JP3763161B2 - Resistor and its manufacturing method - Google Patents

Resistor and its manufacturing method Download PDF

Info

Publication number
JP3763161B2
JP3763161B2 JP13153596A JP13153596A JP3763161B2 JP 3763161 B2 JP3763161 B2 JP 3763161B2 JP 13153596 A JP13153596 A JP 13153596A JP 13153596 A JP13153596 A JP 13153596A JP 3763161 B2 JP3763161 B2 JP 3763161B2
Authority
JP
Japan
Prior art keywords
resistor
film
copper
electroless plating
binary alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13153596A
Other languages
Japanese (ja)
Other versions
JPH09320806A (en
Inventor
恒 中村
直弘 三家本
洋 長谷川
秀美 縄舟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP13153596A priority Critical patent/JP3763161B2/en
Publication of JPH09320806A publication Critical patent/JPH09320806A/en
Application granted granted Critical
Publication of JP3763161B2 publication Critical patent/JP3763161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、各種電子機器に用いられる抵抗器に関するもので、特に低抵抗で、抵抗温度特性に優れた銅−ニッケル合金(Cu−Ni)を抵抗体皮膜とした抵抗器とその製造方法に関するものである。
【0002】
【従来の技術】
近年、電子機器の高性能化や高機能化に伴って、低抵抗で抵抗温度特性に優れた抵抗器の需要が著しく拡大している。
【0003】
従来、低抵抗で温度特性に優れた抵抗器としては、Cu−Ni合金を抵抗体皮膜としたものが広く使われている。
【0004】
このCu−Ni合金から成る抵抗体皮膜は、無電解めっき法や電解めっき法を併用した方法によって作られているが、無電解めっき法では、2価の銅イオン(Cu2+)と2価のニッケルイオン(Ni2+)を溶解した溶液に、錯化剤としてクエン酸ナトリウム、還元剤には次亜リン酸ナトリウムを使用した無電解めっき液が最も多く使われており、この無電解めっき液を使用して触媒化処理を施したアルミナ基板や碍子等の絶縁性基体の表面にCu−Niの合金を成膜して低抵抗の抵抗器が作られていた。
【0005】
【発明が解決しようとする課題】
しかしながら、このような次亜リン酸ナトリウムを還元剤とした無電解めっき液によって析出したCu−Ni合金から成る抵抗体皮膜は、皮膜中にリン(P)が必然的に共析して、Cu−Ni−Pの3元合金の形となるために、抵抗皮膜の電気抵抗値(シート抵抗値)が高くなると共に、熱処理によってNiとPの結晶化が進行し、皮膜の抵抗温度特性(TCR)が著しく悪くなる問題点があった。
【0006】
本発明は、抵抗皮膜の電気抵抗値(シート抵抗値)が低く、且つ熱処理による抵抗変化の少ない温度特性(TCR)に優れた抵抗器とその製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
この課題を解決するために本発明は、2価の銅イオン(Cu2+)と2価のニッケルイオン(Ni2+)と、前記各金属イオンの共通の錯化剤であり、Cu 2+ との錯体形成能力を有し、かつNi2+に対して錯体形成能力の弱い錯化剤と、銅の還元析出に対して触媒活性を有する還元剤とを基本成分とした無電解めっき液を用いて、絶縁性基体の表面にCu−Niの2元合金皮膜からなる抵抗体皮膜を設け、その抵抗体皮膜の相対する一対の両端部に外部接続端子を設けた抵抗器である。これにより、抵抗体皮膜の電気抵抗値が低くかつ抵抗温度特性に優れた抵抗器が得られるものである。
【0008】
【発明の実施の形態】
本発明の請求項1記載の発明は、2価の銅イオン(Cu2+)と2価のニッケルイオン(Ni2+)と、前記各金属イオンの共通の錯化剤であり、Cu 2+ との錯体形成能力を有し、かつNi2+に対して錯体形成能力の弱い錯化剤と、銅の還元析出に対して触媒活性を有する還元剤とを基本成分とした無電解めっき液を用いて、絶縁性基体の表面にCu−Niの2元合金皮膜からなる抵抗体皮膜を設け、その抵抗体皮膜の相対する一対の両端部に外部接続端子を設けた抵抗器であり、リン(P)などの不純物元素を含まないCu−Niの2元合金皮膜で抵抗体を形成するため、抵抗体皮膜の電気抵抗値(シート抵抗)が低く、かつ抵抗温度特性に優れた抵抗器が得られる。
【0009】
請求項2に記載の発明は、絶縁性基体の表面に触媒活性化層を設け、この活性化層の表面に請求項1記載の無電解めっき液によってCu−Niの2元合金皮膜を設け、該抵抗体皮膜の相対する一対の両端部に外部接続端子を設けたことを特徴とした抵抗器の製造方法であり、無電解めっき液によって絶縁性基体の表面にCu−Niの2元合金皮膜を形成することによって抵抗体皮膜の電気抵抗値が低く、且つ抵抗温度特性に優れた抵抗器が得られるものである。
【0010】
請求項3に記載の発明は、絶縁性基体の表面に触媒活性化層を設け、この活性化層の表面に請求項1記載の無電解めっき液によって下地導電膜となる薄層のCu−Niの2元合金皮膜を設け、この下地導電膜上に電気めっき法によってCu−Ni合金皮膜を厚く形成し、その両端部に外部接続端子を設けることを特徴とした抵抗器の製造方法であり、Cu−Niの2元合金皮膜から成る下地導電膜上に電気めっき法によって緻密な結晶粒子を備えたCu−Ni合金皮膜を形成することによって、抵抗温度特性の極めて優れた抵抗器が得られるものである。
【0011】
請求項4に記載の発明は、錯化剤として、トリエタノールアミン、グリセリン、ソルビトールまたはそれらの誘導体のうちの一つを使用した無電解めっき液を使用した抵抗器であり、これらの錯化剤を使用することによって、絶縁性基体の表面に高純度のCu−Niの2元合金皮膜から成る抵抗体層が形成されるものである。
【0012】
請求項5に記載の発明は、還元剤としてホルムアルデヒドまたはグリオキシル酸とそれらの誘導体のうちの一つを使用した抵抗器であり、これらの還元剤を使用することによって絶縁性基体の表面に高純度のCu−Niの2元合金皮膜から成る抵抗体層が形成されるものである。
【0013】
請求項6に記載の発明は、無電解または電気めっき法を併用して形成したCu−Ni合金皮膜を還元または不活性雰囲気中で、200〜1000℃の温度範囲で熱処理を行う抵抗器の製造方法であり、めっきで析出させた銅−ニッケル合金皮膜を熱処理を行うことによって、皮膜の応力緩和や吸蔵水素ガスの除去、さらには、粒成長による結晶粒子の緻密化により、抵抗皮膜の低抵抗化と温度特性が著しく向上するものである。
【0014】
以下、本発明の実施の形態1について図1を用いて説明する。
(実施の形態1)
図1は本発明による抵抗器の一例として、角型形状を有するチップ抵抗器の断面図を示すものである。
【0015】
図1において、絶縁性基体1は抵抗体皮膜2を形成する支持体となるもので、直方体の形状を有するアルミナ基板によって構成されている。抵抗体皮膜2は、低抵抗で且つ温度特性に優れた皮膜としてCu−Niの2元合金皮膜によって構成されている。
【0016】
外部接続端子3a,3bは、抵抗体をプリント配線板と電気的に接続するための端子となる導電金属層であり、抵抗体皮膜2の相対する一対の両端部からアルミナ基板の側壁面及び裏面の一部にわたって形成され、無電解めっき法やスパッタ法等によって析出したCu,NiまたはCu−Ni合金からなる導電金属層を下地として、最外層にはんだや錫などのはんだ付け性に優れた金属層によって構成されたものである。
【0017】
絶縁性樹脂4は、抵抗体皮膜を保護するものであり、エポキシ樹脂やシリコン樹脂等の耐熱性や耐湿性に優れた樹脂によって構成されている。
【0018】
以上のように構成された抵抗器について、以下にその製造方法を詳細に説明する。
【0019】
本発明に使用できる絶縁性基体1としては、板状のアルミナ基板や棒状をしたアルミナ碍子等がある。先ずこれらの絶縁性基体1にめっきの密着性を高める目的で化学的エッチング処理によって表面を粗面化する。エッチング法として、フッ化水素酸による粗面化や、水酸化ナトリウムによる溶融塩エッチングで粗面化する方法によって行った。
【0020】
次に、表面粗化した絶縁性基体1に触媒活性化層を付与するが、活性化処理の方法としては、塩化第1錫と塩化パラジウムの塩酸酸性溶液に順次浸漬するか、コロイド状のパラジウム液に浸漬するかまたはパラジウムなどの触媒活性金属微粒子をガラスや樹脂バインダーに混練してペースト状にしたものをスクリーン印刷するかスプレーで塗布して絶縁性基体の表面の全面または一部分に触媒活性化層(図示せず)を形成した。
【0021】
その後に、無電解めっき液に浸漬して絶縁性基体の表面の全面または一部分にCu−Niの合金皮膜2を形成した。
【0022】
この場合、無電解めっき液は、2価の銅イオン、(Cu2+)と2価のニッケルイオン(Ni2+)を含み、錯化剤として、Cu2+との錯体形成能力を有し、且つNi2+と錯体形成能力が比較的弱い錯化剤を使用し、還元剤に銅の還元析出に対して触媒活性を備えた還元剤を混合しためっき液を用いて、絶縁性基体1の表面に所望とするシート抵抗値が得られる膜厚になるようにCu−Ni合金皮膜2を析出させた。
【0023】
この無電解めっき液の錯化剤としては、トリエタノールアミン、グリセリン、ソルビトールまたはそれらの誘導体のうちの一つを使用した。また、還元剤としては、一般の無電解銅めっきで使われているホルムアルデヒドやグリオキシル酸またはそれらの誘導体のうちの一つを使用した。そして、本実施の形態1に使用した無電解めっき液の組成の一例を下記に示した。
【0024】
硫酸銅(Cu2+)………………………………0.002〜0.02mol/l
硫酸ニッケル(Ni2+)………………………0.1mol/l
トリエタノールアミン(錯化剤)……………0.2mol/l
ホルムアルデヒド(還元剤)…………………0.06mol/l
pH(NaOHにて調整)……………………13
この無電解めっき液を使用して液温度を30℃の範囲に調節し、活性化処理を施したアルミナ基板から成る絶縁性基体1を浸漬して、Cuが50〜70wt%、Niが30〜50wt%の組成比率を有するCu−Ni合金皮膜2を析出させた。
【0025】
そして、このような無電解めっき液によって、絶縁性基体1の表面にCu−Niの2元合金から成る抵抗体皮膜2を形成したものは、抵抗体皮膜2の相対する一対の両端部および絶縁性基体の側壁面さらには裏面の一部に渡って無電解めっき法やスパッタリング法さらには導電性樹脂等によって例えば銅、ニッケル、銀またはそれらの合金から成る外部接続端子3a,3bを形成し、その後に抵抗体皮膜2をYAGレーザーを用いて所定の抵抗値になるようにトリミングを行い、最終的に抵抗体皮膜2上に、エポキシ樹脂やシリコン樹脂等の絶縁性樹脂4で被覆して低抵抗のチップ状の抵抗器を作製した。
【0026】
このような方法によって得られた抵抗器は、その抵抗体皮膜中に無電解めっき液の還元剤に含まれる不純物元素が共析しない高純度のCu−Ni2元合金によって構成されるので、抵抗体皮膜の電気抵抗が低く、且つ抵抗温度特性に優れた抵抗器が得られるものである。
【0027】
尚、この無電解めっきによって得られるCu−Niの合金皮膜は、電気めっきによるCu−Niの下地導電膜として、絶縁性基体上に薄く形成し、その後にピロリン酸液やクエン酸液による電気めっきを行い、Cu−Niの2元合金皮膜を厚付けして抵抗体皮膜を形成してもよい。
【0028】
さらにまた、無電解めっきや電気めっきと併用して得られたCu−Ni合金皮膜を水素と窒素の混合ガスや窒素ガス雰囲気中で200〜1000℃の温度範囲で熱処理を行うことによって抵抗体皮膜の内部応力緩和や吸蔵水素ガスの除去、析出結晶粒子の粒成長により抵抗体皮膜の電気抵抗値や抵抗温度特性がより一層向上することが確認できた。
【0029】
尚、以上の説明では、絶縁性基体1として直方体を有する板状アルミナ基板上に無電解めっきによってCu−Ni合金からなる抵抗体皮膜2を形成した角型形状のチップ抵抗器について説明したが、抵抗皮膜を形成する絶縁性基体は板状のアルミナ基板に限定するものではなく、棒状をしたアルミナ碍子の表面にCu−Ni合金皮膜を形成し、両端部にリード線付きの金属キャップを圧入した丸型形状の抵抗器についても実施可能である。
【0030】
【発明の効果】
以上のように、本発明によれば、絶縁性基体の表面に無電解めっきによってCu−Niの2元合金からなる抵抗体皮膜を形成した抵抗器である。
【0031】
そして、本発明では、還元剤として次亜リン酸ナトリウムを使用せず、ホルムアルデヒドやグリオキシル酸などの抵抗体皮膜に悪影響を及ぼす元素を含まないものを用いて、リン(P)などの不純物元素を含まない高純度のCu−Niの2元合金皮膜を形成することによって、電気抵抗値を下げ、抵抗温度特性を上げることができる。
また、本発明では、錯化剤として、2価の銅イオン(Cu 2+ )と2価のニッケルイオン(Ni 2+ )に共通であり、Cu 2+ との錯体形成能力を有し、かつNi 2+ に対しては錯体形成能力の弱いものを用い、かつ還元剤として、銅の還元析出に対して触媒活性を有するものを用いることによって、さらに電気抵抗値を下げ、抵抗温度特性を上げることができる。
【0032】
従って、抵抗体皮膜の電気特性として、特に電気抵抗値が低くなり、且つ抵抗温度特性(TCR)が従来例の±300〜500ppm/℃から±50ppm/℃に著しく改善された。
【図面の簡単な説明】
【図1】本発明の一実施の形態による抵抗器の断面図
【符号の説明】
1 絶縁性基体
2 抵抗体皮膜(Cu−Ni合金皮膜)
3a,3b 外部接続端子
4 絶縁性樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a resistor used in various electronic devices, and particularly to a resistor having a resistance film made of a copper-nickel alloy (Cu-Ni) having a low resistance and excellent resistance temperature characteristics, and a method of manufacturing the same. It is.
[0002]
[Prior art]
In recent years, with the improvement in performance and functionality of electronic devices, the demand for resistors having low resistance and excellent resistance temperature characteristics has been remarkably expanded.
[0003]
Conventionally, as a resistor having a low resistance and excellent temperature characteristics, a resistor film made of a Cu—Ni alloy has been widely used.
[0004]
The resistor film made of this Cu—Ni alloy is made by a method using both an electroless plating method and an electrolytic plating method. In the electroless plating method, divalent copper ions (Cu 2+ ) and divalent ions are used. Electroless plating solution using sodium citrate as a complexing agent and sodium hypophosphite as a reducing agent is most often used in a solution of nickel ions (Ni 2+ ). A low-resistance resistor has been made by forming a Cu—Ni alloy film on the surface of an insulating substrate such as an alumina substrate or an insulator that has been catalyzed using a liquid.
[0005]
[Problems to be solved by the invention]
However, a resistor film made of a Cu-Ni alloy deposited by such an electroless plating solution using sodium hypophosphite as a reducing agent, phosphorus (P) inevitably co-deposited in the film, Cu -Ni-P ternary alloy is formed, so that the electrical resistance value (sheet resistance value) of the resistance film is increased, and crystallization of Ni and P proceeds by heat treatment, so that the resistance temperature characteristic of the film (TCR) ) Was significantly worse.
[0006]
An object of the present invention is to provide a resistor having a low temperature resistance (sheet resistance value) of a resistance film and excellent temperature characteristics (TCR) with little resistance change due to heat treatment, and a method for manufacturing the same.
[0007]
[Means for Solving the Problems]
In order to solve this problem, the present invention is a complexing agent common to divalent copper ions (Cu 2+ ), divalent nickel ions (Ni 2+ ), and the respective metal ions, and Cu 2+ complexation capable, and Ni weak complexing agent having complexing capacity for 2+, electroless plating solution which is based component and a reducing agent having a catalytic activity for the copper reduction precipitation with , A resistor film made of a Cu—Ni binary alloy film is provided on the surface of the insulating substrate, and external connection terminals are provided at a pair of opposite ends of the resistor film. As a result, a resistor having a low resistance film and an excellent resistance temperature characteristic can be obtained.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention of claim 1, wherein the present invention is a divalent of copper ions (Cu 2+) and divalent nickel ion (Ni 2+), wherein a common complexing agent of each metal ion, Cu 2+ complexation capable, and Ni weak complexing agent having complexing capacity for 2+, electroless plating solution which is based component and a reducing agent having a catalytic activity for the copper reduction precipitation with A resistor film made of a Cu—Ni binary alloy film on the surface of an insulating substrate, and a pair of opposite ends of the resistor film provided with external connection terminals. Since the resistor is formed of a Cu—Ni binary alloy film that does not contain an impurity element such as (P), the resistor film has a low electrical resistance value (sheet resistance) and an excellent resistance temperature characteristic. can get.
[0009]
In the invention according to claim 2, a catalyst activation layer is provided on the surface of the insulating substrate, and a Cu—Ni binary alloy film is provided on the surface of the activation layer by the electroless plating solution according to claim 1, A resistor manufacturing method characterized in that an external connection terminal is provided at a pair of opposite ends of the resistor film, and a Cu-Ni binary alloy film is formed on the surface of an insulating substrate by an electroless plating solution. By forming the resistor, a resistor having a low electrical resistance value of the resistor film and excellent resistance temperature characteristics can be obtained.
[0010]
The invention according to claim 3 is provided with a catalyst activation layer on the surface of the insulating substrate, and a thin layer of Cu—Ni that becomes a base conductive film by the electroless plating solution according to claim 1 on the surface of the activation layer. Is a method of manufacturing a resistor, characterized in that a Cu-Ni alloy film is formed thickly by electroplating on the underlying conductive film, and external connection terminals are provided at both ends thereof. By forming a Cu-Ni alloy film having dense crystal particles by electroplating on a base conductive film made of a Cu-Ni binary alloy film, a resistor having excellent resistance temperature characteristics can be obtained. It is.
[0011]
The invention according to claim 4 is a resistor using an electroless plating solution using one of triethanolamine, glycerin, sorbitol or a derivative thereof as a complexing agent, and these complexing agents As a result, a resistor layer made of a high purity Cu—Ni binary alloy film is formed on the surface of the insulating substrate.
[0012]
The invention according to claim 5 is a resistor using one of formaldehyde or glyoxylic acid and derivatives thereof as a reducing agent. By using these reducing agents, the surface of the insulating substrate has high purity. A resistor layer made of a Cu—Ni binary alloy film is formed.
[0013]
The invention according to claim 6 is a method for manufacturing a resistor in which a Cu—Ni alloy film formed by electroless or electroplating is used in a reducing or inert atmosphere at a temperature range of 200 to 1000 ° C. This is a method in which a copper-nickel alloy film deposited by plating is heat-treated to reduce the stress of the film, remove occluded hydrogen gas, and further densify the crystal grains by grain growth, thereby reducing the resistance of the resistance film. And temperature characteristics are remarkably improved.
[0014]
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIG.
(Embodiment 1)
FIG. 1 is a sectional view of a chip resistor having a square shape as an example of a resistor according to the present invention.
[0015]
In FIG. 1, an insulating substrate 1 serves as a support for forming a resistor film 2 and is composed of an alumina substrate having a rectangular parallelepiped shape. The resistor film 2 is composed of a Cu—Ni binary alloy film as a film having low resistance and excellent temperature characteristics.
[0016]
The external connection terminals 3a and 3b are conductive metal layers that serve as terminals for electrically connecting the resistor to the printed wiring board, and the side wall surface and the back surface of the alumina substrate from a pair of opposite ends of the resistor film 2. A metal with excellent solderability, such as solder or tin, on the outermost layer, with a conductive metal layer made of Cu, Ni, or Cu-Ni alloy deposited over part of the surface and deposited by electroless plating or sputtering. It is composed of layers.
[0017]
The insulating resin 4 protects the resistor film and is made of a resin having excellent heat resistance and moisture resistance, such as an epoxy resin or a silicon resin.
[0018]
About the resistor comprised as mentioned above, the manufacturing method is demonstrated in detail below.
[0019]
Examples of the insulating substrate 1 that can be used in the present invention include a plate-like alumina substrate and a rod-like alumina insulator. First, the surface of the insulating substrate 1 is roughened by a chemical etching process for the purpose of improving the adhesion of plating. As the etching method, the surface was roughened by hydrofluoric acid or the surface was roughened by molten salt etching using sodium hydroxide.
[0020]
Next, a catalyst activation layer is applied to the insulating substrate 1 whose surface has been roughened. As an activation treatment method, it is possible to sequentially immerse in an acidic solution of stannous chloride and palladium chloride, or colloidal palladium. Activate the catalyst on the whole or part of the surface of the insulating substrate by immersing it in a liquid or kneading it into glass or a resin binder with fine particles of catalytically active metal such as palladium and applying it by screen printing or spraying. A layer (not shown) was formed.
[0021]
Thereafter, it was immersed in an electroless plating solution to form a Cu—Ni alloy film 2 on the entire surface or a part of the surface of the insulating substrate.
[0022]
In this case, the electroless plating solution contains divalent copper ions (Cu 2+ ) and divalent nickel ions (Ni 2+ ), and has a complex forming ability with Cu 2+ as a complexing agent. Insulating substrate 1 using a plating solution using a complexing agent having a relatively weak ability to form a complex with Ni 2+ and a reducing agent mixed with a reducing agent having catalytic activity for copper reduction precipitation. A Cu—Ni alloy film 2 was deposited on the surface of the film so that a desired sheet resistance value was obtained.
[0023]
As a complexing agent for the electroless plating solution, triethanolamine, glycerin, sorbitol, or one of their derivatives was used. As the reducing agent, formaldehyde, glyoxylic acid or one of their derivatives used in general electroless copper plating was used. An example of the composition of the electroless plating solution used in the first embodiment is shown below.
[0024]
Copper sulfate (Cu 2+ ) ………………………… 0.002-0.02 mol / l
Nickel sulfate (Ni 2+ ) …………………… 0.1 mol / l
Triethanolamine (complexing agent) ………… 0.2mol / l
Formaldehyde (reducing agent) ……………… 0.06mol / l
pH (adjusted with NaOH) ……………… 13
Using this electroless plating solution, the temperature of the solution is adjusted to a range of 30 ° C., and an insulating substrate 1 made of an alumina substrate subjected to activation treatment is dipped, so that Cu is 50 to 70 wt% and Ni is 30 to 30%. A Cu—Ni alloy film 2 having a composition ratio of 50 wt% was deposited.
[0025]
And what formed the resistor film 2 which consists of a binary alloy of Cu-Ni on the surface of the insulating base | substrate 1 with such an electroless-plating liquid WHEREIN: Forming external connection terminals 3a and 3b made of, for example, copper, nickel, silver, or an alloy thereof by electroless plating, sputtering, or conductive resin over a part of the side wall and further back of the conductive substrate; Thereafter, the resistor film 2 is trimmed to a predetermined resistance value using a YAG laser, and finally the resistor film 2 is coated with an insulating resin 4 such as an epoxy resin or a silicon resin to reduce the resistance film 2 Resistor chip resistors were fabricated.
[0026]
The resistor obtained by such a method is composed of a high-purity Cu-Ni binary alloy in which the impurity element contained in the reducing agent of the electroless plating solution is not co-deposited in the resistor film. A resistor having low electric resistance of the film and excellent resistance temperature characteristics can be obtained.
[0027]
The Cu—Ni alloy film obtained by electroless plating is thinly formed on an insulating substrate as a Cu—Ni base conductive film by electroplating, and then electroplated with pyrophosphoric acid solution or citric acid solution. The resistor film may be formed by thickening the Cu—Ni binary alloy film.
[0028]
Furthermore, a resistor film is obtained by heat-treating a Cu—Ni alloy film obtained in combination with electroless plating or electroplating in a temperature range of 200 to 1000 ° C. in a mixed gas of hydrogen and nitrogen or in a nitrogen gas atmosphere. It was confirmed that the electrical resistance value and resistance temperature characteristics of the resistor film were further improved by relaxation of internal stress, removal of occluded hydrogen gas, and grain growth of precipitated crystal particles.
[0029]
In the above description, the rectangular chip resistor in which the resistor film 2 made of a Cu—Ni alloy is formed by electroless plating on a plate-like alumina substrate having a rectangular parallelepiped as the insulating substrate 1 has been described. The insulating substrate on which the resistance film is formed is not limited to a plate-like alumina substrate, a Cu-Ni alloy film is formed on the surface of a rod-like alumina insulator, and metal caps with lead wires are press-fitted at both ends. It can also be implemented for round resistors.
[0030]
【The invention's effect】
As described above, according to the present invention, there is provided a resistor in which a resistor film made of a Cu—Ni binary alloy is formed on the surface of an insulating substrate by electroless plating.
[0031]
In the present invention, sodium hypophosphite is not used as a reducing agent, and an element such as formaldehyde and glyoxylic acid that does not have an adverse effect on the resistor film is used. By forming a high-purity Cu—Ni binary alloy film that does not contain, the electrical resistance value can be lowered and the resistance temperature characteristic can be improved.
In the present invention, the complexing agent is common to divalent copper ions (Cu 2+ ) and divalent nickel ions (Ni 2+ ), has a complex forming ability with Cu 2+ , and Using Ni 2+ with a weak complex-forming ability and using a reducing agent that has catalytic activity for copper reduction precipitation further lowers the electrical resistance and increases resistance temperature characteristics. be able to.
[0032]
Therefore, as the electrical characteristics of the resistor film, the electrical resistance value is particularly low, and the resistance temperature characteristics (TCR) are remarkably improved from ± 300 to 500 ppm / ° C. of the conventional example to ± 50 ppm / ° C.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a resistor according to an embodiment of the present invention.
1 Insulating substrate 2 Resistor film (Cu-Ni alloy film)
3a, 3b External connection terminal 4 Insulating resin

Claims (6)

2価の銅イオン(Cu2+)と2価のニッケルイオン(Ni2+)と、前記各金属イオンの共通の錯化剤であり、Cu 2+ との錯体形成能力を有し、かつNi2+に対して錯体形成能力の弱い錯化剤と、銅の還元析出に対して触媒活性を有する還元剤とを基本成分とした無電解めっき液を用いて、絶縁性基体の表面に銅−ニッケル(Cu−Ni)2元合金層からなる抵抗体皮膜を設け、該抵抗体皮膜の相対する一対の両端部に外部接続端子を設けた抵抗器。Divalent copper ion (Cu 2+ ), divalent nickel ion (Ni 2+ ), and a common complexing agent for each of the above metal ions , having the ability to form a complex with Cu 2+ , and Ni weak and a complexing agent having complexing capacity for 2+, and a reducing agent having a catalytic activity using an electroless plating solution which is based components to copper reduction precipitation, copper on the surface of an insulating substrate A resistor in which a resistor film made of a nickel (Cu-Ni) binary alloy layer is provided, and external connection terminals are provided at a pair of opposite ends of the resistor film. 絶縁性基体の表面に選択的に触媒活性化層を設け、該活性化層の表面に請求項1記載の無電解めっき液により銅−ニッケルの2元合金皮膜から成る抵抗体皮膜を設け、該抵抗体皮膜の両端部に外部接続端子を設けたことを特徴とする抵抗器の製造方法。  A catalyst activation layer is selectively provided on the surface of the insulating substrate, and a resistor film comprising a copper-nickel binary alloy film is provided on the surface of the activation layer by the electroless plating solution according to claim 1, A method of manufacturing a resistor, characterized in that external connection terminals are provided at both ends of the resistor film. 絶縁性基体の表面に触媒活性化層を設け、該活性化層の表面に請求項1記載の無電解めっき液によって下地導電膜となる薄層の銅−ニッケル2元合金皮膜を設け、該下地導電膜上に電気めっき法によって銅−ニッケルの2元合金皮膜から成る抵抗体皮膜を形成し、該抵抗皮膜の相対する一対の両端部に外部接続端子を設けることを特徴とした抵抗器の製造方法。  A catalyst activation layer is provided on the surface of the insulating substrate, and a thin layer of copper-nickel binary alloy film to be a base conductive film is provided on the surface of the activation layer by the electroless plating solution according to claim 1. A resistor film made of a copper-nickel binary alloy film is formed on a conductive film by electroplating, and an external connection terminal is provided at a pair of opposite ends of the resistor film. Method. 前記錯化剤として、トリエタノールアミン、グリセリン、ソルビトールまたはそれらの誘導体のうちの一つを使用した請求項1記載の抵抗器。  The resistor according to claim 1, wherein one of triethanolamine, glycerin, sorbitol, or a derivative thereof is used as the complexing agent. 前記還元剤として、ホルムアルデヒドまたはグリオキシル酸とそれらの誘導体のうちの一つを使用した請求項1記載の抵抗器。  The resistor according to claim 1, wherein formaldehyde or glyoxylic acid and one of derivatives thereof are used as the reducing agent. 無電解めっきまたは電気めっき法を併用して形成したCu−Niの2元合金皮膜を還元または不活性雰囲気中で、200〜1000℃の温度範囲で熱処理を行うことを特徴とした請求項2および3記載の抵抗器の製造方法。  3. A Cu—Ni binary alloy film formed by using electroless plating or electroplating in combination is subjected to heat treatment at a temperature range of 200 to 1000 ° C. in a reducing or inert atmosphere. 3. A method for producing a resistor according to 3.
JP13153596A 1996-05-27 1996-05-27 Resistor and its manufacturing method Expired - Fee Related JP3763161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13153596A JP3763161B2 (en) 1996-05-27 1996-05-27 Resistor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13153596A JP3763161B2 (en) 1996-05-27 1996-05-27 Resistor and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH09320806A JPH09320806A (en) 1997-12-12
JP3763161B2 true JP3763161B2 (en) 2006-04-05

Family

ID=15060352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13153596A Expired - Fee Related JP3763161B2 (en) 1996-05-27 1996-05-27 Resistor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP3763161B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904825B2 (en) * 2006-01-19 2012-03-28 パナソニック株式会社 Manufacturing method of chip resistor
CN108899143A (en) * 2018-07-16 2018-11-27 湖南龙建达电子科技股份有限公司 Epithelium patch resistor and preparation method thereof

Also Published As

Publication number Publication date
JPH09320806A (en) 1997-12-12

Similar Documents

Publication Publication Date Title
JP3475910B2 (en) Electronic component, method of manufacturing electronic component, and circuit board
US7933113B2 (en) Multilayer electronic component and method for manufacturing multilayer electronic component
US8982533B2 (en) Monolithic electronic component and method for manufacturing monolithic electronic component
JP3763161B2 (en) Resistor and its manufacturing method
JP3561240B2 (en) Manufacturing method of wiring board
JPS6342879B2 (en)
JPH0266101A (en) Electric conductive particles and manufacture thereof
JPH0136243B2 (en)
JP2003253454A (en) Method for plating electronic parts, and electronic parts
JPS62242324A (en) Chip capacitor
JPH09260106A (en) Electronic part manufacturing method
JP3244102B2 (en) IC package
CN220189355U (en) Chip ignition resistor with silver-adhered layer
JPH08273967A (en) Method for forming electrode of electronic component
JP4306941B2 (en) Wiring board and manufacturing method thereof
JP4646373B2 (en) Wiring board and manufacturing method thereof
JP2537893B2 (en) Electronic circuit board manufacturing method
JP2000030971A (en) Chip type electronic component and its manufacture
JPH0410754B2 (en)
JPH0974003A (en) Ceramic electronic parts
JP2584393B2 (en) Method for manufacturing electric component having external terminal
JPS5994571A (en) Terminal for soldering
JPS6148993A (en) Method of producing hybrid integrated circuit
JPH08316003A (en) Square type chip resistor and its manufacture
JPS5994863A (en) Manufacture of hybrid integrated circuit

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060109

LAPS Cancellation because of no payment of annual fees