JP3763092B2 - 燃料電池用水素製造装置 - Google Patents

燃料電池用水素製造装置 Download PDF

Info

Publication number
JP3763092B2
JP3763092B2 JP2001313095A JP2001313095A JP3763092B2 JP 3763092 B2 JP3763092 B2 JP 3763092B2 JP 2001313095 A JP2001313095 A JP 2001313095A JP 2001313095 A JP2001313095 A JP 2001313095A JP 3763092 B2 JP3763092 B2 JP 3763092B2
Authority
JP
Japan
Prior art keywords
heat exchanger
reforming
hydrogen production
reforming reactor
production apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001313095A
Other languages
English (en)
Other versions
JP2003123819A (ja
Inventor
典幸 今田
宏行 加来
興和 石黒
広志 谷田部
哲朗 岡野
幸久 谷口
輝史 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2001313095A priority Critical patent/JP3763092B2/ja
Publication of JP2003123819A publication Critical patent/JP2003123819A/ja
Application granted granted Critical
Publication of JP3763092B2 publication Critical patent/JP3763092B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、炭化水素系燃料と水とから水素ガスを製造する水素製造装置に係り,特に固体高分子型燃料電池に供給する水素を含む改質ガスを得るに適した燃料電池用水素製造装置に関する。
【0002】
【従来の技術】
炭化水素系燃料を原料として固体高分子型燃料電池に用いられる水素を製造する水素製造装置は、改質反応器とCOコンバータとCO選択酸化器を主な構成要素としている。このような水素製造装置において、原料には,天然ガス,LPガス,ガソリン,灯油などが使用されるが,以下ではメタンを例にとり,水素を製造する方法を述べる。まず,改質反応器では主に以下の反応により,メタンと水蒸気を水素と一酸化炭素に変換する。
CH+HO⇔CO+3H……(改質反応,a-1)
同時に,(a-1)式により発生したCOは次式で表されるHOとの反応により,さらに水素とCOに変換される。
CO+HO ⇔CO+H ……(CO転化反応,a-2)
ここで,炭化水素系燃料から水素を生成する主反応である(a-1)式の改質反応は大きな熱エネルギーを必要とする吸熱反応であり,この反応を継続するためには多量の熱を連続的に供給する必要がある。この熱の供給方法により,改質反応器は、外熱方式,内熱方式(部分酸化方式)とに区別されている。外熱方式は,隔壁を隔てて外部から,電気ヒータ,バーナなどで加熱する方法であり,内熱方式は,改質反応を行う反応部に酸素(あるいは空気)を投入し,(a-3)式のように燃料の一部を燃焼させて発生する熱により(a-1)式の改質反応に熱を供給する方法である。
【0003】
CH+2O → CO+2HO ……(a-3)
(a-1),(a-2)式の反応は,いずれも平衡反応であるので,H生成後の改質ガス中には,HだけでなくHO,CO,COなどが含まれる。固体高分子型燃料電池は,電解膜に白金触媒を使用しており,燃料ガス中にCOが含まれると発電性能が低下することから、改質ガス中のCOを何らかの手法で低減する必要がある。一般には,まず,COコンバータを使用する。
COコンバータ内部では,シフト触媒により以下のシフト反応を促進し,COを低減する。この反応は平衡反応であり,反応温度は250〜350℃である。温度が低いほど右側への反応が進行するが,反応速度は遅くなる。低温でも反応速度を速くするために,シフト触媒にはCu/Zn系などの触媒が用いられている。
【0004】
CO+HO → CO+H ……(b-1)
COコンバータ出口でのCO濃度は,反応温度と反応器の大きさによって変化するが,およそ2000〜5000ppm程度となる。なお、反応温度を低くすれば、これ以下のCO濃度も可能であるが,反応器が極めて大きくなるので現実的ではない。一方,一般的な固体高分子型燃料電池の許容CO濃度は10ppm以下といわれており,そのため,さらにCO濃度を低減する必要がある。そこで,通常CO選択酸化器が使用される。CO選択酸化器では,改質ガスに微量の空気を投入し,触媒上で以下の反応を進行させる。この触媒には,同時に水素が燃えることなく,COだけを選択的に燃焼させるものを(Ptなどを含有するもの)使用する。
【0005】
CO+1/2O → CO ……(c-1)
一般に、燃料電池システムは、改質反応器とCOコンバータ、CO選択酸化器とを一体とした水素製造装置と、燃料電池,及び加熱炉から構成されている。水素製造装置のうち改質反応器に相当する部分には、起動バーナ,燃焼触媒,改質触媒,熱交換器が順に収納されている。水素製造装置には,メタン供給管よりメタンが供給され,空気供給管より部分酸化用の空気が供給され,さらに水蒸気供給管より水蒸気が供給される。空気はメタンを燃焼するために必要な理論空気量の20%〜30%を供給しており,燃焼触媒によりメタンの一部が燃焼し,燃焼反応(a-3)が起こる。この燃焼反応により改質反応(a-1)に必要な反応熱を供給している。燃焼触媒を出たガスは、改質触媒に入り,反応温度650〜800℃の条件で,改質反応(a-1),(a-2)が進行して,水素を含んだ改質ガスとなる。改質反応器の外周は断熱材により覆われ、外部への熱放散を防止して改質反応に必要な温度条件を維持している。
そして、改質触媒を経た水素を含む改質ガスは熱交換器により,200〜300℃に冷却され,COコンバータに入る。COコンバータ内には,COシフト触媒が充填されており,(b-1)の反応によりCOは水素に転換される。ここで(b-1)式の反応は発熱反応であるために発生した熱を除去するために熱交換器が設置されている。COコンバータを出た改質ガスは,CO選択酸化器に入る。CO選択酸化器には,CO選択触媒が充填されており,その前段部に設けた空気投入口から微量の空気を投入し,(c-1)式によりCOを除去している。
CO選択酸化器を出た改質ガスは,水素供給管を介して,固体高分子型燃料電池の燃料極に入り,空気供給管より投入される空気と反応し,電気を発生する。このとき,燃料極の水素の60〜80%が発電に使われ,残りの40〜20%の水素が未反応水素排出管より排出される。未反応水素排出管から排出された未反応水素は加熱炉に投入,燃焼され,その燃焼熱は,水素製造装置に投入する水の加熱源として利用される。このとき,加熱炉内のガス温度は,未反応水素の量にもよるが,およそ600〜900℃である。
【0006】
【発明が解決しようとする課題】
前述のように水素を生成する(a-1)式の改質反応は650℃以上の高温場が必要であり、改質触媒部の内部温度を650〜800℃に維持する必要がある。したがって、原料から効率よく水素を製造するためには,高温の改質反応器から周囲に熱が放散しにくくする必要があり、従来方式の水素製造装置の構造においては,多量の断熱材を使用している。
【0007】
このため、装置が大きくなるほか、断熱材の熱容量が大きいために,起動時の昇温に時間がかかり,例えば家庭用燃料電池システムで要求されるような急速起動に対応しにくいという課題があった。
【0008】
また,改質触媒周囲の側壁を高温に耐えるよう高級な材料としたり、肉厚の製缶構造とするなどの配慮が必要であり、装置の量産化並びに低コスト化の妨げとなっていた。
【0009】
本発明は、炭化水素系燃料を原料とする水素製造装置の起動時の昇温時間を短縮して急速起動に対応できるようにすることを課題とする。
【0010】
【課題を解決するための手段】
上記課題は、炭化水素系燃料を原料とし、該原料の部分酸化と水蒸気改質反応とによって水素を得る燃料電池用水素製造装置において、前記水蒸気改質反応を行う改質反応器と、該改質反応器の外周面を内包する補助燃焼室とを備え、前記改質反応器は、120℃〜450℃の蒸気を流す冷却用内部熱交換器を該改質反応器の外周面に接して配設することにより解決できる。
【0011】
これによれば、装置の稼動中は、冷却用内部熱交換器の温度(例えば120℃〜450℃)が改質反応器の温度(例えば650℃〜800℃)よりも低温になる。したがって、冷却用内部熱交換器の温度で改質反応器の周壁表面を比較的低温(例えば500℃以下)に保持できる。その結果、改質反応器の周壁材料として、耐熱温度の高い高価な材料に代えて、耐熱温度の低い安価な材料(例えばステンレス)を適用でき、装置の製造コストを低減できる。また、冷却用内部熱交換器は、改質反応器の放熱を抑制する断熱効果を奏するから、熱容量が比較的大きな断熱材を設けずに済むことになり、改質反応器の起動時間を短縮できる。
【0012】
この場合において、改質反応器の外周壁と、補助燃焼室の内壁と接して設けることが好ましい。更に好ましくは、熱伝導性のある隔壁によって改質反応室と補助燃焼室を区画することにより、熱放散を抑えて、一層起動時間を短縮できる。
【0013】
また、補助燃焼室の燃料は、燃料電池から排出される水素を用いることができる。
【0014】
この場合、冷却用内部熱交換器は改質反応器の外周壁と一体化された構成である。すなわち、改質反応器と補助燃焼室を区画する隔壁は、120℃〜450℃の蒸気を流す冷却用内部熱交換器で構成することができる。
【0015】
また、冷却用内部熱交換器の内部流体流路を改質反応器入口に接続する構成を採用することができる。この場合、冷却用内部熱交換器の内部流体として水蒸気または酸化剤を流すことにより、改質反応器の燃料供給に供給するそれら水蒸気等を予熱することができ、一層の起動時間短縮及び熱効率を向上できる。
【0016】
また、補助燃焼室の外周に外部熱交換器を設けることができる。つまり、補助燃焼室によって、外部熱交換器の内部流体を加熱することができる。この場合、外部熱交換器を補助燃焼室の外周壁に接して、あるいは一体化して設けることが好ましい。
また、外部熱交換器の内部流体流路を冷却用内部熱交換器の内部流体流路に接続することにより、外部熱交換器の内部流体である例えば水蒸気または酸化剤を予熱することができる。
【0017】
また、改質反応器の内部に改質ガス熱回収用の内部熱交換器を設けることができる。この場合、内部熱交換器は改質反応器の改質ガスの熱を回収するように被加熱流体を流す管状の内部流体流路を改質触媒の下流側の空間に設ける。
【0018】
そして、内部熱交換器の内部流体流路を冷却用内部熱交換器の内部流体流路に接続することにより、改質反応器に供給する水蒸気または酸化剤を一層有効に、予熱することができる。
【0019】
つまり、冷却用内部熱交換器の内部流体流路と外部熱交換器の内部流体流路と内部熱交換器の内部流体流路とが直列に接続されることになる。より具体的には、外部熱交換器の出口が改質ガス熱回収用の内部熱交換器の入口に接続され、改質ガス熱回収用の内部熱交換器の出口が冷却用内部熱交換器の入口に接続して構成される。これによれば、外部熱交換器の内部流体流路に水を供給すると、内部熱交換器および冷却用内部熱交換器で水が昇温されて、水蒸気となり、その水蒸気が改質反応器の反応部へ供給される。
【0020】
ここで、改質反応器は、炭化水素系燃料と、空気または酸化剤と、水または水蒸気とを導入する導入部の上方に燃焼触媒層を配し、燃焼触媒の上方に改質触媒層を配して構成する。改質反応器の上部空間に、水蒸気改質反応により生成した改質ガス中の一酸化炭素濃度を低減するするCOシフト触媒層及びCO選択酸化触媒層を設ける。すなわち、燃焼触媒によって、炭化水素系燃料の一部を酸化させて熱を発生させる。その熱を利用して、改質触媒において炭化水素系燃料と水蒸気とを反応させ、水素と一酸化炭素に改質する。さらに、COシフト触媒及びCO選択酸化触媒によって、改質反応で発生した一酸化炭素を低減する。
【0021】
この場合において、燃焼触媒層および改質触媒層は、セラミック製ハニカム母材に、各種触媒をコーディングしたものを使用すること。すなわち、セラミック製ハニカムは伝熱性能が低いために、改質反応器の外壁部への熱伝導を少なくできる。その結果、改質反応器の側壁部への熱放散を低減し、燃焼触媒で発生した熱のほとんどが、改質反応に使用される。
【0022】
また、補助燃焼室の内部に、改質反応器で燃焼される炭化水素系燃料の加熱器を設けることが好ましい。このようにすれば、補助燃焼室の燃焼熱によって、加熱器内部の炭化水素系燃料を昇温することができ、改質器の導入部に供給される炭化水素系燃料が高温となることで、改質反応の速度を上げることができる。
【0023】
また、補助燃焼室の内部に改質反応器に導入する酸化剤としての空気の加熱器を設けることが好ましい。これによって、改質反応器の導入部に供給する空気が予熱され、改質反応の速度を高めることができる。
【0024】
また、補助燃焼室の内部に給湯加熱器を設けることができる。これによれば、燃料電池から排出される排ガスの中の水素を燃焼することにより、その燃焼熱で給湯用の水を加熱できるので、エネルギーを有効に利用できる。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明を燃料電池用の水素製造装置に適応した一実施形態の全体構成の断面図を示している。
【0026】
図に示すように、水素製造装置は、改質反応室1と、補助燃焼室2と、冷却用外部熱交換器3と、冷却用外部熱交換器3に連通された内部熱交換器4と、内部熱交換器4に連通された冷却用内部熱交換器5と、COシフト触媒層6と、CO選択酸化触媒層7とを備えて構成されている。全体として、水素製造装置は、円筒状に構成されており、外筒8の内部に半径が小さい内筒9を挿入して配置し、これらを共通の底板10に固定して形成されている。内筒9の上端は、外筒8の上端よりも低い位置に配置されている。内筒9の上端外縁と外筒8の内面にわたして、環状の天井板11が設けられている。内筒9の上端開口は、気体の通流が可能な仕切板60が設けられている。外筒8の上端開口は天井板13で閉塞されている。内筒9の上端と天井板13によって形成された空間に、外筒8の内周と同径で形成された気体の通流可能な棚板12が配置されている。
【0027】
改質反応室1は、内筒9と底板10と仕切板60によって形成された円筒状の空間であり、起動バーナ14と、燃焼触媒層15と、改質触媒層16と、内部熱交換器4とを備えて構成されている。補助燃焼室2は、内筒9と外筒8とによって形成された空間であり、起動バーナ14、と燃焼触媒層15と、都市ガス加熱器17と、空気加熱器18と、給湯加熱器19とを備えて構成されている。COシフト触媒層6は、仕切板60と天井板11で構成された平面と、棚板12とにより挟まれた空間であり、COシフト部熱交換器26が配置されている。CO選択酸化触媒層7は、棚板12と天井板13とにより挟まれた空間であり、CO選択酸化部熱交換器27が配置されている。
【0028】
改質反応室1は、底壁部に、炭化水素系燃料と酸化剤または空気と水蒸気を供給する供給部20を有している。この供給部の上方に起動バーナ14が設置されている。また、この起動バーナ14の上方に燃焼触媒層15が設けられている。この燃焼触媒層15の上部に改質触媒層16が配置される。この改質触媒層16の上部空間に管状で形成された内部熱交換器4が配置されている。
【0029】
補助燃焼室2は、底壁部に、炭化水素系燃料または燃料電池から排出される水素を含む排ガスを供給する供給部21を有している。この供給部21の上方に起動バーナ14が設置されている。また、起動バーナの上方に燃焼触媒層15を有し、この燃焼触媒層15の上部に、都市ガス加熱器17と空気加熱器18と給湯加熱器19が配置されている。
【0030】
冷却用内部熱交換器5は、改質反応室1の外周壁と一体化して設置されている。すなわち、冷却用内部熱交換器5は、プレス加工により平板に半円状(あるいはU字状)の溝を作り、改質反応室1の外周壁と組み合わせ、その間を溶接した形状で形成され、冷却用熱媒体である水蒸気が溝内を流れる構成となっている。冷却用外部熱交換器3は、補助燃焼室2の外周壁と一体化した構成となっている。形状は、冷却用内部熱交換器と同様である。
【0031】
このように構成される実施形態の動作を次に説明する。改質反応室1の供給部20に燃料である都市ガス23と、空気24と、水蒸気25を投入する。投入された都市ガスと空気は、起動バーナ14で、あるいは起動バーナ14の上部に設置した燃焼触媒層15で都市ガスの一部が酸化され、熱を発生する。この熱を利用して、改質触媒層16で都市ガスと水蒸気が反応し、(a-1)、(a-2)式の反応が進行する。この反応が進行し、都市ガスと水蒸気が、水素と一酸化炭素などに改質される。このとき、各部の温度は、起動バーナ14から燃焼触媒層15の間が約400℃であり、燃焼触媒層15で800℃〜900℃になり、改質触媒層16で800℃〜650℃となっている。次に、改質触媒層16で発生したガスは、内部熱交換器4で200℃程度に除熱された後、改質反応室1の天井板から通流して、COシフト触媒層6に投入される。投入されたガスは、(a-2)式の反応によって、一酸化炭素のほとんどが水素となり、CO 選択酸化触媒層7に投入される。ここで、一酸化炭素の濃度は2000〜3000ppmとなる。また、この(a-2)式の反応は、発熱反応であるために、発生した熱は、COシフト部熱交換器26で、供給された冷却水22と熱交換がなされ、除熱される。COシフト触媒層6からCO選択酸化触媒層7に供給されたガスは、(c-1)式の反応によって、COが除去される。この(c-1)式の反応は、発熱反応であり、発生した熱はCO選択酸化部熱交換器27で、供給された冷却水22と熱交換がなされ、除熱される。このCO選択酸化触媒層7によって、投入されたガスの一酸化炭素の濃度は、およそ数ppmと低減でき、ガスの殆どは水素に改質され、その水素が燃料電池に供給される。
【0032】
図2は、図1の実施形態の系統図を示している。この図2を用いて、水素を製造するための原料の流れについて説明する。図に示すように、常温の水29が、冷却用外部熱交換器3の水投入口31に投入され、この投入された水は、補助燃焼室2の燃焼ガスと熱交換がなされ、およそ80℃に昇温される。昇温された水は、冷却用外部熱交換器出口32から、内部熱交換器入口33に通流された後、改質反応室1の改質ガスと熱交換がなされ、およそ120℃の蒸気となる。この蒸気は、内部熱交換器出口34から、冷却用内部熱交換器入口35に通流された後、改質反応室1の改質ガス、及び補助燃焼室2の燃焼ガスと熱交換がなされ、およそ450℃の蒸気となる。この蒸気が、冷却用内部熱交換器出口36から改質反応室1の供給部20に通流され、改質反応に利用される。一方、原料である都市ガス23は、補助燃焼室2に備えられた都市ガス加熱器17の都市ガス投入口37に投入され、投入された都市ガス23は、補助燃焼室2の燃焼ガスと熱交換がなされ、およそ450℃に昇温される。昇温された都市ガスは、改質反応室1の供給部20に通流され、改質反応に利用される。また、酸化剤である空気は、補助燃焼室2に備えられた空気加熱器18の空気投入口38に投入され、投入された空気は、補助燃焼室2の燃焼ガスと熱交換がなされ、およそ450℃に昇温される。昇温された空気は、改質反応室1の供給部20に通流され、都市ガスの部分酸化に利用される。
【0033】
ここで、実施の形態に係る補助燃焼室2の特徴について説明する。補助燃焼室2は、起動時において、補助燃料を燃焼することによって高温となるから、原料の部分酸化で昇温される改質反応室1及び冷却用内部熱交換器5の外周からの熱放散を抑えることができる。この場合において、起動時の温度バランスによっては、補助燃焼室2から改質反応室1及び冷却用内部熱交換器4に熱が伝導され、さらに昇温される。また、改質反応室1に供給される都市ガス23と、空気24は、それぞれ補助燃焼室2内部に備えられた都市ガス加熱器17と空気加熱器18によって、補助燃焼室2の燃焼ガスで予熱され、改質反応室1に通流される。このため、多量の熱を連続的に必要とする改質反応室1での改質反応の反応速度を上げることができ、水素製造装置の起動時間を短縮することができる。従来の構造の場合には、水素製造装置の周囲に肉厚の断熱材があるため、断熱材を昇温するための時間が必要であり、改質反応室1の昇温に時間がかかり、水素が発生する時間も遅くなっていた。本実施形態を用いると、起動時間を大幅に短縮できる。このように起動時間を大幅に短縮できることは、家庭向けなどの小規模な固体高分子型燃料電池発電給湯システムを普及させるためには重要である。
【0034】
図3に、起動時における改質反応室1の内部にある燃焼触媒部15と改質触媒部16の温度変化について、従来構造を用いた場合と、本発明に係る構造を用いた場合との比較を示す。図において、縦軸は、燃焼触媒部15及び改質触媒部16の温度を示し、横軸は、時間の経過を示す。図から明らかなように、従来技術と比べて、本実施形態を用いると、燃焼触媒部15及び改質触媒部16の昇温時間が短くなり、装置の起動時間が大幅に向上することがわかる。
【0035】
図4に、起動時における水素製造装置の改質ガスの水素濃度を経時変化について、従来構造を用いた場合と、本発明に係る構造を用いた場合との比較を示す。図において、縦軸は、水素濃度を示し、横軸は時間の経過を示す。図から明らかなように、従来技術と比べて、本実施形態を用いると、短時間で一定の水素濃度に達し、装置の起動時間が大幅に向上することがわかる。
【0036】
ここで、本発明に係る補助燃焼室2の他の特徴について説明する。補助燃焼室2は、燃料電池39から排出される排出ガス28に含まれる水素成分を燃料とする。その水素成分を燃焼させることによって発生する熱は、改質反応室1及び冷却用内部熱交換器3からの熱放散を抑え、さらに、補助燃焼室2に備えられた都市ガス加熱器17と空気加熱器18により、都市ガスと空気を予熱する。燃焼によって発生した熱が、都市ガスと空気の加熱に必要な熱量より多い場合は、補助燃焼室に備えられた給湯加熱器19で水を加熱する。つまり、補助燃焼室2は、燃料電池39の排ガスを有効に利用している。また、従来構造の場合、水素製造装置の周囲に肉厚の断熱材を有し、さらに、燃料電池からの排ガスを燃焼させる加熱炉が設けられていた。本実施形態を用いると、補助燃焼室2が、従来構造における断熱材と加熱炉の役割を果たすことになり、水素製造装置を小型軽量化することができる。すなわち、本実施形態を用いると、エネルギーを有効に利用でき、装置を小型軽量化することができる。これは、家庭向けなどの小規模な固体高分子型燃料電池発電給湯システムを普及させるためには重要である。
【0037】
ここで、本発明に係る冷却用内部熱交換器5の特徴について説明する。冷却用内部熱交換器5は、改質反応室1の外周壁と一体化して設置されている。すなわち、冷却用内部熱交換器5は、図5に示すように、プレス加工により平板に半円状(あるいはU字状)の溝41を作り、改質反応室1の外周壁と組み合わせ、その間を溶接した形状で形成され、冷却用熱媒体である水蒸気が溝41内を流れる構成となっている。主燃焼室の周囲に熱交換器を備える従来の構造と比較すると、冷却用内部熱交換器5が改質反応室1の外周壁と一体化されていることで、水素製造装置を小型にできる。また、冷却用内部熱交換器5内部に120℃〜450℃の蒸気を流すことで、改質反応室1の外周壁の表面温度は、燃焼触媒15近傍部の最高温度部においても、およそ500℃以下に保つことが可能となる。これによって、改質反応室1の外周壁の材料として、800℃以上の高温雰囲気に耐える高価な高温材料を使用する必要がなく、量販品の安価なステンレス材を使用することが可能となり、装置の製造コストを大幅に低減することができる。さらに、改質反応室1の外周壁の温度を120℃〜500℃と比較的低温で運転できることから、熱ひずみ等の影響が小さくなり、隔壁部に薄板を使ったプレス加工による製造が可能となり、装置の製造コストを低減することが可能となる。これは、家庭向けなどの小規模な固体高分子型燃料電池発電給湯システムを普及させるためには重要である。
【0038】
また、この場合において、改質反応室1の外周壁の表面温度を冷却用内部熱交換器5で冷却しているために、改質反応室1内部の反応温度が低下することが懸念されるが、本実施形態では、燃焼触媒層15および改質触媒層16は、セラミック製ハニカム母材に、各種触媒をコーティングしたものを使用している。セラミック製ハニカムは伝熱性能が悪いために、側壁部への熱伝導は少なく、そのために燃焼触媒層15で発生した熱のほとんどは、改質触媒16における改質反応に使用され、外周壁部に熱が放散することはない。
以上、図1の実施の形態が最も好ましいとして本発明を説明したが、本発明に係る水素製造装置の形状及び構想はこれに限るものではない。例えば、図1に示した実施形態では、改質反応室1は円筒状に形成したが、本発明はこれに限られるものではなく、改質反応室1を角筒上の構成とすることもできる。
【0039】
また、図1に示した実施形態では、COシフト触媒層6及びCO選択酸化触媒層7は水素製造装置と一体化している構成としたが、改質反応室1と、上部のCOシフト触媒層6及びCO選択酸化触媒層7とを分離して、改質反応室1から排出された改質ガスを、ダクトを通じてCOシフト触媒層6及びCO選択酸化触媒層7に導くようにしてもよい。
【0040】
また、図1に示した実施形態では、冷却用外部熱交換器3と、内部熱交換器4と、冷却用内部熱交換器5と、COシフト部熱交換器26と、CO選択酸化部熱交換器27と、都市ガス加熱器17と、空気加熱器18と、給湯加熱器19の構成は管状の形状としたが、熱交換がなされる構成であれば、管状の形状に限られるものではない。
【0041】
例えば、図6に、冷却用内部熱交換器5を平板42と細管43で構成した構造を示す。このような構造においても、改質反応室1の外周壁の温度を500℃以下に保持でき、断熱材を使用する必要が無くなるという効果においては、本実施形態と同等の効果がある。
【0042】
同様に、図7に、冷却用内部熱交換器5を2枚の平板42で構成した構造を示す。このような構造においても、改質反応室の外周壁の温度を500℃以下に保持でき、断熱材を使用する必要が無くなるという効果においては、本実施形態と同等の効果がある。
【0043】
図8に、改質反応室1の燃焼触媒層53及び改質触媒層54に球状の触媒を使用した例について示す。球状の場合は、ハニカムと比較して横方向にガスの混合が進むから、熱伝導がよくなり、改質反応室1の外周壁に熱が伝わり易くなることが懸念される。そのために、図6では、球状触媒と側壁の冷却用内部熱交換器5との間に少量の断熱材55を設けている。本構造の場合、少量の断熱材を設置したため、水素製造装置が大きくなり、起動時間が遅くなるということはあるが、従来構造と比較すれば、必要な断熱材の量は少量であり、本実施形態と同等の効果があると考えられる。
【0044】
上述したように、本発明の実施形態によれば、従来構造に比べて、起動時間が短縮できる。また、改質反応室1の外周壁の表面温度を低温に保持できるため、外周壁に安価な材料を利用することができる。よって、装置の製造コストを低減でき、経済メリットが生じる。これらの効果は、家庭向けなどの小規模な固体高分子型燃料電池発電給湯システムを普及させるためには重要である。
【0045】
【発明の効果】
以上述べたとおり、本発明によれば、起動時の昇温時間を短縮して急速起動に対応でき、コンパクトな燃料電池用水素製造装置が得られる。
【図面の簡単な説明】
【図1】本発明を燃料電池用の水素製造装置に適応した一実施形態の全体構成の断面を示した図である。
【図2】図1の実施形態の系統図を示している。
【図3】本実施形態における起動時の温度変化を示す図である。
【図4】本実施形態における起動時の水素濃度変化を示す図である。
【図5】本発明の実施形態で使用した冷却用内部熱交換器の詳細構造を示す図である。
【図6】本発明の他の実施形態を示す図である。
【図7】本発明の他の実施形態を示す図である。
【図8】本発明の他の実施形態を示す図である。
【符号の説明】
1 改質反応室
2 補助燃焼室
3 冷却用外部熱交換器
4 内部熱交換器
5 冷却用内部熱交換器
6 COシフト触媒層
7 CO選択酸化触媒層
14 起動バーナ
15 燃焼触媒層
16 改質触媒層
23 都市ガス
24 空気
25 水蒸気

Claims (22)

  1. 炭化水素系燃料を原料とし、該原料の部分酸化と水蒸気改質反応とによって水素を得る燃料電池用水素製造装置において、前記水蒸気改質反応を行う改質反応器と、該改質反応器の外周面を内包する補助燃焼室とを備え、
    前記改質反応器は、120℃〜450℃の蒸気を流す冷却用内部熱交換器が該改質反応器の外周面に接して配設されてなることを特徴とする燃料電池用水素製造装置。
  2. 炭化水素系燃料を原料とし、該原料の部分酸化と水蒸気改質反応とによって水素を得る燃料電池用水素製造装置において、前記水蒸気改質反応を行う改質反応器と、該改質反応器の外周面を内包する補助燃焼室とを備え、
    前記改質反応器は、120℃〜450℃の蒸気を流す冷却用内部熱交換器が該改質反応器の外周面に接して配設され、
    前記補助燃焼室は、燃料電池から排出される水素を含んだ燃料を燃焼させることを特徴とする請求項1に記載の燃料電池用水素製造装置。
  3. 前記冷却用内部熱交換器は、その内部流体流路の出口が前記改質反応器の入口に接続されてなることを特徴とする請求項1または2に記載の燃料電池用水素製造装置。
  4. 前記補助燃焼室は、その外表面に接する外部熱交換器が配設されてなることを特徴とする請求項1ないし3のいずれかに記載の燃料電池用水素製造装置。
  5. 前記補助燃焼室は、その外周面に接する外部熱交換器が配設され、前記外部熱交換器は、その内部流体流路の出口が前記冷却用内部熱交換器の内部流体流路の入口に接続されてなることを特徴とする請求項1または2に記載の燃料電池用水素製造装置。
  6. 前記改質反応器の外表面に配設された冷却用内部熱交換器は、その内部流体流路の出口が前記改質反応器の入口に接続されてなることを特徴とする請求項5に記載の燃料電池用水素製造装置。
  7. 前記改質反応器は、その内部に改質ガス熱回収用の内部熱交換器が配設されてなることを特徴とする請求項1ないし6のいずれかに記載の燃料電池用水素製造装置。
  8. 前記改質反応器は、その内部に改質ガス熱回収用の内部熱交換器を備え、前記改質ガス熱回収用の内部熱交換器は、その内部流体流路の出口が前記冷却用内部熱交換器の内部流体流路の入口に接続されてなることを特徴とする請求項1または2に記載の燃料電池用水素製造装置。
  9. 前記改質反応器の外表面に配設された冷却用内部熱交換器は、その内部流体流路の出口が前記改質反応器の入口に接続されてなることを特徴とする請求項8に記載の燃料電池用水素製造装置。
  10. 前記補助燃焼室は、その外周面に接して外部熱交換器が配設され、前記改質反応器は、その内部に改質ガス熱回収用の内部熱交換器が配設されたものとし、前記外熱交換器の出口が前記改質ガス熱回収用の内部熱交換器の入口に接続され、前記改質ガス熱回収用の内部熱交換器の出口が前記冷却用内部熱交換器の入口に接続されてなることを特徴とする請求項1または2に記載の燃料電池用水素製造装置。
  11. 前記改質反応器の外表面に配設された冷却用内部熱交換器は、その内部流体流路の出口が前記改質反応器の入口に接続されてなることを特徴とする請求項10に記載の燃料電池用水素製造装置。
  12. 前記外部熱交換器の内部流体として水を供給することを特徴とする請求項4ないし6、10または11に記載のいずれかに記載の燃料電池用水素製造装置。
  13. 前記改質反応器は、前記炭化水素系燃料と、空気または酸化剤と、水または水蒸気とを供給する供給部の上方に燃焼触媒を備え、該燃焼触媒の上方に改質触媒を備え、該改質反応器の上方に前記水蒸気改質反応により生成した改質ガス中の一酸化炭素濃度を低減するCOシフト触媒及びCO選択酸化触媒を設けたことを特徴とする請求項1ないし12のいずれかに記載の燃料電池用水素製造装置。
  14. 前記補助燃焼室は、その内部に前記炭化水素系燃料の加熱器を備えたことを特徴とする請求項1ないし13のいずれかに記載の燃料電池用水素製造装置。
  15. 前記補助燃焼室は、その内部に前記改質反応器に導入する空気の加熱器を備えたことを特徴とする請求項1ないし14のいずれかに記載の燃料電池用水素製造装置。
  16. 前記補助燃焼室は、その内部に給湯加熱器を備えたことを特徴とする請求項1ないし15のいずれかに記載の燃料電池用水素製造装置。
  17. 炭化水素系燃料を原料とし、該原料の部分酸化と水蒸気改質反応とによって水素を得る燃料電池用水素製造装置において、前記水蒸気改質反応を行う改質反応器と、該改質反応器の外周面を内包する補助燃焼室とを備え、
    前記改質反応器と前記補助燃焼室を区画する隔壁は、120℃〜450℃の蒸気を流す冷却用内部熱交換器で構成されたことを特徴とする燃料電池用水素製造装置。
  18. 前記隔壁として配設された冷却用内部熱交換器は、その内部流体流路の出口が前記改質反応器の入口に接続されてなることを特徴とする請求項17に記載の燃料電池用水素製造装置。
  19. 前記隔壁として配設された冷却用内部熱交換器は、その内部流体流路に通気する流体が水又は水蒸気であることを特徴とする請求項17または18に記載の燃料電池用水素製造装置。
  20. 前記改質反応器は、前記炭化水素系燃料と、空気または酸化剤と、前記冷却用内部熱交換器の内部流体とを供給する供給部の上方に燃焼触媒を備え、該燃焼触媒の上方に改質触媒を備え、該改質反応器の上方に前記水蒸気改質反応により生成した改質ガス中の一酸化炭素濃度を低減するCOシフト触媒及びCO選択酸化触媒を設けたことを特徴とする請求項17ないし19のいずれかに記載の燃料電池用水素製造装置。
  21. 炭化水素系燃料と、空気または酸化剤と、水または水蒸気とを供給する供給部の上方に燃焼触媒、該燃焼触媒の上方に改質触媒、該改質触媒上方の空間に改質ガス熱回収用の内部熱交換器を有する改質反応器と、前記改質反応器の外周を内包して配設され燃料電池から排出される水素を含んだ燃料を燃焼させる補助燃焼室と、前記改質反応器と前記補助燃焼室とを区画する隔壁として配設され120℃〜450℃の蒸気を流す冷却用内部熱交換器を備え、前記供給部に供給される水または水蒸気は、前記改質ガス熱回収用の内部熱交換器前記冷却用内部熱交換器とを順次流通した内部流体を含むことを特徴とする燃料電池用水素製造装置。
  22. 前記改質反応器の上方に前記改質触媒における水蒸気改質反応により生成した改質ガス中の一酸化炭素濃度を低減するCOシフト触媒及びCO選択酸化触媒を設けたことを特徴とする請求項21に記載の燃料電池用水素製造装置。
JP2001313095A 2001-10-10 2001-10-10 燃料電池用水素製造装置 Expired - Fee Related JP3763092B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001313095A JP3763092B2 (ja) 2001-10-10 2001-10-10 燃料電池用水素製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001313095A JP3763092B2 (ja) 2001-10-10 2001-10-10 燃料電池用水素製造装置

Publications (2)

Publication Number Publication Date
JP2003123819A JP2003123819A (ja) 2003-04-25
JP3763092B2 true JP3763092B2 (ja) 2006-04-05

Family

ID=19131643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001313095A Expired - Fee Related JP3763092B2 (ja) 2001-10-10 2001-10-10 燃料電池用水素製造装置

Country Status (1)

Country Link
JP (1) JP3763092B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013253003A (ja) * 2012-06-08 2013-12-19 Sumitomo Seika Chem Co Ltd 水素の生成方法および生成装置

Also Published As

Publication number Publication date
JP2003123819A (ja) 2003-04-25

Similar Documents

Publication Publication Date Title
AU2001272281B2 (en) Integrated module for solid oxide fuel cell systems
JP4736299B2 (ja) 変成装置
JP5000836B2 (ja) セラミック技術を利用する水素発生装置
US5458857A (en) Combined reformer and shift reactor
JP3842167B2 (ja) プレート形水蒸気改質装置
JP4461439B2 (ja) 燃料電池システムの改質装置
AU2001272281A1 (en) Integrated module for solid oxide fuel cell systems
JPH1167256A (ja) 燃料電池システム
KR20040058180A (ko) 낮은 전원 범위에서 기상 탄화수소로부터 수소를 생성하기위한 고효율, 소형 개질 장치
CN113474283A (zh) 具有重整段的化工设备和生产化学产品的方法
JP3903710B2 (ja) 燃料改質器およびそれを用いた固体高分子型燃料電池発電装置
US20090220394A1 (en) Steam reforming unit
WO2005077820A1 (ja) 燃料改質装置
JP2002053306A (ja) 水素製造装置と該水素製造装置を用いる燃料電池システム
JP3763092B2 (ja) 燃料電池用水素製造装置
KR101089932B1 (ko) 연료전지시스템의 연료변환장치
JP5244488B2 (ja) 燃料電池用改質器
JP2004075435A (ja) 燃料改質装置
KR20220097556A (ko) 고효율 연료처리장치
KR101250418B1 (ko) 연료 전지용 연료 변환 장치
JP4641115B2 (ja) Co除去器
JP2002356309A (ja) 水素含有ガス生成装置の運転制御方法
JP2007314419A (ja) 水素含有ガス生成装置の運転制御方法
JPH04322739A (ja) 燃料電池用燃料改質器
KR100632967B1 (ko) 연료전지시스템의 선택적 산화반응부 열교환장치

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees