JP3762951B2 - Underfloor heat storage layer - Google Patents

Underfloor heat storage layer Download PDF

Info

Publication number
JP3762951B2
JP3762951B2 JP2002195710A JP2002195710A JP3762951B2 JP 3762951 B2 JP3762951 B2 JP 3762951B2 JP 2002195710 A JP2002195710 A JP 2002195710A JP 2002195710 A JP2002195710 A JP 2002195710A JP 3762951 B2 JP3762951 B2 JP 3762951B2
Authority
JP
Japan
Prior art keywords
heat storage
storage layer
effect
building material
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002195710A
Other languages
Japanese (ja)
Other versions
JP2004035339A (en
Inventor
不二雄 藤田
Original Assignee
不二雄 藤田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二雄 藤田 filed Critical 不二雄 藤田
Priority to JP2002195710A priority Critical patent/JP3762951B2/en
Publication of JP2004035339A publication Critical patent/JP2004035339A/en
Application granted granted Critical
Publication of JP3762951B2 publication Critical patent/JP3762951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Building Environments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、床下蓄熱層に関するものである。
【0002】
【従来の技術】
近年の住宅等の建築物では、防音、防火、耐久性等の観点からコンクリートが用いられる場合が多い。
【0003】
【発明が解決しようとする課題】
しかしながら、コンクリートを用いた建築物は、その密閉性の高さから室内及び床下の湿気が外部に排出されにくいという問題がある。また、コンクリート自体から放出される化学物質や、壁面のクロスや床材等に用いられている接着剤に含まれる化学物質も外部に排出されにくく、人体に悪影響を与えるおそれがあった。
また、コンクリートは蓄熱性が低いため、密閉性が高い割りには暖房効率が悪いという問題もあった。
【0004】
そこで、コンクリート中に所定量の炭素材料(活性炭、木炭、竹炭等)を混入することで、炭素材料が有する種々の特性(空気の浄化及び脱臭作用、湿気及び化学物質の吸着作用、防虫・防カビ作用、遠赤外線放出作用等)を利用して、上述の問題の解消を図ったコンクリートが提案されている。
しかし、コンクリート中に多量の炭素材料を混入させると強度が低下し、一方、混入する炭素材料の量が少ないと、上述したような炭素材料の特性を十分に得られないという問題があった。
【0005】
本発明の課題は、上述の問題を考慮したものであり、除湿効果、化学物質の吸着効果、蓄熱効果等を有する床下蓄熱層を提供することである。
【0006】
【課題を解決するための手段】
以上の課題を解決するため、請求項1に記載の発明は、石膏と炭素材料とを含有するとともに、少なくとも珪素、マグネシウム、アルミニウムを成分とし、かつ、焼結工程を経て得られるセラミックス材料を含有する建築材料、及び、コンクリートを用い、内部にヒーターを備えることを特徴とする床下蓄熱層である
【0007】
請求項1に記載の発明によれば、建築材料が石膏と炭素材料とを含有するので、炭素材料が有する消臭効果、除湿効果、化学物質の吸着効果、遠赤外線放出効果、マイナスイオン放出効果、電磁波遮断効果等を得ることができる。また、床下蓄熱層の内部にヒーターを備えるので、ヒーターにより暖められた建築材料により、蓄熱効果をより高めることができる。また、床下蓄熱層の一部に用いられるコンクリート中の塩分をセラミックス材料や炭素材料で吸収でき、コンクリートの劣化を防ぐことができる。
【0016】
【発明の実施の形態】
以下、本発明の建築材料及びコンクリートを用いた床下蓄熱層の実施の形態について説明する。
建築材料は主に石膏と炭素材料とからなり、さらに、微量のセラミックス材料を含むものである。
石膏としては、例えば、硫酸カルシウム2水塩を主成分とする天然石膏や、化学石膏などの一般的な石膏を用いるものとする。
【0017】
炭素材料としては、例えば、木炭や竹炭等の周知の炭を用いるものとする。木炭としては備長炭が好ましい。特に備長炭は、木炭の中でも孔が小さいため、消臭効果、除湿効果及び遠赤外線効果に優れる。
竹炭は木炭よりも孔が多くまたミネラルを多く含んでいるため、炭素材料として竹炭を用いることで、木炭よりもさらに優れた消臭効果、除湿効果、化学物質の吸着効果、遠赤外線放出効果、マイナスイオン放出効果、電磁波遮断効果などを得ることができる。
なお、炭素材料として、竹炭と木炭とを混在させても良く、この場合の竹炭と木炭の混合比率は、特に限定されるものではないが、例えば、2:3〜3:2程度でよい。
【0018】
セラミックスは、少なくとも珪素、マグネシウム、アルミニウムを成分とし、かつ、焼結工程を経て得られるものであり、以下のようにして製造する。
まず、シリカ、酸化マグネシウム、アルミナ、ジルコニア等からなる原料無機物を粉砕して、10ミクロンあるいはそれ以下の径を有する粉末にする。原料無機物としては、たとえばシリカ50%、酸化マグネシウム20%、アルミナ20%、ジルコニア10%の割合で各酸化物を混合したものを好適に用いることができる。次いで、得られた粉末状の無機物を400〜800度で4〜8時間焼結する。
【0019】
焼結後の無機粉末に対して、粉末の3倍の重量の硫酸水溶液(30%濃度)を加え、攪拌する。その後、液体部分を取り出し、その液体に対し、前記硫酸水溶液と同じ重量の苛性ソーダ(水酸化ナトリウム水溶液、濃度30%)を加え、中和させる。得られた中和液の水分を取り除き、スプレードライ法により乾燥させ、中間粉末物を得る。
次に、この中間粉末物に対して水を加えて泥状物を得る。この泥状物を一定範囲内の圧力、たとえば100〜500パスカルの圧力を加えながら、数時間〜数十時間循環処理する。そして、循環処理後乾燥させると本発明で用いるセラミックスが得られる。
【0020】
上記のように製造したセラミックスを、加熱した合成樹脂に混練し、その後粒状に成形することでセラミックス材料が得られる。合成樹脂としては、多くの汎用の合成樹脂を用いることができるが、たとえばポリエチレンあるいはポリプロピレンを用いることができる。ここでセラミックス材料の粒は、たとえば直径1.3mm、高さ2mm程度の長細い形状に成形される。また、樹脂とセラミックスの重量比は、70:30〜95:5程度が好ましい。
【0021】
本発明の建築材料は、所定量の水を入れた容器に、上記石膏、炭素材料及びセラミックス材料を投入し、攪拌することで得られる。
建築材料を構成する石膏と炭素材料の混合比率は、重量比で約5:2とすることが好ましい。この場合のセラミックス材料の量は、石膏及び炭素材料の量と比較して極微量でよく、例えば、石膏と炭素材料とセラミックス材料の混合比率を、重量比で約5:2:0.1程度としても、セラミックス材料が有する上記効果を十分に得ることができる。
【0022】
炭素材料の混合比率をより大きくすると建築材料の強度が低下してしまい、より炭素材料の混合比率をより小さくすると炭素材料が有する上記効果を十分に得ることができなくなる。
また、石膏と炭素材料の混合比率を重量比で約5:2とした場合の水の混合比率は、建築材料の用途に応じて適宜調節可能である。例えば、建築材料を建築物の基礎上に配設する際には、建築材料の粘度や建築材料の表面が固化し始めるまでの時間(石膏、炭素材料及び水の混合時点から、約10分〜20分程度が好ましい)を考慮して、石膏と炭素材料と水の混合比率を重量比で約5:2:4とすることが好ましい。
水の混合比率をより多くすると、建築材料の表面が固化するまでの時間が長くなり、建築材料中に含まれる炭素材料が建築材料の表面に浮き上がってしまうため好ましくない。また、水の混合比率をより少なくすると、建築材料の表面が固化するまでの時間が短くなり、作業性が低下してしまう。
【0023】
本発明の床下蓄熱層は、上記建築材料を住宅などの建築物の床下にヒーターとともに敷設し、この上面に、薄板状のモルタルやコンクリートを配設して得ることができる。
図1を用いて、床下蓄熱層10を一般住宅に敷設する方法について説明すると、まず、住宅の床基礎30の上面に補強用の合板11(コンクリートでも良い)を敷設し、その上に所定の間隔で根太12を配設していく。
次に、合板11上であって、二つの根太12に挟まれる位置に断熱材13を敷き詰め、この断熱材13の表面に合板14を配設し、さらに、この合板14の表面に防湿シート15を敷設する。
【0024】
一方、上記所定量の石膏、炭素材料、水、セラミックス材料を容器内で約10分程度攪拌して、粘性を有する泥状の建築材料16を予め生成しておく。
そして、この泥状の建築材料16を防湿シート15と根太12で形成された空間内に流し込んでいき、流し込まれる建築材料16が断熱材13の表面から根太12の上面までの高さの略半分の位置にまで達した時点で、住宅の床暖房用として一般的に知られている面状ヒーター20(図1を参照)や線状ヒーター21(図2を参照)を配設し、固定する。
【0025】
その後、建築材料16を根太12の上面と略同じ高さになるまで流し込み、表面を平坦にならした状態で固化させ、この上面に、薄板状のモルタルやコンクリートを配設することで、ヒーター20又はヒーター21を備えた床下蓄熱層10の敷設作業が終了する。
さらにフローリング等の床仕上げ材を敷き詰めることで住宅の床面が形成される。
【0026】
以上のように本実施の形態における建築材料は、石膏と炭素材料とを含有するので、炭素材料が有する消臭効果、除湿効果、化学物質の吸着効果、遠赤外線放出効果、マイナスイオン放出効果、電磁波遮断効果等を得ることができる。
また、建築材料がセラミックス材料を含有することにより、セラミックスから放射される遠赤外線によって蓄熱効果を高めることができる。また、水分や化学物質の吸着効果や抗菌効果を得ることができ、さらにマイナスイオン放出効果により人体へ好ましい影響を与えることができる。
【0027】
また、建築材料の表面が固化するまでの時間を約10分〜20分程度とすることができるので、建築材料の品質の低下を防止できると共に、この建築材料を用いた各種作業の作業性を向上できる。
また、建築材料を床下蓄熱層の一部として用いるので、床下蓄熱層の蓄熱効果を高めることができる。また、床下蓄熱層の内部にヒーターを備えるので、ヒーターにより暖められた建築材料により、蓄熱効果をより高めることができる。また、床下蓄熱層の一部に用いられるコンクリート中の塩分をセラミックス材料や炭素材料で吸収でき、コンクリートの劣化を防ぐことができる。
【0028】
また、建築材料を木造住宅に用いることで、建築材料の高い除湿効果によりシロアリの発生を抑制できる。
また、セラミックス材料は、セラミックス単独ではなくセラミックスを樹脂に混合したものであるので、所望の形状に加工することができる上に、セラミックスの使用量を抑えることができ、コストを下げることができる。
【0029】
なお、本発明に係る建築材料及び床下蓄熱装置は上記実施の形態に限定されず適宜変更可能である。
【0030】
また、床下蓄熱層10の敷設方法として、例えば、建築材料16の側面を支持するための根太12を用いずに、水の配合量を減らすなどして生成した粘度の高い泥状の建築材料16を用いて床下蓄熱層10を形成しても良い。
また、床下蓄熱層10の構造についても特に限定されるものではなく、オフィスや住宅などの建築物の床基礎30の上部に建築材料16とコンクリートとを配設するものであればよい。
【0031】
【発明の効果】
請求項1に記載の発明によれば、建築材料が石膏と炭素材料とを含有するので、炭素材料が有する消臭効果、除湿効果、化学物質の吸着効果、遠赤外線放出効果、マイナスイオン放出効果、電磁波遮断効果等を得ることができる。また、床下蓄熱層の内部にヒーターを備えるので、ヒーターにより暖められた建築材料により、蓄熱効果をより高めることができる。また、床下蓄熱層の一部に用いられるコンクリート中の塩分をセラミックス材料や炭素材料で吸収でき、コンクリートの劣化を防ぐことができる。
【図面の簡単な説明】
【図1】 本実施の形態の床下蓄熱層を示す斜視図である。
【図2】 本実施の形態の床下蓄熱層を示す斜視図である。
【符号の説明】
10 床下蓄熱層
11 合板
12 根太
13 断熱材
14 合板
15 防湿シート
16 建築材料
20 面状ヒーター
21 線状ヒーター
30 床基礎
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an underfloor heat storage layer .
[0002]
[Prior art]
In recent years, in buildings such as houses, concrete is often used from the viewpoint of soundproofing, fireproofing, durability and the like.
[0003]
[Problems to be solved by the invention]
However, a building using concrete has a problem that moisture in the room and under the floor is difficult to be discharged to the outside due to its high hermeticity. In addition, chemical substances released from concrete itself and chemical substances contained in adhesives used for wall cloths and flooring materials are difficult to be discharged to the outside, which may adversely affect the human body.
In addition, since concrete has a low heat storage property, there is also a problem that heating efficiency is poor for high sealing performance.
[0004]
Therefore, by mixing a certain amount of carbon material (activated carbon, charcoal, bamboo charcoal, etc.) into the concrete, various characteristics of the carbon material (air purification and deodorizing action, moisture and chemical substance adsorption action, insect control and prevention) Concrete has been proposed in which the above-mentioned problems are solved by utilizing a mold action, a far-infrared emission action, and the like.
However, when a large amount of carbon material is mixed in the concrete, the strength is lowered. On the other hand, if the amount of mixed carbon material is small, there is a problem that the characteristics of the carbon material as described above cannot be obtained sufficiently.
[0005]
The subject of this invention is considering the above-mentioned problem and is providing the underfloor thermal storage layer which has a dehumidification effect, the adsorption effect of a chemical substance, a thermal storage effect, etc.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the invention described in claim 1 contains gypsum and a carbon material, and at least contains silicon, magnesium, and aluminum as components, and a ceramic material obtained through a sintering process. The underfloor heat storage layer is characterized by using a building material and concrete, and having a heater inside .
[0007]
According to the invention of claim 1, since the building material contains gypsum and carbon material, the deodorizing effect, dehumidifying effect, chemical substance adsorption effect, far-infrared emission effect, negative ion emission effect of the carbon material. In addition, an electromagnetic wave shielding effect and the like can be obtained. Moreover, since the heater is provided inside the underfloor heat storage layer, the heat storage effect can be further enhanced by the building material heated by the heater. Moreover, the salt content in the concrete used for a part of the underfloor heat storage layer can be absorbed by the ceramic material or the carbon material, and the deterioration of the concrete can be prevented.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the underfloor heat storage layer using the building material and concrete of the present invention will be described.
Building materials mainly consist of gypsum and carbon materials, and further contain a small amount of ceramic materials.
As the gypsum, for example, natural gypsum mainly composed of calcium sulfate dihydrate and general gypsum such as chemical gypsum are used.
[0017]
As the carbon material, for example, a well-known charcoal such as charcoal or bamboo charcoal is used. Bincho charcoal is preferred as the charcoal. Bincho charcoal is particularly excellent in deodorizing effect, dehumidifying effect and far-infrared effect because of its small pores among charcoal.
Bamboo charcoal has more pores and more minerals than charcoal, so by using bamboo charcoal as a carbon material, deodorizing effect, dehumidifying effect, chemical adsorption effect, far-infrared emission effect, even better than charcoal, A negative ion emission effect, an electromagnetic wave blocking effect, and the like can be obtained.
Bamboo charcoal and charcoal may be mixed as a carbon material, and the mixing ratio of bamboo charcoal and charcoal in this case is not particularly limited, but may be about 2: 3 to 3: 2, for example.
[0018]
Ceramics, which contain at least silicon, magnesium and aluminum as components and are obtained through a sintering process, are manufactured as follows.
First, a raw material inorganic material made of silica, magnesium oxide, alumina, zirconia, or the like is pulverized into a powder having a diameter of 10 microns or less. As the raw material inorganic material, for example, a mixture of each oxide at a ratio of 50% silica, 20% magnesium oxide, 20% alumina, and 10% zirconia can be suitably used. Next, the obtained powdery inorganic substance is sintered at 400 to 800 degrees for 4 to 8 hours.
[0019]
A sulfuric acid aqueous solution (30% concentration) having a weight three times that of the powder is added to the sintered inorganic powder and stirred. Thereafter, the liquid part is taken out, and caustic soda (sodium hydroxide aqueous solution, concentration 30%) having the same weight as the aqueous sulfuric acid solution is added to the liquid to neutralize it. The neutralized liquid thus obtained is removed and dried by spray drying to obtain an intermediate powder.
Next, water is added to the intermediate powder to obtain a mud. The mud is circulated for several hours to several tens of hours while applying a pressure within a certain range, for example, a pressure of 100 to 500 Pascals. And if it is made to dry after a circulation process, the ceramic used by this invention will be obtained.
[0020]
A ceramic material can be obtained by kneading the ceramic produced as described above into a heated synthetic resin and then forming it into granules. As the synthetic resin, many general-purpose synthetic resins can be used. For example, polyethylene or polypropylene can be used. Here, the grains of the ceramic material are formed into a long and thin shape having a diameter of about 1.3 mm and a height of about 2 mm, for example. Further, the weight ratio of the resin to the ceramic is preferably about 70:30 to 95: 5.
[0021]
The building material of the present invention can be obtained by charging the gypsum, carbon material and ceramic material into a container containing a predetermined amount of water and stirring.
The mixing ratio of gypsum and carbon material constituting the building material is preferably about 5: 2 by weight. The amount of the ceramic material in this case may be extremely small compared to the amount of gypsum and carbon material. For example, the mixing ratio of gypsum, carbon material, and ceramic material is about 5: 2: 0.1 by weight ratio. However, the above-described effects of the ceramic material can be sufficiently obtained.
[0022]
If the mixing ratio of the carbon material is increased, the strength of the building material is lowered, and if the mixing ratio of the carbon material is further decreased, the above-described effect of the carbon material cannot be sufficiently obtained.
Moreover, the mixing ratio of water when the mixing ratio of the gypsum and the carbon material is about 5: 2 can be appropriately adjusted according to the use of the building material. For example, when the building material is disposed on the foundation of the building, the viscosity of the building material and the time until the surface of the building material starts to solidify (about 10 minutes to the time when the gypsum, carbon material and water are mixed) In view of the above, the mixing ratio of gypsum, carbon material and water is preferably about 5: 2: 4.
When the mixing ratio of water is increased, it takes a long time until the surface of the building material is solidified, and the carbon material contained in the building material floats on the surface of the building material, which is not preferable. Moreover, when the mixing ratio of water is reduced, the time until the surface of the building material is solidified is shortened, and workability is deteriorated.
[0023]
The underfloor heat storage layer of the present invention can be obtained by laying the building material together with a heater under the floor of a building such as a house , and disposing a thin plate-like mortar or concrete on the upper surface .
The method of laying the underfloor heat storage layer 10 in a general house will be described with reference to FIG. The joists 12 are arranged at intervals.
Next, a heat insulating material 13 is spread over the plywood 11 at a position between the two joists 12, a plywood 14 is disposed on the surface of the heat insulating material 13, and a moisture-proof sheet 15 is provided on the surface of the plywood 14. Laying.
[0024]
On the other hand, the predetermined amount of gypsum, carbon material, water, and ceramic material is stirred in the container for about 10 minutes, and the viscous mud-like building material 16 is produced in advance.
Then, the mud-like building material 16 is poured into the space formed by the moisture-proof sheet 15 and the joists 12, and the building material 16 to be poured is approximately half the height from the surface of the heat insulating material 13 to the upper surface of the joists 12. When the position is reached, a sheet heater 20 (see FIG. 1) and a linear heater 21 (see FIG. 2), which are generally known for floor heating of a house, are disposed and fixed. .
[0025]
Then, pouring building material 16 to be substantially flush with the upper surface of the joists 12, the surface is solidified in a state in which leveled and this upper face, in Rukoto to dispose the thin plate-like mortar or concrete, a heater The laying operation of the underfloor heat storage layer 10 including the heater 20 or the heater 21 is completed.
Furthermore, the floor of the house is formed by spreading floor finishing materials such as flooring.
[0026]
As described above, since the building material in the present embodiment contains gypsum and carbon material, the deodorizing effect, dehumidifying effect, chemical substance adsorption effect, far-infrared emission effect, negative ion emission effect, An electromagnetic wave shielding effect and the like can be obtained.
Moreover, when a building material contains a ceramic material, the heat storage effect can be enhanced by far infrared rays radiated from the ceramic. In addition, it is possible to obtain moisture and chemical substance adsorption effects and antibacterial effects, and to have a positive influence on the human body due to the negative ion release effect.
[0027]
In addition, since the time until the surface of the building material is solidified can be about 10 to 20 minutes, it is possible to prevent deterioration of the quality of the building material and to improve the workability of various operations using this building material. It can be improved.
Moreover, since a building material is used as a part of underfloor heat storage layer, the heat storage effect of the underfloor heat storage layer can be enhanced. Moreover, since the heater is provided inside the underfloor heat storage layer, the heat storage effect can be further enhanced by the building material heated by the heater. Moreover, the salt content in the concrete used for a part of the underfloor heat storage layer can be absorbed by the ceramic material or the carbon material, and the deterioration of the concrete can be prevented.
[0028]
Moreover, generation | occurrence | production of a termite can be suppressed by using the building material for a wooden house by the high dehumidification effect of a building material.
Further, since the ceramic material is not ceramics alone but ceramics mixed with a resin, it can be processed into a desired shape, and the amount of ceramics used can be suppressed and the cost can be reduced.
[0029]
The building material and the underfloor heat storage device according to the present invention are not limited to the above embodiment, and can be changed as appropriate.
[0030]
Further, as a method of laying the underfloor heat storage layer 10, for example, a mud-like building material 16 having a high viscosity generated by reducing the amount of water added without using the joist 12 for supporting the side surface of the building material 16 is used. You may form the underfloor thermal storage layer 10 using.
The structure of the underfloor heat storage layer 10 is not particularly limited as long as the building material 16 and the concrete are disposed on the upper part of the floor foundation 30 of a building such as an office or a house.
[0031]
【The invention's effect】
According to the invention described in claim 1, since the building material contains gypsum and carbon material, the deodorizing effect, dehumidifying effect, chemical substance adsorption effect, far-infrared emission effect, negative ion emission effect of the carbon material. In addition, an electromagnetic wave shielding effect and the like can be obtained. Moreover, since the heater is provided inside the underfloor heat storage layer, the heat storage effect can be further enhanced by the building material heated by the heater. Moreover, the salt content in the concrete used for a part of the underfloor heat storage layer can be absorbed by the ceramic material or the carbon material, and the deterioration of the concrete can be prevented.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an underfloor heat storage layer of the present embodiment.
FIG. 2 is a perspective view showing an underfloor heat storage layer of the present embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Underfloor thermal storage layer 11 Plywood 12 joist 13 Heat insulating material 14 Plywood 15 Moisture-proof sheet 16 Building material 20 Planar heater 21 Linear heater 30 Floor foundation

Claims (1)

石膏と炭素材料とを含有するとともに、少なくとも珪素、マグネシウム、アルミニウムを成分とし、かつ、焼結工程を経て得られるセラミックス材料を含有する建築材料、及び、コンクリートを用い、内部にヒーターを備えることを特徴とする床下蓄熱層It contains gypsum and a carbon material , at least silicon, magnesium, aluminum as a component, and a ceramic material obtained through a sintering process. Under-floor heat storage layer .
JP2002195710A 2002-07-04 2002-07-04 Underfloor heat storage layer Expired - Fee Related JP3762951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002195710A JP3762951B2 (en) 2002-07-04 2002-07-04 Underfloor heat storage layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002195710A JP3762951B2 (en) 2002-07-04 2002-07-04 Underfloor heat storage layer

Publications (2)

Publication Number Publication Date
JP2004035339A JP2004035339A (en) 2004-02-05
JP3762951B2 true JP3762951B2 (en) 2006-04-05

Family

ID=31704007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002195710A Expired - Fee Related JP3762951B2 (en) 2002-07-04 2002-07-04 Underfloor heat storage layer

Country Status (1)

Country Link
JP (1) JP3762951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229489A (en) * 2011-04-26 2011-11-02 北京工业大学 Graphite-gypsum-based wave-absorbing composite material and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102923999B (en) * 2012-11-06 2014-04-09 沈阳建筑大学 Straw heat-insulating raw sol brick and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0796279B2 (en) * 1986-08-20 1995-10-18 株式会社ウロコ製作所 Special gypsum board
JPS63176941A (en) * 1987-01-14 1988-07-21 Ig Tech Res Inc Structure for space heating and cooling
JP2684122B2 (en) * 1991-01-18 1997-12-03 奈良炭化工業株式会社 Building materials and building material improvement materials
JPH11293841A (en) * 1998-04-06 1999-10-26 Dantani Plywood Co Ltd Charcoal/gypsum board and its manufacture
JP3066297U (en) * 1999-08-02 2000-02-18 智就 藤堂 Interior materials that emit negative ions and far infrared rays
JP2001278655A (en) * 2000-03-29 2001-10-10 Kokubun Kensetsu:Kk Charcoal composite
JP2002180558A (en) * 2000-04-28 2002-06-26 Sekisui Chem Co Ltd Building

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102229489A (en) * 2011-04-26 2011-11-02 北京工业大学 Graphite-gypsum-based wave-absorbing composite material and preparation method thereof

Also Published As

Publication number Publication date
JP2004035339A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
US3451842A (en) Method of impregnating a foamed plastic and the impregnated foamed plastic
DK3083522T3 (en) Thermal insulation Plaster
JP2017501322A (en) Thermal insulation panel
JP3762951B2 (en) Underfloor heat storage layer
JP4009619B2 (en) Building material and method of manufacturing building material
KR100307848B1 (en) Loess brick with charcoal and straw
JP3337674B2 (en) Concrete composition and heating equipment
KR100814899B1 (en) Construction boards
KR100736277B1 (en) Manufacturing method and inside finishing material of house
KR19990080602A (en) Construction materials and manufacturing method
KR101516518B1 (en) Eco-Friendly Interior Finishing material for medical
JPS63218234A (en) Permeable structure having hygroscopic property
JP3028502B2 (en) Manufacturing method of large panel materials for environmental control
JP2005289712A (en) Brick and mist sauna room utilizing it
JP2003096335A (en) Inorganic coating material composition, inorganic coating material using the same, and application method therefor
KR100750346B1 (en) The structure of floor materials
KR100781368B1 (en) Yellow soil floor and constructing method thereof
JP2684122B2 (en) Building materials and building material improvement materials
KR20180029508A (en) Finishing structure for construction using loess
KR100625688B1 (en) Paint additives composition comprising charcoal powder as a main ingredient
JP2003205216A (en) Humidity-controlling agent for building and humidity- controlling board for building
KR20010060583A (en) Method for manufacturing loess bricks
JP2001140437A (en) Interior finishing sheet, interior finishing plate material, paint, interior finishing material and building using these
KR100514823B1 (en) A Manufacturing Method Of Naturnal Material Compound For Construction
KR100383508B1 (en) Remittals containing ceramics for construction and finishing materials

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees