JP3763184B2 - Switching valve - Google Patents

Switching valve Download PDF

Info

Publication number
JP3763184B2
JP3763184B2 JP13657997A JP13657997A JP3763184B2 JP 3763184 B2 JP3763184 B2 JP 3763184B2 JP 13657997 A JP13657997 A JP 13657997A JP 13657997 A JP13657997 A JP 13657997A JP 3763184 B2 JP3763184 B2 JP 3763184B2
Authority
JP
Japan
Prior art keywords
chamber
valve
port
housing
housing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13657997A
Other languages
Japanese (ja)
Other versions
JPH10325476A (en
Inventor
久幸 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP13657997A priority Critical patent/JP3763184B2/en
Publication of JPH10325476A publication Critical patent/JPH10325476A/en
Application granted granted Critical
Publication of JP3763184B2 publication Critical patent/JP3763184B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multiple-Way Valves (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、油や空気等の流体圧回路に使用される切換弁に関する。
【0002】
【従来の技術】
油や空気等の流体回路の回路構成を切り換える制御に切換弁が用いられる。
切換弁は、複数の流体管路・通路(以下流体通路という)が接続される弁ハウジングと該弁ハウジング中に軸線方向に移動可能に嵌装された弁軸部材とで構成され、この弁軸部材の外周形状と弁ハウジングの内周形状との関係によって、弁軸部材の弁ハウジングに対する軸線方向位置を変化させることで、弁ハウジングに導入されている複数の流体流路相互の導通関係が変化する仕組みになっており、この弁軸部材を操作手段(例えば電磁弁のソレノイド、人力操作弁のレバーやボタン、機械操作弁のカムやリンク機構を用いて弁ハウジングに対する軸線方向位置を変化させることで、目的とする回路構成の切換制御を実現している。
【0003】
ところで、この弁軸部材の軸線方向位置により回路構成を切り換える切換弁の基本構造原理として、「ポペット弁型」と、「スプール弁型」とが知られている。
図6は、スプール弁型の2位置4ポート切換弁の構造を示す。
スプール弁100は4個のポート131,132,133,134を有する弁ハウジング110と、弁ハウジング110内の流体通路120内を摺動するスプール150を備える。スプール150は、2個のランド部151,152と、ランド部151,152の両側に配設される環状溝部153,154,155を有する。図4の状態にあっては、ポート131とポート134が連通され、ポート132とポート133が連通されている。
スプール150を図において矢印R方向に移動させると、ランド151が流体通路120の内周部122を閉じる。この作用によって、ポート131とポート133が連通され、ポート132とポート134が連通される。
【0004】
図7は、ポペット型の2位置3ポート切換弁の構造を示す。
ポペット弁200は、3つのポート211,212,213を有するハウジング210と、ハウジング内の流体通路220内を摺動するスプール250を備える。スプール250はランド部251を有し、ランド部251は、ハウジング210の流体通路220を区画する壁面221,222に選択的に当接してシールを行なう。
【0005】
図7の状態にあっては、ポート211とポート213が連通する。図6において、スプール250を矢印L方向に移動すると、ランド251は壁面221をシールし、ポート212とポート213が連通される。
このポペット弁は、流体回路間の遮断メカニズムが弁軸部材の操作手段による部材間の軸線方向の当接に加え、場合によっては、流体の圧力を部材間の当接に与からせて当接力を強めるセルフシーリング効果によって、ほぼ完全な遮断状態を構成できる利点がある。
この種のポペット弁は、例えば特開昭60−196471号公報に開示されている。
【0006】
【発明が解決しようとする課題】
上記の「スプール弁型」の切換弁においては、そのポート数には制限なく、多岐の流体流路相互の導通関係を実現することが可能であり、例えば図5に示すように油圧回路においても、代表的なスプール弁型切換弁である図6に例示する2位置4ポート切換弁を1個用いることにより簡単に油圧回路の流路制御を行い得る。
しかし、スプール弁型では、各流体回路相互を区画しているのは各環状溝間に存在する弁ハウジング内周面と弁軸部材の外周面とにおけるランド部の嵌合域であり、このランド部の径寸法は、弁ハウジングに対する弁軸部材の軸線方向滑動を可能とするために、最小限の隙間が必要である。
【0007】
このため、各流体流路相互の導通関係を完全な遮断状態とすることは不可能で、特に隣合う流体流路間の圧力差が大きい場合には、この両者を区画しているランド部の嵌合域の隙間を通って高圧側から低圧側へと流体が洩れてしまう不都合がある。
そこで、各流体流路相互の洩れ流通を嫌うシステムでは、このスプール弁型は採用できず、ポペット弁型とする必要がある。即ち、代表的なポペット弁型切換弁である図7に例示する2位置3ポート切換弁を用いると、各流体流路相互の導通関係の遮断状態は、弁軸部材と弁ハウジングとの軸線方向の(流体流路の開口面における)当接関係によって行われるので、完全な遮断状態が実現される。
【0008】
しかし、この弁部材間の軸線方向当接により遮断状態を構成する原理上、両弁部材において軸線方向の2箇所以上の当接部を同時に完全に当接させる構造は、弁部材の工作上困難であり、若しそれを実現させるにしても、生産性も悪く、生産コストも高くなるので、1つの弁軸部材の移動で切換可能な流体流路のポートの数は、図7に示すようにポート数は3ポートが限度となる。もし、両弁部材の複数箇所の当接部を同時に完全に当接させなければ、スプール弁型に対する優位性はない。
【0009】
ところが、3ポートであると、例えば図5に示すように油圧回路においても、図7に例示する2位置3ポート切換弁を2個用いる必要が生じ、油圧回路自体も複雑となり、スプール弁型の場合に比し生産コスト及び保守点検の手数の増大につながる。
この発明は、切換弁における上記のようなスプール弁型及びポペット弁型の欠点を一挙に解消した切換弁を提供することを目的としている。
【0010】
【課題を解決するための手段】
この発明の要点は、浮動リング部材が軸線方向に移動可能に外周面に嵌装された弁軸部材を弁ハウジング内に軸線方向に移動可能に浮動リング部材共々嵌装した点にある。
即ち、この発明の切換弁は、基本的な手段として、ハウジング部材と、ハウジング部材内部に設けられたハウジング部材内を軸方向に移動可能な弁軸部材と、軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、ハウジング部材内にあって、隔壁によって仕切られる主弁室及び副弁室と、主弁室内にあって弁軸部材によって仕切られる両端部の第1室、第3室及び中間部の第2室と、第2室のハウジング部材壁面に形成された圧力流体供給口と、第1室のハウジング部材壁面に形成された第1流通口と、第3室のハウジング部材壁面に形成された第2流通口と、副弁室のハウジング部材壁面に形成された排出口と、弁軸部材に形成された主弁室と副弁室とを連通する通路を備える。
そして、弁軸部材及び浮動リング部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えるものである。
【0011】
【発明の実施の形態】
この発明の実施の形態における切換弁を図面に従って説明する。
以下の説明による上下左右方向は、各図における方向である。
なお、この発明の実施の形態における切換弁は、ポペット弁型の2位置4ポート切換弁であり、制御される作動流体は、気体又は流体であり、以下の説明においては油として説明する。そして、該切換弁は例えば図5に示す流体圧回路に用いられるものである。
図5に示す油圧回路においては、ポペット弁型の2位置4ポート切換弁Vが、アクチュエータである複動シリンダAと作動供給源であるポンプP・油タンクTとに管路L1〜L4で接続されている。
【0012】
図1及び図2に示されている実施の第1形態の2位置4ポート切換弁は、弁ハウジング1と弁ハウジング1に左右滑動自在に嵌装された弁体2と弁体2の外周面に左右滑動自在に嵌装された浮動リング部材3とから構成されている。
弁ハウジング1は、周壁部4と両端の端壁部5,5とで囲われた中空孔が形成され、弁室は、中間壁部6で遮断された主弁室と副弁室8とに分割され、主弁室は、端壁部5側の第1室9、中間壁部6側の第3室10及び中間の第2室11から形成されている。
【0013】
周壁部4には、外部から第1室に連通する第1流通口12、同じく第3室10に連通する第2流通口13及び第2室11に連通する圧力流体供給口14が夫々貫通しており、更に周壁部4には、外部から副弁室8に連通する排出口15が貫通している。
【0014】
圧力流体供給口14には、例えば図5に示す油圧回路の作動油供給源であるポンプPからの管路L1が接続され、排出口15には同じく油タンクTへの管路L2が接続されている。
又、第1流通口12には、例えば図5に示す油圧回路のアクチュエータである複動シリンダAの一方のポートaからの管路L3が接続され、第2流通口13には同じく他方のポートbからの管路L4が接続されている。
【0015】
弁軸部材2は、第1弁棒部16、第1鍔部17、円柱状の中間部18、第2鍔部19及び第2弁棒部20から構成され、第1室9及び第3室10より小径の第1鍔部17及び第2鍔部19は、主弁室内にあって、第1弁棒部16は、弁ハウジング1の端壁部5を滑動自在且つ油密状態で貫通して外部に突出し、第2弁棒部20は、弁ハウジング1の中間壁部6及び端壁部5を滑動自在且つ油密状態で貫通して外部に突出している。
第1弁棒部16には、操作手段、例えば電磁弁のソレノイド(図5参照)、人力操作弁のレバー、機械操作のカム、リンク機構等が結合されている。
【0016】
弁軸部材2の中間部18の両端側には、第1環状溝21及び第2環状溝22が形成され、弁軸部材2の中心軸線には、第2弁棒部20端側から第1環状溝21位置まで達する中心孔23が形成され、中心孔23の第2弁棒部20側の開口端は閉塞されている。そして、中心孔23と第1環状溝21及び第2環状溝22とを夫々連通する第1連通孔24及び第2連通孔25が形成されていると共に、中心孔23と副弁室8とを常に連通する第3連通孔26が形成されている。
【0017】
弁軸部材2の中間部18の外周面には、中間部18より短い浮動リング部材3が滑動自在に嵌合しており、浮動リング部材3の長さは、中間部18の両端位置に位置しているとき、第1環状溝21又は第2環状溝22を蔽わないような長さである。
浮動リング部材3は、第1室及び第3室10より適宜量大径であると共に、第2室11より適宜の間隙27だけ小径である。
従って、浮動リング部材3の両端面と第2室11の両端面とは適宜の当接面を形成して互に当接し得るようになっている。
【0018】
上記の実施の第1形態の2位置4ポート切換弁の作用について述べると、弁軸部材2は、第1弁棒部16が操作手段、例えば電磁弁のソレノイド(図5参照)により図1に示す位置と図2に示す位置との2位置に切換移動する。
弁軸部材2が図1に示す位置に左行すると、浮動リング部材3は、第2鍔部19に押圧されて左行し、浮動リング部材3の左端面の外周域は第2室11の左端面の内周域に密接され、同じく右端面の内周域は第2鍔部19の左側面の外周域に密接されると共に、浮動リング部材3の右端面の外周域は第2室11の右端面の内周域から離れ、第1鍔部17は浮動リング部材3から離れる。
【0019】
その結果、第1室は浮動リング部材3により第2室11と遮断されると共に第1環状溝21に連通する。又、第2室11は浮動リング部材3及び第2鍔部19により第2環状溝22と遮断される。
即ち、上記の弁体の位置状態(図1参照)では、圧力流体供給14が、間隙27、第2室11及び第3室10を介して第2流通口13に連通接続されると共に、第1流通口12は、第1室、第1環状溝21、第1連通孔24、中心孔23、第3連通孔26及び副弁室8を介して排出口15に連通接続される。
【0020】
かくして、油圧回路の作動油供給源(例えば図5のポンプP)から管路L1を介して供給される作動油は、圧力流体供給14から流入し、第2流通口13から流出して管路L4を介して油圧回路におけるアクチュエータである例えば複動シリンダAのポートbに供給され、複動シリンダAのポートaから流出される作動油は、管路L3を介して第1流通口12から流入し、排出口15から管路L2を介して油タンクTへ排出される。それにより複動シリンダAの一方の作動が行われる。
【0021】
上記の圧力流体供給14から流入した作動油は、第3室10に流入し、複動シリンダAに向い、第1流通口12から流入した作動油は、第1室に流入し、油タンクTへ向うので、第3室10は高圧側となり、第1室は低圧側となり、その差圧が第2鍔部19及び浮動リング部材3に作動し、浮動リング部材3を第2室11の左端面に押圧する押圧力として働くとともに、第2鍔部19を浮動リング部材3の右端面に押圧する押圧力として働く。
【0022】
従って、浮動リング部材3を第2室11の左端面に押圧する押圧力及び第2の鍔部19を浮動リング部材の右端面に押圧する押圧力は、操作手段による弁軸部材2、即ち第2鍔部19による押圧力に、前記の差圧による押圧力が加わり、浮動リング部材3の左端面の外周域と第2室11の左端面の内周域との密接及び浮動リング部材3の右端面の内周域と第2鍔部19の左側面の外周域との密接は、一層強固なものとなる。
【0023】
弁軸部材2が図1に示す位置から図2に示す位置に右行すると、弁軸部材2は、静止状態の浮動リング部材3に対し右方に滑動しながら、やがて第1鍔部17が浮動リング部材3に接触して浮動リング部材3を右方に押圧する。すると、浮動リング部材3の左端面の外周域は第2室11の左端面の内周域から離れ、右端面の外周域は第2室11の右端面の内周域に密接すると共に、第1鍔部17の右側面の外周域は浮動リング部材3の左端面の内周域に密接し、第2鍔部19は、浮動リング部材3から離れる。
【0024】
その結果、第1室9は第2室11に連通すると共に第1鍔部17及び浮動リング部材3により第1環状溝21と遮断される。又、第3室10は浮動リング部材3により第2室11と遮断されると共に第2環状溝22に連通する。
即ち、上記の弁体の位置状態では、圧力流体供給14が、間隙27、第2室11及び第1室を介して第1流通口12に連通接続されると共に、第2流通口13は、第3室10、第2環状溝22、第2連通孔25、中心孔23、第3連通孔26及び副弁室8を介して排出口15に連通接続される。
【0025】
かくして、油圧回路の作動油供給源(例えば図5のポンプP)から管路L1を介して供給される作動油は、圧力流体供給14から流入し、第1流通口12から流出して管路L3を介して油圧回路における複動シリンダAのポートaに供給され、複動シリンダAのポートbから流出される作動油は、管路L4を介して第2流通口13から流入し、排出口15から管路L2を介して油タンクTへ排出される。それにより複動シリンダAの他方の作動が行われる
【0026】
前記の弁軸部材2の左行の場合とは同じ理由で、高圧側となった第1室と低圧側となった第3室10との差圧により、浮動リング部材3の右端面の外周域と第2室11の右端面の内周域との密接及び第1鍔部17の右側面の外周域と浮動リング部材3の左端面の内周域との密接は強固なものとなる。
【0027】
図3は本発明の他の実施例を示す。
切換弁1aはハウジング4aを有する。このハウジング4aは弁軸部材2aの先端が端壁部5aから突出することなく、副弁室8に突出する先端を有するこの切換弁1aは、作動流体が液体であって、排出口15がほぼ大気圧の場合に適用できる。
【0028】
図4は本発明の他の他の実施例を示す。
切換弁1bはハウジング4bを有する。このハウジング4bは副弁室を備えず、弁軸部材2bの先端は隔壁6aから突出する。この切換弁にあっては、弁軸部材2bの中心孔23が排出口となる。この切換弁は作動流体が空気の場合に適用できる。
【0029】
【発明の効果】
この発明の切換弁は、浮動リング部材が軸線方向に移動可能に外周面に嵌装された弁体を弁ハウジング内に軸線方向に移動可能に浮動リング部材共々嵌装することにより、ポペット弁型特有の利点が具備され、弁内の流体流路切換における流路遮断が軸線方向当接面で行なわれるため完全に行われ、流路間の漏洩がなく流路切換が完全に行われる。
【0030】
それと共に、多数箇所の同時当接のための工作精度上の困難もなく、スプール弁型特有の利点である多ポートの切換えが可能である。
即ち、この発明によれば、ポペット弁型とスプール弁型との利点のみを具備し、両者の欠点を排除した切換弁を得ることができる。
【0031】
特に請求項2に記載の2位置4ポート切換弁にあっては、流入孔から流入し、流出孔から排出されることにより弁ハウジングの中空部内において、浮動リング部材で仕切られる第1中空部の一方は高圧側となり、他方の中空域は低圧側となり、その差圧が浮動リング部材及び弁体の当接部に作用し、浮動リング部材を固定当接部に押圧する押圧力として働く。
従って、浮動リング部材を押圧する押圧力は、操作手段による押圧力に、前記の差圧による押圧力が加わり、浮動リング部材と各当接部との密接は、一層強固なものとなる。
【図面の簡単な説明】
【図1】本発明の実施の第1形態における2位置4ポート切換弁の断面図。
【図2】本発明の実施の第1形態における2位置4ポート切換弁の断面図。
【図3】本発明の実施の第2形態における2位置4ポート切換弁の断面図。
【図4】本発明の実施の第3形態における2位置4ポート切換弁の断面図。
【図5】本発明の実施の形態における2位置4ポート切換弁を適用した油圧回路図。
【図6】従来の技術における2位置4ポート切換弁(スプール弁型)の断面図。
【図7】従来の技術における2位置3ポート切換弁(ポペット弁型)の断面図。
【符号の説明】
1 弁ハウジング
2 弁体
3 浮動リング部材
4 周壁部
5 端壁部
6 中間壁部
8 副弁室
9 第1室
10 第3室
11 第2室
12 第1流通口
13 第2流通口
14 圧力流体供給口
15 排出口
16 第1弁棒部
17 第1鍔部
18 中間部
19 第2鍔部
20 第2弁棒部
21 第1環状溝
22 第2環状溝
23 中心孔
24 第1連通孔
25 第2連通孔
26 第3連通孔
P ポンプ
T 油タンク
A 複動シリンダ(アクチュエータ)
a,b ポート
L1〜L4 管路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a switching valve used in a fluid pressure circuit such as oil or air.
[0002]
[Prior art]
A switching valve is used for control to switch the circuit configuration of a fluid circuit such as oil or air.
The switching valve includes a valve housing to which a plurality of fluid pipes and passages (hereinafter referred to as fluid passages) are connected, and a valve shaft member fitted in the valve housing so as to be movable in the axial direction. Depending on the relationship between the outer peripheral shape of the member and the inner peripheral shape of the valve housing, by changing the axial position of the valve shaft member relative to the valve housing, the continuity relationship between the plurality of fluid flow paths introduced into the valve housing is changed. This valve shaft member can be operated by operating means (for example, solenoid of solenoid valve, lever or button of man-powered valve, cam or link mechanism of mechanically operated valve, etc., to change the axial position relative to the valve housing. Thus, the switching control of the target circuit configuration is realized.
[0003]
By the way, the “poppet valve type” and the “spool valve type” are known as the basic structure principle of the switching valve that switches the circuit configuration according to the axial position of the valve shaft member.
FIG. 6 shows the structure of a spool valve type 2-position 4-port switching valve.
The spool valve 100 includes a valve housing 110 having four ports 131, 132, 133, and 134 and a spool 150 that slides in a fluid passage 120 in the valve housing 110. The spool 150 includes two land portions 151 and 152, and annular groove portions 153, 154, and 155 disposed on both sides of the land portions 151 and 152. In the state of FIG. 4, the port 131 and the port 134 are communicated, and the port 132 and the port 133 are communicated.
When the spool 150 is moved in the direction of arrow R in the figure, the land 151 closes the inner peripheral portion 122 of the fluid passage 120. By this action, the port 131 and the port 133 are communicated, and the port 132 and the port 134 are communicated.
[0004]
FIG. 7 shows the structure of a poppet type 2-position 3-port switching valve.
The poppet valve 200 includes a housing 210 having three ports 211, 212, and 213 and a spool 250 that slides in a fluid passage 220 in the housing. The spool 250 has a land portion 251, and the land portion 251 selectively abuts against the wall surfaces 221 and 222 defining the fluid passage 220 of the housing 210 to perform sealing.
[0005]
In the state of FIG. 7, the port 211 and the port 213 communicate with each other. In FIG. 6, when the spool 250 is moved in the arrow L direction, the land 251 seals the wall surface 221, and the port 212 and the port 213 are communicated.
In this poppet valve, the contact mechanism between the fluid circuits is applied in addition to the contact between the members in the axial direction by the operation means of the valve shaft member, and in some cases the pressure of the fluid is applied to the contact between the members. Due to the self-sealing effect that strengthens, there is an advantage that an almost complete blocking state can be configured.
This type of poppet valve is disclosed in, for example, Japanese Patent Application Laid-Open No. 60-196471.
[0006]
[Problems to be solved by the invention]
In the above “spool valve type” switching valve, the number of ports is not limited, and various fluid flow paths can be connected to each other. For example, in a hydraulic circuit as shown in FIG. The flow path of the hydraulic circuit can be easily controlled by using one 2-position 4-port switching valve illustrated in FIG. 6 which is a typical spool valve type switching valve.
However, in the spool valve type, the fluid circuits are separated from each other by a land fitting area between the inner peripheral surface of the valve housing and the outer peripheral surface of the valve shaft member existing between the annular grooves. The diameter of the part requires a minimum clearance to allow axial sliding of the valve shaft member relative to the valve housing.
[0007]
For this reason, it is impossible to make the continuity relationship between the fluid flow paths completely cut off. Especially when there is a large pressure difference between the adjacent fluid flow paths, There is an inconvenience that the fluid leaks from the high pressure side to the low pressure side through the gap in the fitting area.
Therefore, in a system that dislikes leakage flow between the fluid flow paths, this spool valve type cannot be adopted, and it is necessary to use a poppet valve type. That is, when the 2-position 3-port switching valve illustrated in FIG. 7 which is a typical poppet valve type switching valve is used, the cutoff state of the continuity relationship between the fluid flow paths is the axial direction between the valve shaft member and the valve housing. Since this is performed by the contact relationship (at the opening surface of the fluid flow path), a complete blocking state is realized.
[0008]
However, on the principle that the shut-off state is constituted by the axial contact between the valve members, the structure in which two or more contact portions in the axial direction are simultaneously brought into contact simultaneously in both valve members is difficult in the work of the valve member. Even if it is realized, the productivity is poor and the production cost is high. Therefore, the number of ports of the fluid flow path that can be switched by the movement of one valve shaft member is as shown in FIG. The number of ports is limited to 3 ports. If the contact portions at a plurality of locations of both valve members are not completely contacted simultaneously, there is no advantage over the spool valve type.
[0009]
However, if there are 3 ports, for example, as shown in FIG. 5, it is necessary to use two 2-position 3-port switching valves illustrated in FIG. 7 in the hydraulic circuit, the hydraulic circuit itself becomes complicated, and the spool valve type This leads to an increase in production costs and the number of maintenance inspections.
An object of the present invention is to provide a switching valve that eliminates the disadvantages of the spool valve type and the poppet valve type as described above.
[0010]
[Means for Solving the Problems]
The main point of the present invention is that the floating ring member is fitted together with the floating ring member so as to be movable in the axial direction in the valve housing.
That is, the switching valve of the present invention includes, as basic means, a housing member, a valve shaft member that can move in the axial direction within the housing member provided inside the housing member, and a valve shaft member that can move in the axial direction. An externally fitted floating ring-shaped member, a main valve chamber and a sub-valve chamber in a housing member and partitioned by a partition, a first chamber at both ends in the main valve chamber and partitioned by a valve shaft member, Three chambers and an intermediate second chamber, a pressure fluid supply port formed on the wall surface of the housing member of the second chamber, a first flow port formed on the wall surface of the housing member of the first chamber, and a housing of the third chamber A second communication port formed in the member wall surface, a discharge port formed in the housing member wall surface of the sub valve chamber, and a passage communicating the main valve chamber and the sub valve chamber formed in the valve shaft member are provided.
Then, by the axial movement of the valve shaft member and the floating ring member, one of the first and second flow ports is switched to a position communicating with the pressure fluid supply port and the other is communicated with the discharge port.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
A switching valve according to an embodiment of the present invention will be described with reference to the drawings.
The vertical and horizontal directions in the following description are directions in the drawings.
The switching valve in the embodiment of the present invention is a poppet valve type two-position four-port switching valve, and the working fluid to be controlled is gas or fluid, and will be described as oil in the following description. The switching valve is used, for example, in the fluid pressure circuit shown in FIG.
In the hydraulic circuit shown in FIG. 5, a poppet valve type two-position four-port switching valve V is connected to a double-acting cylinder A as an actuator and a pump P / oil tank T as an operation supply source through pipes L1 to L4. Has been.
[0012]
The two-position four-port switching valve according to the first embodiment shown in FIGS. 1 and 2 includes a valve housing 1, a valve body 2 that is slidably fitted to the valve housing 1, and an outer peripheral surface of the valve body 2. And a floating ring member 3 slidably fitted to the left and right.
The valve housing 1 is formed with a hollow hole surrounded by the peripheral wall portion 4 and the end wall portions 5 and 5 at both ends, and the valve chamber is formed between the main valve chamber and the sub valve chamber 8 blocked by the intermediate wall portion 6. The main valve chamber is divided into a first chamber 9 on the end wall portion 5 side, a third chamber 10 on the intermediate wall portion 6 side, and an intermediate second chamber 11.
[0013]
A first flow port 12 that communicates with the first chamber from the outside, a second flow port 13 that communicates with the third chamber 10, and a pressure fluid supply port 14 that communicates with the second chamber 11 pass through the peripheral wall portion 4. Further, a discharge port 15 communicating with the auxiliary valve chamber 8 from the outside passes through the peripheral wall portion 4.
[0014]
For example, the pressure fluid supply port 14 is connected to a pipe L1 from a pump P which is a hydraulic oil supply source of the hydraulic circuit shown in FIG. 5, and the discharge port 15 is also connected to a pipe L2 to the oil tank T. ing.
Further, for example, a pipe L3 from one port a of a double acting cylinder A which is an actuator of a hydraulic circuit shown in FIG. 5 is connected to the first circulation port 12, and the other port is similarly connected to the second circulation port 13. Pipe line L4 from b is connected.
[0015]
The valve shaft member 2 includes a first valve rod portion 16, a first flange portion 17, a cylindrical intermediate portion 18, a second flange portion 19, and a second valve rod portion 20, and includes a first chamber 9 and a third chamber. The first flange portion 17 and the second flange portion 19 having a diameter smaller than 10 are in the main valve chamber, and the first valve rod portion 16 penetrates the end wall portion 5 of the valve housing 1 in a slidable and oil-tight manner. The second valve rod portion 20 penetrates the intermediate wall portion 6 and the end wall portion 5 of the valve housing 1 in a slidable and oil-tight manner and protrudes to the outside.
The first valve rod portion 16 is coupled with operating means such as a solenoid of a solenoid valve (see FIG. 5), a lever of a manual operation valve, a mechanical operation cam, a link mechanism, and the like.
[0016]
A first annular groove 21 and a second annular groove 22 are formed at both ends of the intermediate portion 18 of the valve shaft member 2, and the first axis from the end of the second valve rod portion 20 is the center axis of the valve shaft member 2. A center hole 23 reaching the position of the annular groove 21 is formed, and the open end of the center hole 23 on the second valve rod portion 20 side is closed. And the 1st communicating hole 24 and the 2nd communicating hole 25 which each connect the center hole 23 and the 1st annular groove 21 and the 2nd annular groove 22 are formed, and the center hole 23 and the subvalve chamber 8 are made into. A third communication hole 26 that always communicates is formed.
[0017]
A floating ring member 3 shorter than the intermediate portion 18 is slidably fitted to the outer peripheral surface of the intermediate portion 18 of the valve shaft member 2, and the length of the floating ring member 3 is positioned at both end positions of the intermediate portion 18. In this case, the length is such that it does not cover the first annular groove 21 or the second annular groove 22.
The floating ring member 3 is appropriately larger in diameter than the first chamber 3 and the third chamber 10 and smaller in diameter by an appropriate gap 27 than the second chamber 11.
Therefore, both end surfaces of the floating ring member 3 and both end surfaces of the second chamber 11 can be in contact with each other by forming an appropriate contact surface.
[0018]
The operation of the two-position four-port switching valve according to the first embodiment will be described. The valve shaft member 2 has the first valve rod portion 16 shown in FIG. 1 by an operating means, for example, a solenoid of a solenoid valve (see FIG. 5). The position is switched to the two positions of the position shown in FIG. 2 and the position shown in FIG.
When the valve shaft member 2 moves left to the position shown in FIG. 1, the floating ring member 3 is pushed left by the second flange portion 19, and the outer peripheral area of the left end surface of the floating ring member 3 is the second chamber 11. The inner peripheral area of the left end face is in close contact with the inner peripheral area of the right end face, and the outer peripheral area of the right end face of the floating ring member 3 is in close contact with the outer peripheral area of the left side surface of the second flange portion 19. The first collar portion 17 is separated from the floating ring member 3 away from the inner peripheral region of the right end surface of the first ring portion 17.
[0019]
As a result, the first chamber is disconnected from the second chamber 11 by the floating ring member 3 and communicates with the first annular groove 21. Further, the second chamber 11 is blocked from the second annular groove 22 by the floating ring member 3 and the second flange portion 19.
That is, in the position state of the valve body (see FIG. 1), the pressure fluid supply 14 is connected to the second flow port 13 through the gap 27, the second chamber 11 and the third chamber 10, and the first The first flow port 12 is connected to the discharge port 15 through the first chamber, the first annular groove 21, the first communication hole 24, the center hole 23, the third communication hole 26, and the sub valve chamber 8.
[0020]
Thus, the hydraulic fluid supplied from the hydraulic fluid supply source (for example, the pump P in FIG. 5) of the hydraulic circuit via the pipeline L1 flows from the pressure fluid supply 14 and flows out from the second circulation port 13 to the pipeline. The hydraulic oil supplied to, for example, the port b of the double acting cylinder A, which is an actuator in the hydraulic circuit via L4, flows out from the port a of the double acting cylinder A and flows in from the first flow port 12 via the pipe L3. Then, the oil is discharged from the discharge port 15 to the oil tank T through the pipe line L2. Thereby, one operation of the double acting cylinder A is performed.
[0021]
The hydraulic oil flowing from the pressure fluid supply 14 flows into the third chamber 10 and faces the double-acting cylinder A. The hydraulic oil flowing from the first flow port 12 flows into the first chamber, and the oil tank T Therefore, the third chamber 10 is on the high pressure side, the first chamber is on the low pressure side, and the differential pressure is applied to the second flange 19 and the floating ring member 3, and the floating ring member 3 is moved to the left end of the second chamber 11. It acts as a pressing force that presses against the surface, and also serves as a pressing force that presses the second flange 19 against the right end surface of the floating ring member 3.
[0022]
Therefore, the pressing force for pressing the floating ring member 3 against the left end surface of the second chamber 11 and the pressing force for pressing the second flange portion 19 against the right end surface of the floating ring member are the valve shaft member 2 by the operating means, that is, the first pressure. 2 The pressing force by the differential pressure is added to the pressing force by the flange portion 19 so that the outer peripheral area of the left end surface of the floating ring member 3 and the inner peripheral area of the left end surface of the second chamber 11 are in close contact with each other. The close contact between the inner peripheral area of the right end surface and the outer peripheral area of the left side surface of the second flange portion 19 becomes even stronger.
[0023]
When the valve shaft member 2 moves rightward from the position shown in FIG. 1 to the position shown in FIG. 2, the valve shaft member 2 slides to the right with respect to the floating ring member 3 in a stationary state, and eventually the first flange portion 17 is moved. The floating ring member 3 is contacted and pressed to the right. Then, the outer peripheral region of the left end surface of the floating ring member 3 is separated from the inner peripheral region of the left end surface of the second chamber 11, the outer peripheral region of the right end surface is in close contact with the inner peripheral region of the right end surface of the second chamber 11, and The outer peripheral area of the right side surface of the first flange portion 17 is in close contact with the inner peripheral area of the left end surface of the floating ring member 3, and the second flange portion 19 is separated from the floating ring member 3.
[0024]
As a result, the first chamber 9 communicates with the second chamber 11 and is blocked from the first annular groove 21 by the first flange 17 and the floating ring member 3. The third chamber 10 is disconnected from the second chamber 11 by the floating ring member 3 and communicates with the second annular groove 22.
That is, in the position state of the valve body, the pressure fluid supply 14 is connected to the first flow port 12 through the gap 27, the second chamber 11 and the first chamber, and the second flow port 13 is The third chamber 10, the second annular groove 22, the second communication hole 25, the center hole 23, the third communication hole 26, and the auxiliary valve chamber 8 are connected to the discharge port 15.
[0025]
Thus, the hydraulic fluid supplied from the hydraulic fluid supply source (for example, the pump P in FIG. 5) of the hydraulic circuit via the pipeline L1 flows in from the pressure fluid supply 14, flows out of the first circulation port 12, and the pipeline The hydraulic oil that is supplied to the port a of the double acting cylinder A in the hydraulic circuit via L3 and flows out from the port b of the double acting cylinder A flows from the second circulation port 13 via the pipe L4, and is discharged. 15 is discharged to the oil tank T through the pipe line L2. Thereby, the other operation of the double acting cylinder A is performed.
For the same reason as in the case of the left row of the valve shaft member 2, the outer periphery of the right end surface of the floating ring member 3 is caused by the differential pressure between the first chamber on the high pressure side and the third chamber 10 on the low pressure side. The close contact between the region and the inner peripheral region of the right end surface of the second chamber 11 and the close contact between the outer peripheral region of the right side surface of the first flange portion 17 and the inner peripheral region of the left end surface of the floating ring member 3 become strong.
[0027]
FIG. 3 shows another embodiment of the present invention.
The switching valve 1a has a housing 4a. In this housing 4a, the switching valve 1a having a tip protruding into the sub-valve chamber 8 without the tip of the valve shaft member 2a protruding from the end wall portion 5a, the working fluid is liquid, and the discharge port 15 is substantially the same. Applicable to atmospheric pressure.
[0028]
FIG. 4 shows another embodiment of the present invention.
The switching valve 1b has a housing 4b. The housing 4b does not include a sub valve chamber, and the tip of the valve shaft member 2b protrudes from the partition wall 6a. In this switching valve, the central hole 23 of the valve shaft member 2b serves as a discharge port. This switching valve can be applied when the working fluid is air.
[0029]
【The invention's effect】
The switching valve according to the present invention is a poppet valve type in which a floating ring member is fitted on the outer peripheral surface so that the floating ring member is movable in the axial direction together with the floating ring member so as to be movable in the axial direction in the valve housing. A unique advantage is provided, and the flow path switching in the fluid flow path switching in the valve is performed completely at the contact surface in the axial direction, and the flow path switching is performed completely without leakage between the flow paths.
[0030]
At the same time, there is no difficulty in work accuracy due to simultaneous contact at a number of locations, and multi-port switching, which is an advantage unique to the spool valve type, is possible.
That is, according to the present invention, it is possible to obtain a switching valve that has only the advantages of the poppet valve type and the spool valve type and eliminates the disadvantages of both.
[0031]
Particularly in the two-position four-port switching valve according to claim 2, the first hollow portion partitioned by the floating ring member in the hollow portion of the valve housing by flowing in from the inflow hole and discharging from the outflow hole. One becomes the high pressure side, and the other hollow area becomes the low pressure side, and the differential pressure acts on the contact portion of the floating ring member and the valve body, and acts as a pressing force for pressing the floating ring member against the fixed contact portion.
Accordingly, the pressing force for pressing the floating ring member is the pressing force by the differential pressure added to the pressing force by the operating means, and the close contact between the floating ring member and each contact portion becomes even stronger.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a 2-position 4-port switching valve according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a 2-position 4-port switching valve according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view of a 2-position 4-port switching valve according to a second embodiment of the present invention.
FIG. 4 is a cross-sectional view of a 2-position 4-port switching valve according to a third embodiment of the present invention.
FIG. 5 is a hydraulic circuit diagram to which the 2-position 4-port switching valve according to the embodiment of the present invention is applied.
FIG. 6 is a sectional view of a conventional 2-position 4-port switching valve (spool valve type).
FIG. 7 is a cross-sectional view of a 2-position 3-port switching valve (poppet valve type) in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve housing 2 Valve body 3 Floating ring member 4 Peripheral wall part 5 End wall part 6 Intermediate wall part 8 Subvalve chamber 9 1st chamber 10 3rd chamber 11 2nd chamber 12 1st flow port 13 2nd flow port 14 Pressure fluid Supply port 15 Discharge port 16 First valve rod portion 17 First flange portion 18 Intermediate portion 19 Second flange portion 20 Second valve rod portion 21 First annular groove 22 Second annular groove 23 Center hole 24 First communication hole 25 First 2 communication hole 26 3rd communication hole P Pump T Oil tank A Double acting cylinder (actuator)
a, b Ports L1-L4 pipeline

Claims (2)

ハウジング部材と、
ハウジング部材内部に設けられたハウジング部材内を軸方向に移動可能な弁軸部材と、
軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、
ハウジング部材内にあって、隔壁によって仕切られる主弁室及び副弁室と、
主弁室内にあって弁軸部材によって仕切られる両端部の第1室、第3室及び中間部の第2室と、
第2室のハウジング部材壁面に形成された圧力流体供給口と、
第1室のハウジング部材壁面に形成された第1流通口と、
第3室のハウジング部材壁面に形成された第2流通口と、
副弁室のハウジング部材壁面に形成された排出口と、
弁軸部材に形成された主弁室と副弁室とを連通する通路を備え、
弁軸部材及び浮動リング部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えることを特徴とする2位置4ポート方向切換弁。
A housing member;
A valve shaft member that is movable in the axial direction within the housing member provided inside the housing member;
A floating ring-shaped member externally fitted to the valve shaft member so as to be axially movable;
A main valve chamber and a sub-valve chamber in the housing member and partitioned by a partition;
A first chamber at both ends, a third chamber and a second chamber at an intermediate portion, which are in the main valve chamber and partitioned by a valve shaft member;
A pressure fluid supply port formed in the wall surface of the housing member of the second chamber;
A first flow port formed in the housing member wall surface of the first chamber;
A second flow port formed in the wall surface of the housing member of the third chamber;
A discharge port formed in the wall surface of the housing member of the auxiliary valve chamber;
A passage that communicates the main valve chamber and the sub-valve chamber formed in the valve shaft member;
Two-position four-port direction characterized by switching one of the first and second flow ports to a pressure fluid supply port and the other to a discharge port by movement of the valve shaft member and the floating ring member in the axial direction Switching valve.
ハウジング部材と、
ハウジング部材内部に設けられたハウジング部材内を軸方向に移動可能な弁軸部材と、
軸方向移動可能に弁軸部材に外嵌された浮動リング状部材と、
ハウジング部材内にあって、隔壁によって仕切られる弁室と、
弁室にあって弁軸部材によって仕切られる両端部の第1室、第3室及び中間部の第2室と、
第2室のハウジング部材壁面に形成された圧力流体供給口と、
第1室のハウジング部材壁面に形成された第1流通口と、
第3室のハウジング部材壁面に形成された第2流通口と、
弁軸部材に形成された弁室とハウジングの外部を連通する排出口としての機能を有する通路を備え、
弁軸部材及び浮動リング部材の軸方向の動きによって、第1または第2流通口の一方を圧力流体供給口に、他方を排出口に連通する位置に切替えることを特徴とする2位置4ポート方向切換弁。
A housing member;
A valve shaft member that is movable in the axial direction within the housing member provided inside the housing member;
A floating ring-shaped member externally fitted to the valve shaft member so as to be axially movable;
A valve chamber in the housing member and partitioned by a partition;
A first chamber at both ends separated by a valve shaft member in the valve chamber, a third chamber, and a second chamber at the intermediate portion;
A pressure fluid supply port formed in the wall surface of the housing member of the second chamber;
A first flow port formed in the housing member wall surface of the first chamber;
A second flow port formed in the wall surface of the housing member of the third chamber;
A passage having a function as a discharge port communicating with the valve chamber formed in the valve shaft member and the outside of the housing;
Two-position four-port direction characterized by switching one of the first and second flow ports to a pressure fluid supply port and the other to a discharge port by movement of the valve shaft member and the floating ring member in the axial direction Switching valve.
JP13657997A 1997-05-27 1997-05-27 Switching valve Expired - Fee Related JP3763184B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13657997A JP3763184B2 (en) 1997-05-27 1997-05-27 Switching valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13657997A JP3763184B2 (en) 1997-05-27 1997-05-27 Switching valve

Publications (2)

Publication Number Publication Date
JPH10325476A JPH10325476A (en) 1998-12-08
JP3763184B2 true JP3763184B2 (en) 2006-04-05

Family

ID=15178584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13657997A Expired - Fee Related JP3763184B2 (en) 1997-05-27 1997-05-27 Switching valve

Country Status (1)

Country Link
JP (1) JP3763184B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2778386B1 (en) * 2013-03-13 2016-03-09 Delphi International Operations Luxembourg S.à r.l. Control valve assembly and fuel injector incorporating a control valve assembly
CN103307312B (en) * 2013-05-10 2015-12-23 三一汽车制造有限公司 Floating valve, water wash system and engineering machinery
CN105582635B (en) * 2016-03-22 2018-10-02 北京利达海鑫灭火系统设备有限公司 Visit fire tube temperature-sensitive self-starting extinguishing device selector valve

Also Published As

Publication number Publication date
JPH10325476A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
KR100275912B1 (en) Pilot Operated 3 Port Valve
KR20120115111A (en) Pilot-operated three-position switching valve
JP3331080B2 (en) Multi-way valve
US9341274B2 (en) Solenoid-operated pilot type spool valve
US2503827A (en) Four-way valve
KR100244538B1 (en) Selector valve with counterflow prevention means
KR100286705B1 (en) Electronic Pilot Operated 3 Position Valve
US6026856A (en) Three-port solenoid valve using a valve body for a five-port solenoid valve
JP3763184B2 (en) Switching valve
JP3763185B2 (en) Switching valve
JP4514324B2 (en) Hydraulic control valve
WO2017198103A1 (en) T-shaped valve and combined reversing valve thereof
JPH0432538Y2 (en)
TW202012817A (en) Spool valve
JPH0756349B2 (en) In-line poppet valve
JPH0463272B2 (en)
JP4118474B2 (en) Directional control valve
JP2001280519A (en) Three-port solenoid valve
JPS6315659Y2 (en)
US20220333702A1 (en) Four-position switching valve
JPH0535313B2 (en)
KR950004312B1 (en) Transmission shift valve with mechanical interlock
US847326A (en) Throttle-valve.
JPH109414A (en) Manually operated selector valve
US3942548A (en) Fluid control valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees