計測物体で反射した可視光を前記第2撮像手段8で撮影することができ、前記被計測物体2を認識するための情報量が増え、認識しやすくなる。
【0108】
図8は、前記実施形態3の光照射受光装置の変形例を示す模式図である。
前記実施形態3の光照射受光装置1Cでは、図6に示したように、前記焦点調節手段6、前記コールドミラー7A、前記λ/4波長板502、前記偏光ビームスプリッタ501を、前記被計測物体2と前記第1撮像手段4とを結ぶ直線上に、前記被計測物体2側から、前記焦点調節手段6、前記コールドミラー7A、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置しているが、これに限らず、図8に示したように、前記被計測物体2と前記赤外光発光手段3とを結ぶ直線上に、前記被計測物体2側から、前記焦点調節手段6、前記コールドミラー7A、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置してもよい。
【0109】
このとき、前記赤外光源303は、発光した赤外光の偏光面が前記偏光ビームスプリッタ501を透過する向きになるように配置する。また、前記第1撮像手段4は、前記被計測物体2で反射され、前記コールドミラー7A及び前記λ/4波長板502を通った赤外光が前記偏光ビームスプリッタ501で反射する方向に配置する。
図8に示したような構成の場合、前記第1撮像手段4で受光する光の光軸が前記被計測物体2に照射する赤外光の光軸と一致するため、前記実施形態3の光照射受光装置1Cと同じ効果を得ることができる。
【0110】
(実施形態4)
図9は、本発明による実施形態4の光照射受光装置の概略構成を示す模式図である。
図9において、1Dは光照射受光装置、2は被計測物体、3は発光手段、302は照射角調節手段、303は赤外光源、4は第1撮像手段、5は光軸一致手段、501は偏光ビームスプリッタ、502はλ/4波長板、6は焦点調節手段、7Bは光分離手段(ホットミラー)、8は第2撮像手段である。また、図9に示した矢印のうち、実線の矢印は被計測物体に照射する光の進路を示し、破線の矢印は受光する光の進路を示す。また、実線の矢印に添えたsはs偏光であることを示し、破線の矢印に添えたpはp偏光であることを示す。
【0111】
本実施形態4の光照射受光装置1Dは、前記実施形態3の光照射受光装置と同様の構成であり、図9に示すように、赤外光源303と照射角調節手段302を備える発光手段3と、前記第1撮像手段4と、前記偏光ビームスプリッタ501と前記λ/4波長板502を備える前記光軸一致手段5と、前記焦点調節手段6と、前記光分離手段7Bと、前記第2撮像手段8とにより構成されている。そのため、各構成要素の説明は省略する。
【0112】
本実施形態4の光照射受光装置1Dにおいて、前記実施形態3の光照射受光装置1Cと異なる点は、前記光分離手段7Bとして、赤外光を反射し、可視光を透過するホットミラーを用いる点と、前記各構成要素の配置である。
本実施形態4の光照射受光装置1Dでは、前記ホットミラー7Bと前記焦点調節手段6は、図9に示したように、前記被計測物体2と前記第2撮像手段8とを結ぶ直線上に、前記被計測物体2側から前記焦点調節手段6、前記ホットミラー7Bの順に配置される。
【0113】
また、前記λ/4波長板502及び前記偏光ビームスプリッタ501は、前記被計測物体2からの赤外光が前記ホットミラー7Bで反射する方向であり、かつ、前記ホットミラー7Bと前記第1撮像手段4とを結ぶ直線上に、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置される。
また、前記赤外光源303は、発光した赤外光の偏光面が前記偏光ビームスプリッタ501で反射する向きになり、かつ、前記被計測物体2に照射されるように配置されている。
【0114】
本実施形態4の光照射受光装置1Dでは、前記赤外光源303で発光した直線偏光の赤外光は、前記照射角調節手段302で照射角を調節した後、前記偏光ビームスプリッタ501に入射する。このとき、前記偏光ビームスプリッタ501に入射する赤外光はs偏光であるため、前記偏光ビームスプリッタ501で反射する。
前記偏光ビームスプリッタ501で反射した赤外照射光は、前記λ/4波長板502で円偏光に変換された後、前記ホットミラー7Bで反射し、前記焦点調節手段6を通して前記被計測物体2に照射される。
【0115】
このとき、前記赤外光源303で発光する赤外光は直線偏光であり、前記偏光ビームスプリッタ501でほぼ100%反射する。また、前記ホットミラー7Bもほぼ100%反射するため、前記赤外光源303で発光した赤外光の光量のほぼ100%を前記被計測物体2に照射することができる。
また、前記被計測物体2に光を照射する場合には、前記実施形態1で説明したように、前記照射角調節手段302により、前記被計測物体2の光が照射される領域が、前記撮影画角と同等あるいは撮影画角よりもやや広くなるように調節する。
【0116】
前記被計測物体2に照射した光は反射し、図6に示したように、再び前記焦点調節手段6を通して前記ホットミラー7Bに入射する。このとき、前記被計測物体2で反射した光は、前記赤外光と外光(可視光)が含まれているが、赤外光は前記ホットミラー7Bで反射し、可視光は前記ホットミラー7Bを透過する。
前記ホットミラー7Bで反射した赤外光は、再び前記λ/4波長板502に入射する。
【0117】
前記被計測物体2で反射した赤外光は、一般に、円偏光と無偏光が混合した状態であり、前記円偏光は前記λ/4波長板502で直線偏光に変換される。このときの直線偏光の偏光面は、前記赤外光源303で発光した光の偏光面に対して90度回転した状態、すなわちp偏光であるため、前記偏光ビームスプリッタ501で反射し、前記撮像手段4で受光される。
【0118】
一方、前記無偏光は偏光面がランダムな光であり、前記λ/4波長板502により各偏光面が均一に回転するだけなので、無偏光のまま前記偏光ビームスプリッタ501に入射される。このとき、前記無偏光の一部、すなわち偏光面が前記偏光ビームスプリッタ501で反射する向きの成分だけが反射し、残りの成分は透過する。また、前記ホットミラー7は赤外光をほぼ100%反射するため、前記撮像手段4で受光する光の光量は、前記被計測物体2で反射した光の円偏光と無偏光の混合比に依存するが、前記被計測物体2で反射した光の光量の、おおよそ50%から100%となる。
【0119】
また、前記ホットミラー7Bを透過した可視光は、図9に示したように、第2撮像手段8で受光し、撮像される。このとき、前記第2撮像手段8は、前記第1撮像手段4で撮影する範囲と同じ範囲を撮影できるように光学的距離を調整しておく。
【0120】
本実施形態4の光照射受光装置1Dでは、前記被計測物体2に照射する赤外光の光軸を、前記第1撮像手段4で受光する赤外光の光軸と一致させているため、前記第1撮像手段4で撮影する領域内に赤外光があたらない領域(オクルージョン領域)が発生しない。
【0121】
また、前記赤外光源301で発光した光の光量のほぼ100%を前記被計測物体2に照射でき、前記被計測物体2で反射した赤外光の光量の50%から100%を前記撮像手段4で受光することができるので、従来のハーフミラーを用いた装置に比べ、撮像に利用できる光量を増加することができる。
【0122】
また、前記ホットミラー7Bを用いて、前記被計測物体2で反射した光から可視光を分離し、前記第2撮像手段8で受光し、撮像することにより、前記第1撮像手段4で撮影した範囲の色情報を取得することができる。そのため、前記被計測物体2の形状及び色情報を測定でき、前記被計測物体2を認識しやすくなる。
【0123】
本実施形態4の光照射受光装置1Dも、主に、前記被計測物体の三次元形状を測定したり、パターン認識をしたりするのに用いられる三次元形状測定装置として用いられるが、その具体的な構成及び動作は、前記実施形態3の装置と同様であるため、その説明は省略する。
【0124】
以上説明したように、本実施形態4の光照射受光装置によれば、前記光軸一致手段5を用い、前記被計測物体2に照射する光の光軸を前記第1撮像手段4で受光する光の光軸と一致させることにより、前記被計測物体2にオクルージョン領域が発生するのを防ぐことができる。
またこのとき、前記照射角調節手段302を用いることにより、前記被計測物体2の撮影領域(撮像画角)と同等あるいはやや広い領域のみに光を照射することができ、光量を有効に利用することができる。
【0125】
また、前記偏光ビームスプリッタ501及びλ/4波長板502を用いることにより、前記撮像手段4で受光する光の光量が、前記光源301で発光した光の光量の50%から100%になるため、従来のハーフミラーを用いた装置に比べ、光の利用効率を高くすることができる。
また、前記光分離手段(ホットミラー)7Bを用いることにより、前記被計測物体で反射した可視光を前記第2撮像手段8で撮影することができ、前記被計測物体2を認識するための情報量が増え、認識しやすくなる。
【0126】
図10は、前記実施形態4の光照射受光装置の変形例を示す模式図である。
前記実施形態4の光照射受光装置1Dでは、図9に示したように、前記λ/4波長板502及び前記偏光ビームスプリッタ501を、前記被計測物体2からの赤外光が前記ホットミラー7Bで反射する方向であり、かつ、前記ホットミラー7Bと前記第1撮像手段4とを結ぶ直線上に、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置しているが、これに限らず、図10に示すように、前記ホットミラー7Bと前記発光手段3との間に、前記ホットミラー7B側から、前記λ/4波長板502、前記偏光ビームスプリッタ501の順に配置してもよい。
【0127】
図10に示したような配置の場合は、前記赤外光源303は、発光した赤外光の偏光面が前記偏光ビームスプリッタ501を透過するような向きに配置し、前記第1撮像手段4は、前記被計測物体2で反射され、前記ホットミラー7B及び前記λ/4波長板502を通った赤外光が、前記偏光ビームスプリッタ501で反射する方向に配置することで、前記実施形態4の光照射受光装置1Dと同じ効果を得ることができる。
【0128】
以上、本発明を、前記実施形態に基づき具体的に説明したが、本発明は、前記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において種々変更可能であることはもちろんである。
【0129】
【発明の効果】
本願において開示される発明の効果は、以下のとおりである。
(1)発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、オクルージョン領域をなくすことができる。
(2)発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、撮像範囲と照射範囲の調節を容易にすることができる。
(3)発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、発光手段で発光した光のロスを低減することができる。
(4)発光手段で発光した光を被計測物体に照射し、前記被計測物体からの反射光を受光して撮像する光照射受光装置において、オクルージョン領域をなくし、かつ、撮影範囲と照射範囲の調節を容易にするとともに、発光手段で発光した光のロスを低減することができる。
【図面の簡単な説明】
【図1】本発明による実施形態1の光照射受光装置の概略構成を示す模式図である。
【図2】本実施形態1の光照射受光装置の動作を説明するための模式図である。
【図3】本実施形態1の光照射受光装置の動作を説明するための模式図である。
【図4】本実施形態1の光照射受光装置の具体的な構成例を示す模式図である。
【図5】本発明による実施形態2の光照射受光装置の概略構成を示す模式図である。
【図6】本発明による実施形態3の光照射受光装置の概略構成を示す模式図である。
【図7】本実施形態3の光照射受光装置の具体的な構成例を示す模式図である。
【図8】前記実施形態3の光照射受光装置の変形例を示す模式図である。
【図9】本発明による実施形態4の光照射受光装置の概略構成を示す模式図である。
【図10】前記実施形態4の光照射受光装置の変形例を示す模式図である。
【図11】従来のアクティブ型計測方法を説明するための模式図である。
【図12】従来のアクティブ型計測方法の課題を説明するための模式図である。
【図13】従来のアクティブ型計測方法の課題を説明するための模式図である。
【図14】従来のアクティブ型計測方法の課題を説明するための模式図である。
【図15】従来のアクティブ型計測方法の課題を説明するための模式図である。
【符号の説明】
1A,1B,1C,1D…光照射受光装置、2…被計測物体、
3…発光手段、301…光源、302…照射角調節手段、303…赤外光源、
4…撮像手段(第1撮像手段)、401…ゲート付きMCP、402…リレーレンズ、403…撮像カメラ、404…バンドパスフィルタ、
5…光軸一致手段、501…変更ビームスプリッタ、502…λ/4波長板、
6…焦点調節手段、7A…コールドミラー、7B…ホットミラー、
8…第2撮像手段、9…ミラー、10…ハーフミラー。
Claims (5)
- 被計測物体に照射する赤外光を発光する赤外光発光手段と、前記被計測物体で反射した赤外光を受光して撮像する第1撮像手段と、前記被計測物体に照射する赤外光の光軸と、前記第1撮像手段で受光する赤外光の光軸を一致させる光軸一致手段と、前記第1撮像手段で撮像する像の焦点を調節する焦点調節手段と、前記被計測物体で反射した光を赤外光と可視光に分離する光分離手段と、前記光分離手段によって分離した可視光を受光して撮像する第2撮像手段を備える光照射受光装置であって、
前記赤外光発光手段は、直線偏光の赤外光を発光する赤外光源と、前記赤外光源で発光した赤外光の照射角を調節する照射角調節手段とを備え、
前記光軸一致手段は、入射する光の偏光面の向きに応じて光を反射あるいは透過させる偏光ビームスプリッタと、入射した直線偏光を円偏光に変換し、入射した円偏光を直線偏光に変換するλ/4波長板とを備え、
前記光分離手段及び前記λ/4波長板は、前記偏光ビームスプリッタと前記被計測物体との間に、前記被計測物体側から、前記光分離手段、前記λ/4波長板の順に配置されていることを特徴とする光照射受光装置。 - 前記光分離手段は、赤外光を透過し、可視光を反射するコールドミラーであり、
前記焦点調節手段、前記コールドミラー、前記λ/4波長板、及び前記偏光ビームスプリッタは、前記被計測物体と前記第1撮像手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、
前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタで反射する向きになり、かつ、前記偏光ビームスプリッタで反射した赤外光が前記被計測物体に照射されるように配置され、
前記第2撮像手段は、前記被計測物体からの可視光が前記コールドミラーで反射する方向に配置されていることを特徴とする請求項1に記載の光照射受光装置。 - 前記光分離手段は、赤外光を透過し、可視光を反射するコールドミラーであり、
前記焦点調節手段、前記コールドミラー、前記λ/4波長板、及び前記偏光ビームスプリッタは、前記被計測物体と前記赤外光発光手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記コールドミラー、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、
前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタを透過する向きになるように配置され、
前記第1撮像手段は、前記被計測物体で反射され、前記コールドミラー及び前記λ/4波長板を通った赤外光が前記偏光ビームスプリッタで反射する方向に配置され、
前記第2撮像手段は、前記被計測物体からの可視光が前記コールドミラーで反射する方向に配置されていることを特徴とする請求項1に記載の光照射受光装置。 - 前記光分離手段は、赤外光を反射し、可視光を透過するホットミラーであり、
前記ホットミラーと前記焦点調節手段は、前記被計測物体と前記第2撮像手段とを結ぶ直線上に、前記被計測物体側から前記焦点調節手段、前記ホットミラーの順に配置され、
前記λ/4波長板及び前記偏光ビームスプリッタは、前記被計測物体からの赤外光が前記ホットミラーで反射する方向であり、かつ、前記ホットミラーと前記第1撮像手段とを結ぶ直線上に、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、
前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタで反射する向きになり、かつ、前記被計測物体に照射されるように配置されていることを特徴とする請求項1に記載の光照射受光装置。 - 前記光分離手段は、赤外光を反射し、可視光を透過するホットミラーであり、
前記ホットミラーと前記焦点調節手段は、前記被計測物体と前記第2撮像手段とを結ぶ直線上に、前記被計測物体側から、前記焦点調節手段、前記ホットミラーの順に配置され、
前記偏光ビームスプリッタ及び前記λ/4波長板は、前記ホットミラーと前記赤外光発光手段との間に、前記ホットミラー側から、前記λ/4波長板、前記偏光ビームスプリッタの順に配置され、
前記赤外光源は、発光した赤外光の偏光面が前記偏光ビームスプリッタを透過するような向きに配置され、
前記第1撮像手段は、前記被計測物体で反射され、前記ホットミラー及び前記λ/4波長板を通った赤外光が、前記偏光ビームスプリッタで反射する方向に配置されていることを特徴とする請求項4に記載の光照射受光装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375625A JP3766326B2 (ja) | 2001-12-10 | 2001-12-10 | 光照射受光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001375625A JP3766326B2 (ja) | 2001-12-10 | 2001-12-10 | 光照射受光装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003172612A JP2003172612A (ja) | 2003-06-20 |
JP3766326B2 true JP3766326B2 (ja) | 2006-04-12 |
Family
ID=19183963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001375625A Expired - Fee Related JP3766326B2 (ja) | 2001-12-10 | 2001-12-10 | 光照射受光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3766326B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1751495A2 (en) * | 2004-01-28 | 2007-02-14 | Canesta, Inc. | Single chip red, green, blue, distance (rgb-z) sensor |
JP4895324B2 (ja) * | 2006-11-27 | 2012-03-14 | 日本精機株式会社 | ヘッドアップディスプレイ装置 |
US8593507B2 (en) * | 2008-08-03 | 2013-11-26 | Microsoft International Holdings B.V. | Rolling camera system |
WO2012061163A2 (en) * | 2010-10-25 | 2012-05-10 | Nikon Corporation | Apparatus, optical assembly, method for inspection or measurement of an object and method for manufacturing a structure |
JP6932067B2 (ja) * | 2017-11-13 | 2021-09-08 | 株式会社サキコーポレーション | 検査装置の投射ユニットにおける液晶表示素子の位置決定方法 |
JP2020073894A (ja) * | 2019-12-25 | 2020-05-14 | 京セラ株式会社 | 電磁波検出装置および情報取得システム |
WO2023119797A1 (ja) * | 2021-12-23 | 2023-06-29 | 株式会社Jvcケンウッド | 撮像装置及び撮像方法 |
-
2001
- 2001-12-10 JP JP2001375625A patent/JP3766326B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003172612A (ja) | 2003-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4040825B2 (ja) | 画像撮像装置及び距離測定方法 | |
US20040125205A1 (en) | System and a method for high speed three-dimensional imaging | |
JP4115801B2 (ja) | 3次元撮影装置 | |
JP4972960B2 (ja) | 焦点調節装置および撮像装置 | |
JP4031306B2 (ja) | 3次元情報検出システム | |
CN113302541B (zh) | 用于捕获任意平面之间的全光图像的过程和装置 | |
JP3766326B2 (ja) | 光照射受光装置 | |
CN207995235U (zh) | 一种分光成像装置 | |
JP4516590B2 (ja) | 画像撮像装置及び距離測定方法 | |
CN111272101A (zh) | 一种四维高光谱深度成像系统 | |
JP4150506B2 (ja) | 画像撮像装置及び距離測定方法 | |
CN109068956A (zh) | 物镜光学系统以及具备物镜光学系统的内窥镜装置 | |
JP2007233033A (ja) | 焦点調節装置および撮像装置 | |
FR3127354A1 (fr) | Système d'alignement continu automatique d’une tache laser à impulsions | |
JP4208536B2 (ja) | 焦点検出装置、それを有する撮像装置、及び撮影レンズ | |
JP7358611B2 (ja) | 撮像装置 | |
EP1184681A2 (en) | Method and apparatus for aligning a color scannerless range imaging system | |
CN110381229A (zh) | 一种分光成像装置 | |
JP2011199570A (ja) | カメラ | |
JP4191428B2 (ja) | カメラ方式三次元計測装置 | |
CN114441529B (zh) | 光学摄像装置、光学检查装置以及光学检查方法 | |
WO2023010874A1 (zh) | 一种图像拍摄装置以及图像处理方法 | |
US20230251090A1 (en) | Method for operating a geodetic instrument, and related geodetic instrument | |
JP2016122912A (ja) | 画像取得装置 | |
WO2023112452A1 (ja) | 計測装置及び計測方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040121 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050613 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051101 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060124 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060126 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090203 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100203 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110203 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120203 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |