JP3763185B2 - Switching valve - Google Patents

Switching valve Download PDF

Info

Publication number
JP3763185B2
JP3763185B2 JP13658097A JP13658097A JP3763185B2 JP 3763185 B2 JP3763185 B2 JP 3763185B2 JP 13658097 A JP13658097 A JP 13658097A JP 13658097 A JP13658097 A JP 13658097A JP 3763185 B2 JP3763185 B2 JP 3763185B2
Authority
JP
Japan
Prior art keywords
port
chamber
valve
housing
valve shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13658097A
Other languages
Japanese (ja)
Other versions
JPH10332006A (en
Inventor
久幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13658097A priority Critical patent/JP3763185B2/en
Publication of JPH10332006A publication Critical patent/JPH10332006A/en
Application granted granted Critical
Publication of JP3763185B2 publication Critical patent/JP3763185B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrically Driven Valve-Operating Means (AREA)
  • Multiple-Way Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、油や空気等の流体圧回路に使用される切換弁に関する。
【0002】
【従来の技術】
油や空気等の流体回路の回路構成を切り換える制御に切換弁が用いられる。
切換弁は、複数の流体管路・通路(以下流体通路という)が接続される弁ハウジングと該弁ハウジング中に軸線方向に移動可能に嵌装された弁軸部材とで構成され、この弁軸部材の外周形状と弁ハウジングの内周形状との関係によって、弁軸部材の弁ハウジングに対する軸線方向位置を変化させることで、弁ハウジングに導入されている複数の流体流路相互の導通関係が変化する仕組みになっており、この弁軸部材を操作手段(例えば電磁弁のソレノイド、人力操作弁のレバーやボタン、機械操作弁のカムやリンク機構を用いて弁ハウジングに対する軸線方向位置を変化させることで、目的とする回路構成の切換制御を実現している。
【0003】
ところで、この弁軸部材の軸線方向位置により回路構成を切り換える切換弁の基本構造原理として、「ポペット弁型」と、「スプール弁型」とが知られている。
図5は、スプール弁型の2位置4ポート切換弁の構造を示す。
スプール弁100は4個のポート131,132,133,134を有する弁ハウジング110と、弁ハウジング110内の流体通路120内を摺動するスプール150を備える。スプール150は、2個のランド部151,152と、ランド部151,152の両側に配設される環状溝部153,154,155を有する。図4の状態にあっては、ポート131とポート134が連通され、ポート132とポート133が連通されている。
スプール150を図において矢印R方向に移動させると、ランド151が流体通路120の内周部122を閉じる。この作用によって、ポート131とポート133が連通され、ポート132とポート134が連通される。
【0004】
図6は、ポペット型の2位置3ポート切換弁の構造を示す。
ポペット弁200は、3つのポート211,212,213を有するハウジング210と、ハウジング内の流体通路220内を摺動するスプール250を備える。スプール250はランド部251を有し、ランド部251は、ハウジング210の流体通路220を区画する壁面221,222に選択的に当接してシールを行なう。
【0005】
図6の状態にあっては、ポート211とポート213が連通する。図5において、スプール250を矢印L方向に移動すると、ランド251は壁面221をシールし、ポート212とポート213が連通される。
このポペット弁は、流体回路間の遮断メカニズムが弁軸部材の操作手段による部材間の軸線方向の当接に加え、場合によっては、流体の圧力を部材間の当接に与からせて当接力を強めるセルフシーリング効果によって、ほぼ完全な遮断状態を構成できる利点がある。
この種のポペット弁は、例えば特開昭60−196471号公報に開示されている。
【0006】
【発明が解決しようとする課題】
上記の「スプール弁型」の切換弁においては、そのポート数には制限なく、多岐の流体流路相互の導通関係を実現することが可能であり、例えば図6に示すように油圧回路においても、代表的なスプール弁型切換弁である図に例示する2位置4ポート切換弁を1個用いることにより簡単に油圧回路の流路制御を行い得る。
しかし、スプール弁型では、各流体回路相互を区画しているのは各環状溝間に存在する弁ハウジング内周面と弁軸部材の外周面とにおけるランド部の嵌合域であり、このランド部の径寸法は、弁ハウジングに対する弁軸部材の軸線方向滑動を可能とするために、最小限の隙間が必要である。
【0007】
このため、各流体流路相互の導通関係を完全な遮断状態とすることは不可能で、特に隣合う流体流路間の圧力差が大きい場合には、この両者を区画しているランド部の嵌合域の隙間を通って高圧側から低圧側へと流体が洩れてしまう不都合がある。
そこで、各流体流路相互の洩れ流通を嫌うシステムでは、このスプール弁型は採用できず、ポペット弁型とする必要がある。即ち、代表的なポペット弁型切換弁である図に例示する2位置3ポート切換弁を用いると、各流体流路相互の導通関係の遮断状態は、弁軸部材と弁ハウジングとの軸線方向の(流体流路の開口面における)当接関係によって行われるので、完全な遮断状態が実現される。
【0008】
しかし、この弁部材間の軸線方向当接により遮断状態を構成する原理上、両弁部材において軸線方向の2箇所以上の当接部を同時に完全に当接させる構造は、弁部材の工作上困難であり、若しそれを実現させるにしても、生産性も悪く、生産コストも高くなるので、1つの弁軸部材の移動で切換可能な流体流路のポートの数は、図7に示すようにポート数は3ポートが限度となる。もし、両弁部材の複数箇所の当接部を同時に完全に当接させなければ、スプール弁型に対する優位性はない。
【0009】
ところが、3ポートであると、例えば図5に示すように油圧回路においても、図7に例示する2位置3ポート切換弁を2個用いる必要が生じ、油圧回路自体も複雑となり、スプール弁型の場合に比し生産コスト及び保守点検の手数の増大につながる。
この発明は、切換弁における上記のようなスプール弁型及びポペット弁型の欠点を一挙に解消した切換弁を提供することを目的としている。
【0010】
【課題を解決するための手段】
この発明の要点は、浮動リング部材が軸線方向に移動可能に外周面に嵌装された弁軸部材を弁ハウジング内に軸線方向に移動可能に浮動リング部材共々嵌装した点にある。
即ち、この発明の切換弁は基本的な手段として、ハウジング部材と、ハウジング部材内部に設けられハウジング部材内を軸方向に移動可能な弁軸部材と、軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、ハウジング部材内部にあって弁軸部材によって仕切られるハウジング両端部の第1室、第3室および中間部の第2室と、ハウジングに形成された第1室と第3室を結ぶ連通路と、第1室のハウジング部材壁面に形成された圧力流体供給口と、第2室のハウジング壁面に形成された第1流通口、第2流通口および排出口と、第1流通口と第2流通口の内側に配設されて浮動リング状部材の外側端面に当接するフランジ部を備える。
そして、弁軸部材および浮動リング状部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えるものである。
【0011】
【発明の実施の形態】
図1及び図2は本発明の2位置4ポート切換弁を示し、弁ハウジング1と弁ハウジング1に左右滑動自在に嵌装された弁軸部材2と弁軸部材2の外周面に左右滑動自在に嵌装された浮動リング部材3とから構成されている。
弁ハウジング1は、周壁部4と両端の端壁部5,5とで囲われた弁室が形成され、弁室は、軸線方向に第1室7、第2室8、及び第3室6から形成されている。
【0012】
周壁部4には、外部から第1室7の外端側に連通する圧力流体供給口14a及び同じく第2室8の外端側に連通する排出口15が夫々貫通しており、周壁部4内には、圧力流体供給口14aから分岐して第3室6に連通した連通路14bが貫通している。
更に、周壁部4には、第1内フランジ部28の内周面から外部に第1流通口12が貫通していると共に、第2内フランジ部29の内周面から外部に第2流通口13が貫通している。
【0013】
圧力流体供給口14aには、例えば図5に示す油圧回路の作動油供給源であるポンプPからの管路L1が接続され、排出口15には油タンクTへの管路L2が接続されている。
又、第1流通口12には、例えば図5に示す油圧回路の複動シリンダAの一方のポートaからの管路L3が接続され、第2流通口13には同じく他方のポートbからの管路L4が接続されている。
【0014】
弁軸部材2は、第1弁棒部16、第1ピストン部31、円柱状の中間部18、第2ピストン部32及び第2弁棒部20から構成され、中間部18には軸線方向の中央域に環状溝となった小径部33が形成され、第1弁棒16及び第2弁棒20は、弁ハウジング1の端壁部5,5を滑動自在且つ油密状態で貫通して外部に突出している。
第1弁棒部16又は第2弁棒部20には、操作手段、例えば電磁弁のソレノイド(図5参照)、人力操作弁のレバー、機械操作のカム、リンク機構等が結合されている。
【0015】
第1ピストン部31及び第2ピストン部32の外周面は第1室7及び第3室6に滑動自在に且つ油密に嵌合しており、中間部18の外周面は第1内フランジ部28及び第2内フランジ部29の内周面より小径で両周面間に適宜の間隙34がある。小径部33の両端には、更に狭幅の第1環状溝35及び第2環状溝36が形成され、第1ピストン部31の外端面から第1環状溝35に第1連通口24が貫通していると共に、第2ピストン部32の外端面から第2環状溝36に第2連通口25が貫通している
【0016】
小径部33の外周面には、小径部33より短い浮動リング部材3が滑動自在に且つ油密に嵌合しており、浮動リング部材3の長さは、小径部33の両端位置に位置しているとき、第1環状溝35又は第2環状溝36を蔽わないような長さである。
浮動リング部材3は、弁軸部材2の第1内フランジ部28及び第2内フランジ部29の内周面より適宜量大径であると共に弁ハウジング1の第2室8より適宜の間隙27だけ小径であり、両端部に中間部18と略同径の小径部3c,3dが形成されている。
【0017】
従って、浮動リング部材3の両端面3a,3bと第1内フランジ部28及び第2内フランジ部29の内側面とは適宜の当接面を形成して互に当接し得るようになっており、浮動リング部材3の小径部3c,3dの端面と弁軸部材2の第1ピストン部31の端面31a及び第2ピストン部32の端面32aは当接面を形成して互に当接し得るようになっている。
【0018】
上記の実施の第2形態の2位置4ポート切換弁の作用について述べると、弁軸部材2は、第1弁棒部16又は第2弁棒部20が操作手段、例えば電磁弁のソレノイド(図5参照)により図3に示す位置と図4に示す位置との2位置に切換移動する。
弁軸部材2が図1に示す位置に左行すると、浮動リング部材3は、弁軸部材2の小径部33の右側段部に押圧されて左行し、浮動リング部材3の左端面の外周域3aは第1内フランジ部28の右側面の内周域28aに密接され、浮動リング部材3の小径部3dの端面は弁軸部材2の第2ピストン部32の左側段部32aに密接されると共に、浮動リング部材3の右端面の外周域3bは第2内フランジ部29の左側面から離れ、弁軸部材2の第1ピストン部31の右側段部31aは浮動リング部材3の小径部3cの端面から離れる。
【0019】
その結果、第1流通口12は弁軸部材2の第1環状溝35に連通すると共に、第2流通口13は浮動リング部材3により弁軸部材2の第1環状溝35及び第2環状溝36と遮断されると共に第2室8、即ち排出口15と連通する。
即ち、上記の弁軸部材の位置状態(図3参照)では、圧力流体供給口14aが、第1室7、第1連通口24、第1環状溝35及び間隙34を介して第1流通口12に連通接続されると共に、第2流通口13は、間隙34及び第2室8(間隙27)を介して排出口15に連通接続される。
【0020】
かくして、油圧回路の作動油供給源(例えば図5のポンプP)から管路L1を介して供給される作動油は、圧力流体供給口14aから流入し、第1流通口12から流出して管路L3を介して油圧回路における複動シリンダAの一方のポートaに供給され、複動シリンダAのポートbから流出される作動油は、管路L4を介して第2流通口13から流入し、排出口15から管路L2を介して油タンクTへ排出される。それにより複動シリンダAの一方の作動が行われる。
【0021】
弁軸部材2が図1に示す位置から図2に示す位置に右行すると、弁軸部材2は、静止状態の浮動リング部材3に対し右方に滑動しながら、やがて弁軸部材2の第1ピストン部31の右側段部31aが浮動リング部材3の小径部3cに当接して浮動リング部材3を右方に押圧する。すると、浮動リング部材3の左端面の外周域31aは第1内フランジ部28の右側面の内周域から離れ、浮動リング部材3の右端面の外周域3aは第2内フランジ部29の左側面の内周域に密接すると共に、弁軸部材2の第1ピストン部31の左側段部31aが浮動リング部材3の小径部3cに密接し、弁軸部材2の第2ピストン部32の右側段部32aが浮動リング部材3の小径部3dから離れる。
【0022】
その結果、第1流通口12は、浮動リング部材3により弁軸部材2の第1環状溝35と遮断され、第2室8、即ち排出口15と連通すると共に、第2流通口13は浮動リング部材3により第2室8、即ち排出口15と遮断され、間隙34を介して弁軸部材2の第2環状溝36と連通する。
即ち、上記の弁軸部材の位置状態(図2参照)では、圧力流体供給口14aが連通路14b、第3室6、第2連通口25、第2環状溝36を介して第2流通口13に連通接続されると共に、第1流通口12は、間隙34及び第2室8(間隙27)を介して排出口15に連通接続される。
【0023】
かくして、油圧回路の作動油供給源であるポンプPから管路L1を介して供給される作動油は、圧力流体供給口14aから流入し、第2流通口13から流出して管路L4を介して油圧回路における複動シリンダAのポートbに供給され、複動シリンダAのポートaから流出する作動油は、管路L3を介して第1流通口12から流入し、排出口15から管路L2を介して油タンクTへ排出される。それにより複動シリンダAの他方の作動が行われる。
【0024】
図3は本発明の他の実施例を示す。
本実施例の切換弁1aのハウジング4aは、第1室7と第3室6を連通する連通路を備えない。弁軸部材2aは、その小径部33に連通口40を有する。この連通口40とピストン部31,32に形成される連通口24,25を介して、第1室7と第3室6は連通される。
【0025】
【発明の効果】
この発明の切換弁は、浮動リング部材が軸線方向に移動可能に外周面に嵌装された弁軸部材を弁ハウジング内に軸線方向に移動可能に浮動リング部材共々嵌装することにより、ポペット弁型特有の利点が具備され、弁内の流体流路切換における流路遮断が軸線方向当接面で行なわれるため完全に行われ、流路間の漏洩がなく流路切換が完全に行われる。
【0026】
それと共に、多数箇所の同時当接のための工作精度上の困難もなく、スプール弁型特有の利点である多ポートの切換えが可能である。
即ち、この発明によれば、ポペット弁型とスプール弁型との利点のみを具備し、両者の欠点を排除した切換弁を得ることができる。
【0027】
特に請求項2に記載の2位置4ポート切換弁にあっては、圧力流体供給口から流入し、流出口から排出されることにより弁ハウジングの中空部内において、浮動リング部材で仕切られる第1中空部の一方は高圧側となり、他方の中空域は低圧側となり、その差圧が浮動リング部材及び弁軸部材の当接部に作用し、浮動リング部材を固定当接部に押圧する押圧力として働く。
従って、浮動リング部材を押圧する押圧力は、操作手段による押圧力に、前記の差圧による押圧力が加わり、浮動リング部材と各当接部との密接は、一層強固なものとなる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態における2位置4ポート切換弁の断面図。
【図2】本発明の実施の第1形態における2位置4ポート切換弁の断面図。
【図3】本発明の実施の第2形態における2位置4ポート切換弁の断面図。
【図4】本発明の実施の形態における2位置4ポート切換弁を適用した油圧回路図。
【図5】従来の技術における2位置4ポート切換弁(スプール弁型)の断面図。
【図6】従来の技術における2位置3ポート切換弁(ポペット弁型)の断面図。
【符号の説明】
1 弁ハウジング
2 弁軸部材
3 浮動リング部材
4 周壁部
5 端壁部
6 第3室
7 第1室
8 第2室
12 第1流通口
13 第2流通口
14 圧力流体供給口
15 流出口
16 第1弁棒部
17 第1鍔部
19 第2鍔部
20 第2弁棒部
24 第1連通口
25 第2連通口
28 第1内フランジ部
29 第2内フランジ部
31 第1ピストン部
32 第2ピストン部
33 小径部
35 第1環状溝
36 第2環状溝
P ポンプ
T 油タンク
A 複動シリンダ(アクチュエータ)
a,b ポート
L1〜4 管路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching valve used in a fluid pressure circuit such as oil or air.
[0002]
[Prior art]
A switching valve is used for control to switch the circuit configuration of a fluid circuit such as oil or air.
The switching valve includes a valve housing to which a plurality of fluid pipes and passages (hereinafter referred to as fluid passages) are connected, and a valve shaft member fitted in the valve housing so as to be movable in the axial direction. Depending on the relationship between the outer peripheral shape of the member and the inner peripheral shape of the valve housing, by changing the axial position of the valve shaft member relative to the valve housing, the continuity relationship between the plurality of fluid flow paths introduced into the valve housing is changed. This valve shaft member can be operated by operating means (for example, solenoid of solenoid valve, lever or button of man-powered valve, cam or link mechanism of mechanically operated valve, etc., to change the axial position relative to the valve housing. Thus, the switching control of the target circuit configuration is realized.
[0003]
By the way, the “poppet valve type” and the “spool valve type” are known as the basic structure principle of the switching valve that switches the circuit configuration according to the axial position of the valve shaft member.
FIG. 5 shows the structure of a spool valve type 2-position 4-port switching valve.
The spool valve 100 includes a valve housing 110 having four ports 131, 132, 133, and 134 and a spool 150 that slides in a fluid passage 120 in the valve housing 110. The spool 150 includes two land portions 151 and 152, and annular groove portions 153, 154, and 155 disposed on both sides of the land portions 151 and 152. In the state of FIG. 4, the port 131 and the port 134 are communicated, and the port 132 and the port 133 are communicated.
When the spool 150 is moved in the direction of arrow R in the figure, the land 151 closes the inner peripheral portion 122 of the fluid passage 120. By this action, the port 131 and the port 133 are communicated, and the port 132 and the port 134 are communicated.
[0004]
FIG. 6 shows the structure of a poppet type 2-position 3-port switching valve.
The poppet valve 200 includes a housing 210 having three ports 211, 212, and 213 and a spool 250 that slides in a fluid passage 220 in the housing. The spool 250 has a land portion 251, and the land portion 251 selectively abuts against the wall surfaces 221 and 222 defining the fluid passage 220 of the housing 210 to perform sealing.
[0005]
In the state of FIG. 6, the port 211 and the port 213 communicate with each other. In FIG. 5, when the spool 250 is moved in the arrow L direction, the land 251 seals the wall surface 221, and the port 212 and the port 213 are communicated.
In this poppet valve, the contact mechanism between the fluid circuits is applied in addition to the contact between the members in the axial direction by the operation means of the valve shaft member, and in some cases the pressure of the fluid is applied to the contact between the members. Due to the self-sealing effect that strengthens, there is an advantage that an almost complete blocking state can be configured.
This type of poppet valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-196471.
[0006]
[Problems to be solved by the invention]
In the above-described “spool valve type” switching valve, the number of ports is not limited, and various fluid flow paths can be connected to each other. For example, in a hydraulic circuit as shown in FIG. The flow path of the hydraulic circuit can be easily controlled by using one 2-position 4-port switching valve illustrated in the figure, which is a typical spool valve type switching valve.
However, in the spool valve type, the fluid circuits are separated from each other by a land fitting area between the inner peripheral surface of the valve housing and the outer peripheral surface of the valve shaft member existing between the annular grooves. The diameter of the part requires a minimum clearance to allow axial sliding of the valve shaft member relative to the valve housing.
[0007]
For this reason, it is impossible to make the continuity relationship between the fluid flow paths completely cut off. Especially when there is a large pressure difference between the adjacent fluid flow paths, There is an inconvenience that the fluid leaks from the high pressure side to the low pressure side through the gap in the fitting area.
Therefore, in a system that dislikes leakage flow between the fluid flow paths, this spool valve type cannot be adopted, and it is necessary to use a poppet valve type. That is, when the two-position three-port switching valve illustrated in the figure, which is a typical poppet valve type switching valve, is used, the cutoff state of the continuity relationship between the fluid flow paths is in the axial direction between the valve shaft member and the valve housing. Since it is performed by the contact relationship (at the opening surface of the fluid flow path), a complete blocking state is realized.
[0008]
However, on the principle that the shut-off state is constituted by the axial contact between the valve members, the structure in which two or more contact portions in the axial direction are simultaneously brought into contact simultaneously in both valve members is difficult in the work of the valve member. Even if it is realized, the productivity is poor and the production cost is high. Therefore, the number of ports of the fluid flow path that can be switched by the movement of one valve shaft member is as shown in FIG. The number of ports is limited to 3 ports. If the contact portions at a plurality of locations of both valve members are not completely contacted simultaneously, there is no advantage over the spool valve type.
[0009]
However, if there are 3 ports, for example, as shown in FIG. 5, it is necessary to use two 2-position 3-port switching valves illustrated in FIG. 7 in the hydraulic circuit, the hydraulic circuit itself becomes complicated, and the spool valve type This leads to an increase in production costs and the number of maintenance inspections.
An object of the present invention is to provide a switching valve that eliminates the disadvantages of the spool valve type and the poppet valve type as described above.
[0010]
[Means for Solving the Problems]
The main point of the present invention is that the floating ring member is fitted together with the floating ring member so as to be movable in the axial direction in the valve housing.
That is, the switching valve according to the present invention includes, as basic means, a housing member, a valve shaft member provided inside the housing member and capable of moving in the axial direction within the housing member, and externally fitted to the valve shaft member so as to be movable in the axial direction. A floating ring-shaped member, a first chamber at both ends of the housing which is inside the housing member and partitioned by a valve shaft member, a third chamber and a second chamber at an intermediate portion, a first chamber formed in the housing, and a first chamber A communication passage connecting the three chambers, a pressure fluid supply port formed on the wall surface of the housing member of the first chamber, a first flow port, a second flow port and a discharge port formed on the housing wall surface of the second chamber, A flange portion is provided inside the first flow port and the second flow port and contacts the outer end surface of the floating ring-shaped member.
Then, by the axial movement of the valve shaft member and the floating ring-shaped member, one of the first and second flow ports is switched to a position communicating with the pressure fluid supply port and the other to the discharge port.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a two-position four-port switching valve according to the present invention. The valve housing 1 and the valve shaft member 2 fitted to the valve housing 1 are slidable to the left and right. It is comprised from the floating ring member 3 fitted by.
The valve housing 1 is formed with a valve chamber surrounded by a peripheral wall portion 4 and end wall portions 5 and 5 at both ends, and the valve chamber is formed in the first chamber 7, the second chamber 8, and the third chamber 6 in the axial direction. Formed from.
[0012]
A pressure fluid supply port 14a that communicates from the outside to the outer end side of the first chamber 7 and a discharge port 15 that communicates to the outer end side of the second chamber 8 from the outside pass through the peripheral wall portion 4 respectively. A communication passage 14b that branches from the pressure fluid supply port 14a and communicates with the third chamber 6 passes through the inside.
Further, the first flow port 12 passes through the peripheral wall portion 4 from the inner peripheral surface of the first inner flange portion 28 to the outside, and the second flow port opens from the inner peripheral surface of the second inner flange portion 29 to the outside. 13 penetrates.
[0013]
For example, the pressure fluid supply port 14a is connected to a pipe L1 from a pump P which is a hydraulic oil supply source of the hydraulic circuit shown in FIG. 5, and the discharge port 15 is connected to a pipe L2 to the oil tank T. Yes.
Further, for example, a pipe L3 from one port a of the double acting cylinder A of the hydraulic circuit shown in FIG. 5 is connected to the first flow port 12, and the second flow port 13 is also connected from the other port b. Pipe line L4 is connected.
[0014]
The valve shaft member 2 includes a first valve rod portion 16, a first piston portion 31, a columnar intermediate portion 18, a second piston portion 32, and a second valve rod portion 20. The intermediate portion 18 has an axial direction. A small-diameter portion 33 having an annular groove is formed in the central region, and the first valve rod 16 and the second valve rod 20 penetrate the end wall portions 5 and 5 of the valve housing 1 in a slidable and oil-tight manner and are externally provided. Protruding.
The first valve rod portion 16 or the second valve rod portion 20 is coupled with operating means, for example, a solenoid of a solenoid valve (see FIG. 5), a lever of a manpower operated valve, a cam for mechanical operation, a link mechanism, and the like.
[0015]
The outer peripheral surfaces of the first piston portion 31 and the second piston portion 32 are slidably and oil-tightly fitted in the first chamber 7 and the third chamber 6, and the outer peripheral surface of the intermediate portion 18 is the first inner flange portion. There is an appropriate gap 34 between the two peripheral surfaces having a smaller diameter than the inner peripheral surface of 28 and the second inner flange portion 29. A narrower first annular groove 35 and a second annular groove 36 are formed at both ends of the small diameter portion 33, and the first communication port 24 penetrates from the outer end surface of the first piston portion 31 to the first annular groove 35. In addition, the second communication port 25 passes through the second annular groove 36 from the outer end surface of the second piston portion 32.
A floating ring member 3 shorter than the small diameter portion 33 is slidably and oil-tightly fitted on the outer peripheral surface of the small diameter portion 33, and the length of the floating ring member 3 is located at both end positions of the small diameter portion 33. The length is such that the first annular groove 35 or the second annular groove 36 is not covered.
The floating ring member 3 is appropriately larger in diameter than the inner peripheral surfaces of the first inner flange portion 28 and the second inner flange portion 29 of the valve shaft member 2 and only an appropriate gap 27 from the second chamber 8 of the valve housing 1. Small diameter portions 3c and 3d having a small diameter and substantially the same diameter as the intermediate portion 18 are formed at both ends.
[0017]
Therefore, both end surfaces 3a and 3b of the floating ring member 3 and the inner side surfaces of the first inner flange portion 28 and the second inner flange portion 29 form an appropriate abutting surface so that they can abut against each other. The end surfaces of the small diameter portions 3c, 3d of the floating ring member 3, the end surface 31a of the first piston portion 31 and the end surface 32a of the second piston portion 32 of the valve shaft member 2 form a contact surface so that they can contact each other. It has become.
[0018]
The operation of the two-position four-port switching valve according to the second embodiment will be described. The valve shaft member 2 has the first valve stem portion 16 or the second valve stem portion 20 as operating means, for example, a solenoid of a solenoid valve (see FIG. 5) is switched to the two positions of the position shown in FIG. 3 and the position shown in FIG.
When the valve shaft member 2 moves left to the position shown in FIG. 1, the floating ring member 3 is pressed by the right side step portion of the small diameter portion 33 of the valve shaft member 2 and moves left, and the outer periphery of the left end surface of the floating ring member 3 The region 3 a is in close contact with the inner peripheral region 28 a on the right side surface of the first inner flange portion 28, and the end surface of the small diameter portion 3 d of the floating ring member 3 is in close contact with the left step portion 32 a of the second piston portion 32 of the valve shaft member 2. In addition, the outer peripheral region 3b of the right end surface of the floating ring member 3 is separated from the left side surface of the second inner flange portion 29, and the right step portion 31a of the first piston portion 31 of the valve shaft member 2 is a small diameter portion of the floating ring member 3. It moves away from the end face of 3c.
[0019]
As a result, the first flow port 12 communicates with the first annular groove 35 of the valve shaft member 2, and the second flow port 13 is connected to the first annular groove 35 and the second annular groove of the valve shaft member 2 by the floating ring member 3. 36 and is communicated with the second chamber 8, that is, the discharge port 15.
That is, in the position state of the valve shaft member (see FIG. 3), the pressure fluid supply port 14 a is connected to the first flow port through the first chamber 7, the first communication port 24, the first annular groove 35, and the gap 34. 12 and the second circulation port 13 is connected to the discharge port 15 through the gap 34 and the second chamber 8 (gap 27).
[0020]
Thus, the hydraulic fluid supplied from the hydraulic fluid supply source (for example, the pump P in FIG. 5) of the hydraulic circuit via the pipe L1 flows in from the pressure fluid supply port 14a and flows out from the first flow port 12 to the pipe. The hydraulic oil that is supplied to one port a of the double acting cylinder A in the hydraulic circuit via the path L3 and flows out from the port b of the double acting cylinder A flows from the second flow port 13 via the pipe L4. The oil is discharged from the discharge port 15 to the oil tank T through the pipe line L2. Thereby, one operation of the double acting cylinder A is performed.
[0021]
When the valve shaft member 2 moves rightward from the position shown in FIG. 1 to the position shown in FIG. 2, the valve shaft member 2 slides to the right with respect to the floating ring member 3 in a stationary state, and eventually the first of the valve shaft member 2. The right side step portion 31a of the one piston portion 31 contacts the small diameter portion 3c of the floating ring member 3 and presses the floating ring member 3 to the right. Then, the outer peripheral area 31 a of the left end surface of the floating ring member 3 is separated from the inner peripheral area of the right side surface of the first inner flange portion 28, and the outer peripheral area 3 a of the right end surface of the floating ring member 3 is the left side of the second inner flange portion 29. The left side step portion 31a of the first piston portion 31 of the valve shaft member 2 is in close contact with the small-diameter portion 3c of the floating ring member 3, and the right side of the second piston portion 32 of the valve shaft member 2 The step portion 32 a is separated from the small diameter portion 3 d of the floating ring member 3.
[0022]
As a result, the first flow port 12 is blocked from the first annular groove 35 of the valve shaft member 2 by the floating ring member 3, communicates with the second chamber 8, that is, the discharge port 15, and the second flow port 13 floats. The ring member 3 is cut off from the second chamber 8, that is, the discharge port 15, and communicates with the second annular groove 36 of the valve shaft member 2 through the gap 34.
That is, in the position state of the valve shaft member (see FIG. 2), the pressure fluid supply port 14a is connected to the second flow port through the communication passage 14b, the third chamber 6, the second communication port 25, and the second annular groove 36. 13, and the first circulation port 12 is connected to the discharge port 15 via the gap 34 and the second chamber 8 (gap 27).
[0023]
Thus, the hydraulic oil supplied from the pump P, which is the hydraulic oil supply source of the hydraulic circuit, via the pipe L1 flows in from the pressure fluid supply port 14a, flows out from the second circulation port 13, and passes through the pipe L4. The hydraulic fluid that is supplied to the port b of the double acting cylinder A in the hydraulic circuit and flows out from the port a of the double acting cylinder A flows from the first flow port 12 through the conduit L3 and flows from the discharge port 15 to the conduit. It is discharged to the oil tank T through L2. Thereby, the other operation of the double acting cylinder A is performed.
[0024]
FIG. 3 shows another embodiment of the present invention.
The housing 4 a of the switching valve 1 a according to the present embodiment does not include a communication path that communicates the first chamber 7 and the third chamber 6. The valve shaft member 2 a has a communication port 40 in its small diameter portion 33. The first chamber 7 and the third chamber 6 are communicated with each other through the communication ports 40 and 24 and 25 formed in the piston portions 31 and 32.
[0025]
【The invention's effect】
According to the switching valve of the present invention, a poppet valve is formed by fitting together a floating ring member in a valve housing so that the floating ring member can be moved in the axial direction. The advantages inherent to the mold are provided, and the flow path switching in the fluid flow path switching within the valve is performed completely at the axial contact surface, so that there is no leakage between the flow paths and the flow path switching is performed completely.
[0026]
At the same time, there is no difficulty in work accuracy due to simultaneous contact at a number of locations, and multi-port switching, which is an advantage unique to the spool valve type, is possible.
That is, according to the present invention, it is possible to obtain a switching valve that has only the advantages of the poppet valve type and the spool valve type and eliminates the disadvantages of both.
[0027]
Particularly in the two-position four-port switching valve according to claim 2, the first hollow is partitioned by the floating ring member in the hollow portion of the valve housing by flowing in from the pressure fluid supply port and discharging from the outlet port. One of the parts is on the high pressure side, and the other hollow area is on the low pressure side, and the differential pressure acts on the contact part of the floating ring member and the valve shaft member to press the floating ring member against the fixed contact part. work.
Accordingly, the pressing force for pressing the floating ring member is the pressing force by the differential pressure added to the pressing force by the operating means, and the close contact between the floating ring member and each contact portion becomes even stronger.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a 2-position 4-port switching valve according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a 2-position 4-port switching valve according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a 2-position 4-port switching valve according to a second embodiment of the present invention.
FIG. 4 is a hydraulic circuit diagram to which the 2-position 4-port switching valve according to the embodiment of the present invention is applied.
FIG. 5 is a sectional view of a conventional 2-position 4-port switching valve (spool valve type).
FIG. 6 is a cross-sectional view of a 2-position 3-port switching valve (poppet valve type) in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve housing 2 Valve shaft member 3 Floating ring member 4 Peripheral wall part 5 End wall part 6 3rd chamber 7 1st chamber 8 2nd chamber 12 1st flow port 13 2nd flow port 14 Pressure fluid supply port 15 Outflow port 16th 1 valve rod portion 17 first flange portion 19 second flange portion 20 second valve rod portion 24 first communication port 25 second communication port 28 first inner flange portion 29 second inner flange portion 31 first piston portion 32 second Piston portion 33 Small diameter portion 35 First annular groove 36 Second annular groove P Pump T Oil tank A Double acting cylinder (actuator)
a, b Ports L1-4

Claims (2)

ハウジング部材と、
ハウジング部材内部に設けられハウジング部材内を軸方向に移動可能な弁軸部材と、
軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、
ハウジング部材内部にあって弁軸部材によって仕切られるハウジング両端部の第1室、第3室および中間部の第2室と、
ハウジングに形成された第1室と第3室を結ぶ連通路と、
第1室のハウジング部材壁面に形成された圧力流体供給口と、
第2室のハウジング壁面に形成された第1流通口、第2流通口および排出口と、
第1流通口と第2流通口の内側に配設されて浮動リング状部材の外側端面に当接するフランジ部を備え、
弁軸部材および浮動リング状部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えることを特徴とする2位置4ポート方向制御弁。
A housing member;
A valve shaft member provided inside the housing member and movable in the axial direction within the housing member;
A floating ring-shaped member externally fitted to the valve shaft member so as to be axially movable;
A first chamber at both ends of the housing that is inside the housing member and partitioned by the valve shaft member, a third chamber, and a second chamber at the intermediate portion;
A communication path connecting the first chamber and the third chamber formed in the housing;
A pressure fluid supply port formed in the wall surface of the housing member of the first chamber;
A first flow port, a second flow port and a discharge port formed in the housing wall surface of the second chamber;
A flange portion disposed inside the first flow port and the second flow port and contacting the outer end surface of the floating ring-shaped member;
A two-position four-port characterized in that one of the first and second flow ports is switched to a pressure fluid supply port and the other is connected to a discharge port by the axial movement of the valve shaft member and the floating ring-shaped member. Directional control valve.
ハウジング部材と、
ハウジング部材内部に設けられハウジング部材内を軸方向に移動可能な弁軸部材と、
軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、
ハウジング部材内部にあって弁軸部材によって仕切られるハウジング両端部の第1室、第3室および中間部の第2室と、
弁軸部材に形成された第1室と第3室を結ぶ連通路と、
第1室のハウジング部材壁面に形成された圧力流体供給口と、
第2室のハウジング壁面に形成された第1流通口、第2流通口および排出口と、
第1流通口と第2流通口の内側に配設されて浮動リング状部材の外側端面に当接するフランジ部を備え、
弁軸部材および浮動リング状部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えることを特徴とする2位置4ポート方向制御弁。
A housing member;
A valve shaft member provided inside the housing member and movable in the axial direction within the housing member;
A floating ring-shaped member externally fitted to the valve shaft member so as to be axially movable;
A first chamber at both ends of the housing that is inside the housing member and partitioned by the valve shaft member, a third chamber, and a second chamber at the intermediate portion;
A communication path connecting the first chamber and the third chamber formed in the valve shaft member;
A pressure fluid supply port formed in the wall surface of the housing member of the first chamber;
A first flow port, a second flow port and a discharge port formed in the housing wall surface of the second chamber;
A flange portion disposed inside the first flow port and the second flow port and contacting the outer end surface of the floating ring-shaped member;
A two-position four-port characterized in that one of the first and second flow ports is switched to a pressure fluid supply port and the other is connected to a discharge port by the axial movement of the valve shaft member and the floating ring-shaped member. Directional control valve.
JP13658097A 1997-05-27 1997-05-27 Switching valve Expired - Fee Related JP3763185B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13658097A JP3763185B2 (en) 1997-05-27 1997-05-27 Switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13658097A JP3763185B2 (en) 1997-05-27 1997-05-27 Switching valve

Publications (2)

Publication Number Publication Date
JPH10332006A JPH10332006A (en) 1998-12-15
JP3763185B2 true JP3763185B2 (en) 2006-04-05

Family

ID=15178609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13658097A Expired - Fee Related JP3763185B2 (en) 1997-05-27 1997-05-27 Switching valve

Country Status (1)

Country Link
JP (1) JP3763185B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950950B1 (en) * 2009-10-01 2012-12-07 Staubli Sa Ets RAPID COUPLING FEMALE ELEMENT AND RAPID CONNECTION INCORPORATING SUCH A MEMBER
CN103307312B (en) * 2013-05-10 2015-12-23 三一汽车制造有限公司 Floating valve, water wash system and engineering machinery

Also Published As

Publication number Publication date
JPH10332006A (en) 1998-12-15

Similar Documents

Publication Publication Date Title
KR101369216B1 (en) Pilot-operated three-position switching valve
KR100275912B1 (en) Pilot Operated 3 Port Valve
JP3331080B2 (en) Multi-way valve
US4245671A (en) Solenoid pilot operated valve
US2503827A (en) Four-way valve
KR100286705B1 (en) Electronic Pilot Operated 3 Position Valve
JP2010249186A (en) 4-5 port switching valve
KR980010078A (en) Switching valve with backflow prevention means
EP0898103B1 (en) Three-port solenoid valve using valve body for five-port solenoid valve
JP3763185B2 (en) Switching valve
JP3763184B2 (en) Switching valve
EP1130273B1 (en) Multiway valve with a removable exhaust wall
JP4514324B2 (en) Hydraulic control valve
JPH0432538Y2 (en)
TW202012817A (en) Spool valve
JPH0463272B2 (en)
JPH0756349B2 (en) In-line poppet valve
JP3558861B2 (en) Tournament oilway components
US3523553A (en) Motor operated fluid valve
JP2001050406A (en) Multi-way valve
US3364942A (en) Fluid pressure operated, fluid control valve
JP4118474B2 (en) Directional control valve
US5218990A (en) Multiway valve with piston slide valve
JP2001280519A (en) Three-port solenoid valve
US847326A (en) Throttle-valve.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees