JP3762527B2 - Injection compression molding method - Google Patents

Injection compression molding method Download PDF

Info

Publication number
JP3762527B2
JP3762527B2 JP24490797A JP24490797A JP3762527B2 JP 3762527 B2 JP3762527 B2 JP 3762527B2 JP 24490797 A JP24490797 A JP 24490797A JP 24490797 A JP24490797 A JP 24490797A JP 3762527 B2 JP3762527 B2 JP 3762527B2
Authority
JP
Japan
Prior art keywords
mold
resin
gas
injection
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24490797A
Other languages
Japanese (ja)
Other versions
JPH10138304A (en
Inventor
裕二 田中
匡人 倉光
信義 梅庭
良暢 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP24490797A priority Critical patent/JP3762527B2/en
Publication of JPH10138304A publication Critical patent/JPH10138304A/en
Application granted granted Critical
Publication of JP3762527B2 publication Critical patent/JP3762527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • B29C2045/567Expelling resin through the gate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/174Applying a pressurised fluid to the outer surface of the injected material inside the mould cavity, e.g. for preventing shrinkage marks

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、厚肉リブ部を有する成形品の射出圧縮成形方法に関し、特に型締力とガスの圧力を併用して行う射出圧縮成形方法に関する。
【0002】
【従来の技術】
従来、厚肉部を有する成形品のヒケを改善するため、厚肉部分にガスを注入して中空にするガスインジェクション成形方法が広く知られている。
【0003】
かかるガスインジェクション成形方法では、ガスを溶融樹脂中に注入するために極めて低圧で金型キャビティ内に樹脂を充填しなければならず、結果として金型の転写性が低下し、外観を損ない易く、場合によっては塗装等の二次加工が必要であった。また、所望の厚肉部を中空にするためには、厚肉部の配置、寸法及びゲート配置等、多岐にわたる技術検討が必要であることも知られている。また、使用するガス圧力は一般に高く、ガスの消費量も多く、生産コストを引き上げる要因にもなっていた。さらに、メッキ等の処理を必要とする場合、ガス注入口部の穴からメッキ液が中空部に侵入し不良品が発生し易く、このためガス注入口部の穴を封止する前工程が必要となり手間がかかる。
【0004】
上記のようなガスインジェクション成形方法における問題点を解決する射出成形方法として、型締力とガスの圧力を併用した射出圧縮成形方法がある。例えば特開平7−314484号公報では、金型が完全に閉鎖していない状態で溶融樹脂を射出し、型締め圧縮により厚肉部に溶融樹脂が到達した後に、厚肉部の樹脂と金型との間にガスを注入する方法が開示されている。
【0005】
【発明が解決しようとする課題】
上記のような型締力とガスの圧力を併用した射出圧縮成形方法は、例えばボス等の局部的な厚肉部を有する成形品の成形に有効であるとされている。つまり、このような成形品を通常の射出成形で成形すると、厚肉部にヒケを生じ易く、外観不良の原因となり易いが、上記のような併用タイプの射出圧縮成形方法によると、ガスインジェクション成形方法における問題も無く、ヒケの発生が防止され、外観に優れた成形品が得易いとされている。
【0006】
しかしながら、上記従来の併用タイプの射出圧縮成形方法では、以下のような問題点がある。
【0007】
型締め完了後の型締圧が保持された状態でガスの注入を行う場合、ボス等の局部的な厚肉部に対しては、直接ガス圧を作用させることは比較的容易にできるものの、リブ等の連続した厚肉部に対しては、型締圧が保持されていることによる金型内溶融樹脂圧の上昇により、厚肉部全体にガスによる押圧を十分に作用させることが難しい。このため、リブ等の連続した厚肉部を形成する場合には、ガス圧を高めたり、ガス注入口を多数設ける必要があり、結局、ガス注入のために厚肉部はデザイン的に制限を余儀なくされ、得られる成形品のヒケのレベルも満足できるものではない。
【0008】
本発明は、上記従来の併用タイプの射出圧縮成形方法における問題点に鑑みてなされたもので、低いガス圧で広範囲な厚肉部のデザインにも容易に対応でき、厚肉部のヒケの無い良好な外観を有する成形品を安定して成形できるようにすることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成すべく成された本発明の構成は、以下の通りである。
【0010】
すなわち、本発明の第1の射出圧縮成形方法は、図3に示されるように、金型2が完全に閉鎖していない状態でキャビティ1内に溶融樹脂3を射出し(図3(a))、型閉じ圧縮し溶融樹脂3を展延して厚肉リブ11を有する成形品を成形する射出圧縮成形方法において、
厚肉リブ部近傍に樹脂ゲート9を設け、該樹脂ゲート9から樹脂を射出し、型閉じ圧縮する以前にガスを厚肉リブ部から注入して厚肉リブ部の樹脂と金型との間にガスを流動させ(図3(b))、しかる後、型閉じ圧縮するとともに該樹脂ゲート9から樹脂を逆流させて、ガスを該厚肉リブ部周辺にさらに流動させてなることを特徴とする射出圧縮成形方法である。
【0011】
また、本発明の第2の射出圧縮成形方法は、図4に示されるように、金型2が完全に閉鎖していない状態でキャビティ1内に溶融樹脂3を射出し(図4(a))、型閉じ圧縮し溶融樹脂3を展延して厚肉リブ11を有する成形品を成形する射出圧縮成形方法において、
厚肉リブ部近傍に樹脂ゲート9を設け、該樹脂ゲート9から樹脂を射出し(図4(a))、つづいて型閉じ圧縮するとともに該樹脂ゲート9から樹脂を逆流させると同時またはその後に、厚肉リブ部からガスを注入して(図4(b))、ガスを該厚肉リブ部周辺に流動させてなることを特徴とする射出圧縮成形方法である。
【0012】
本発明のガス併用射出圧縮成形方法は、さらにその特徴として、
樹脂ゲート9と略対面した位置にガス注入口5を配置した金型2を用いること、
型閉じ圧縮を完了した直後に、圧縮圧力を降下させること
をも含むものである。
【0013】
【発明の実施の形態】
図1は、本発明の実施例に用いた金型の一例を示す模式図である。本発明の方法においては、金型が完全には閉鎖していない状態(寸開若しくは半開状態)で溶融樹脂を射出するため、図1に示されるように、寸開若しくは半開してもキャビティ1が開放されない金型を用いる。
【0014】
キャビティ1は、金型2の開閉方向一端側が開放されていて、金型2の開閉方向他端側及びその周囲が囲まれた、図2に示すような形状の成形品10、例えば包装箱、電気機器のハウジング、キャビネット等の扉や洗面化粧台、さらには自動車におけるホイールキャップ、バンパー、スポイラ等を含む外板部品、インパネ、ドアの内張り、ピラー類の内装部品等の成形品を成形するためのものである。
【0015】
さらに金型2について説明すると、図1に示されるように、可動型2aと固定型2b間にキャビティ1が形成されている。図面においては、コア型が可動型2a、キャビ型が固定型2bとなっているが、コア型を固定型2b、キャビ型を可動型2aとしても何ら差し支えない。
【0016】
可動型2a側には、成形品の厚肉リブ部11に対応する凹部4が形成されており、固定型2b側には、かかる凹部4の近傍に樹脂ゲート9が設けられている。また、可動型2a側には、可動型2aを貫通するエジェクターピン6が、その先端面を凹部4と交差する位置でキャビティ1に臨ませている。エジェクターピン6は、管状のスリーブ6aと、このスリーブ6a内に挿入された軸ピン6bとから構成されているもので、スリーブ6aと軸ピン6bの間には後述する加圧ガスの通路となる隙間が残されている。エジェクターピン6の後端は、加圧ガス路7に接している。エジェクターピン6の位置は、その先端面が凹部4に向き合う位置であれば任意に設定することができる。
【0017】
加圧ガス路7を介して供給された加圧ガスは、エジェクターピン6の後端から、スリーブ6aと軸ピン6b間の隙間を通って、エジェクターピン6の先端部のガス注入口5からキャビティ1内へと供給されるものである。尚、8a〜8dはシール材である。
【0018】
本発明の第1の射出圧縮成形方法の一例として、図1に示したような構成を有する金型2を用いて図2に示したような成形品10を成形する例を、図3を参照しながら具体的に説明する。尚、図3ではエジェクターピン6を簡略化して示している。
【0019】
まず、図3(a)に示される型寸開状態において、射出ノズル20によりキャビティ1内に樹脂ゲート9から溶融樹脂3を射出する。樹脂としては、一般の射出成形や押し出し成形に使用される熱可塑性樹脂を広く用いることができる。また、必要に応じて熱硬化性樹脂を用いることもできる。更に、これらの樹脂には、例えばフィラーや強化繊維等の充填材や各種添加剤(例えば可塑剤、滑剤、紫外線吸収剤、染料、顔料、防曇剤、帯電防止剤、難燃化剤等)を添加することができる。
【0020】
次に、図3(b)に示されるように、キャビティ1内に、ガス注入口5から加圧ガスを注入する。ガスとしては、例えば窒素ガス等の不活性ガスや空気等を使用することができる。尚、窒素ガス等の不活性ガスは、ガス焼け等を防止することができる点で好ましい。また、本発明の成形方法においては、低圧ガス(例えば60kg/cm2 以下)を用いて十分に満足のいく成形品を成形できるため、空気を用いてもなんら差し支えなく、加圧ガスの製造、供給装置も簡便ですみ、窒素ガス等を用いる場合に比べ低コストで成形できる。
【0021】
ガスの注入には特別な制御は必要無く、出しっぱなしでも構わない。また、成形機の射出開始信号、型締め開始信号等を用いてガスの注入タイミング、注入時間を制御すると、ガスの消費量という点でより効果的である。
【0022】
加圧ガスの注入は、エジェクターピン6を介して行う方法に限定されず、金型2に別途加圧ガスの通路を形成して行ってもよい。もちろんガスインジェクション成形法で用いるガス供給設備を用い、ガスを供給することもできる。
【0023】
次に、図3(c)に示されるように、金型2を閉じ圧縮するとともに樹脂ゲート9からキャビティ1内の樹脂を逆流させる。具体的には、射出ノズル20のノズルゲート21を開いたままの状態で型閉じ圧縮することにより、樹脂ゲート9から射出ノズル20内に樹脂を逆流させることができる。また、溶融樹脂の射出完了後、一旦ノズルゲート21を閉じ、型閉じ圧縮して、キャビティ1内に樹脂を展延させた後、型閉じ圧縮を維持しつつ、ノズルゲート21を再び開いて、射出ノズル20内に樹脂を逆流させることもできる。いずれの場合も樹脂の逆流時に射出スクリュー22は後退する。
【0024】
かかる射出スクリュー22の後退は、型閉じ圧縮とのタイミングを図りながら強制的に行うこともできる。具体的には、型閉じ圧縮時若しくは型締め圧力を高める際に、例えば、型閉じ圧縮の開始信号を用いて射出スクリュー22を設定量だけ後退させるように制御したり、型締力若しくは型開量を検知して、この検知信号を用いて射出スクリュー22を後退させるように制御することができる。
【0025】
型閉じ圧縮完了後は、所定時間保持し、成形品10の冷却後、金型2を開いて成形品10を取り出すことになる。
【0026】
次に、本発明の第2の射出圧縮成形方法の一例として、上記と同様、図1に示したような構成を有する金型2を用いて図2に示したような成形品10を成形する例を、図4を参照しながら具体的に説明する。尚、図4においてもエジェクターピン6を簡略化して示している。
【0027】
まず、図4(a)に示される型寸開状態において、射出ノズル20によりキャビティ1内に樹脂ゲート9から前述の溶融樹脂3を射出する。
【0028】
次に、図4(b)に示されるように、金型2を閉じ圧縮するとともに樹脂ゲート9からキャビティ1内の樹脂を逆流させる。また、かかる型閉じ圧縮と同時またはその後に、キャビティ1内に、ガス注入口5から前述の加圧ガスを注入する。尚、樹脂の逆流時には前記本発明の第1の射出圧縮成形方法と同様に射出スクリュー22は後退する。
【0029】
本発明の射出圧縮成形方法によれば、型閉じ圧縮時に、厚肉リブ部11の近傍に設けられている樹脂ゲート9からの樹脂の逆流により、厚肉リブ部11の樹脂圧力を極めて効果的に低下させる作用が生まれ、ガス圧を過剰に高めることなく確実に厚肉リブ部11の周囲にガスを導くことができる。
【0030】
すなわち、本発明の第1の射出圧縮成形方法において、型閉じ圧縮前に注入されたガスは、コア型2aと溶融樹脂3との間にある程度流動され、その後、型閉じ圧縮時に一般板厚部(薄肉部)よりも遅く冷却し流動性の高い厚肉リブ部11の周辺に優先的に導かれる。また、本発明の第2の射出圧縮成形方法において、型閉じ圧縮開始後に注入されたガスは、その後、型閉じ圧縮時に上記と同様に厚肉リブ部11の周辺に優先的に導かれる。このため、厚肉リブ部11を選択的に押圧することができ、ガスの押圧効果を高めることができる。かかるガス圧は、ガス流量、金型2の寸開量、及びその状態での樹脂の充填量によるガス注入口5の樹脂圧によって異なるものの、60kg/cm2 以下で良く、通常は5〜40kg/cm2 程度で十分である。
【0031】
また、本発明の射出圧縮成形方法によれば、型閉じ圧縮時における樹脂の逆流に伴い、圧縮代を増大させることができ、キャビティ内の樹脂圧の均一化が図られる。このため、特に図2に示したような箱形状の成形品を成形する場合においても、成形品の末端部分(箱形状の側面部分)へも圧縮圧力を十分に作用させることができる。
【0032】
本発明の射出圧縮成形方法によって得られる成形品では、厚肉リブ部11はガスによって押圧されるため、キャビティ1の形状をそのまま反映しない。すなわち、図2の成形品10の厚肉リブ部11のA−A断面は、例えば図5(a)や図5(b)に示されるようなものとなる。図5中の点線はキャビティ面を示しており、キャビティ面と厚肉リブ部11との間の空間はガスが閉じ込められた、あるいは流れた空間である。厚肉リブ部11が最終的にどのような形状になるかは、厚肉リブ部11に対応するキャビティの形状、樹脂充填量、閉じ込められるガス量・ガス圧等によって変化する。しかしながら、リブやボス等の厚肉部は成形品の裏面に形成されるため、成形品の外観を損なう心配はない。
【0033】
本発明の射出圧縮成形方法は、一般板厚部を直接ガスで押圧するものではなく、あくまで一般面は機械的プレスにより圧縮され、厚肉リブ部11のみガスによって押圧するものであり、このような厚肉部へのガスの押圧によって外観面のヒケが改善されるものである。
【0034】
本発明の射出圧縮成形方法は、冷却が遅れ流動性に富んだ厚肉部の周囲に選択的にガスを導くものであるため、図1に示したように成形品の厚肉部に対応する凹部4と交差する位置にガス注入口5が設けられる。また、ガス注入口5は特に樹脂ゲート9と対面する位置に配置することが好ましく、これにより型閉じ圧縮時の樹脂の逆流により、ガス注入口5部分の樹脂圧を極めて効果的に低下させ、ガスの導入を円滑に進めることができる。
【0035】
図6(a)に示すような独立した複数の厚肉部11a及び11bを有する成形品10を成形する場合には、各厚肉部と交差する位置に複数のガス注入口を設けた金型を用いるのが好ましい。
【0036】
また、図6(b)に示すように、上記の厚肉部11aと11bを連結する厚肉部11cを設け、全ての厚肉部を連続させることも好ましい。これにより、1つのガス注入口から全ての厚肉部にガス圧を作用させることができる。但し、厚肉部の全長が特に長い場合にはガス注入口を複数設けておくのが良く、この時、溶融樹脂を射出するための樹脂ゲート9の他に、樹脂の逆流を行うためのゲートを各注入口と対面する位置に別途設けることもできる。
【0037】
さらに、本発明の射出圧縮成形方法においては、型閉じ圧縮を完了した直後、すなわち設定圧縮時間のタイムアップ若しくは金型可動側が設定圧縮完了位置に到達した直後に、圧縮圧力を降下させることが好ましい。
【0038】
このように、最後に圧縮圧力を降下させると、ガス注入口5から遠く離れた成形品周辺部の厚肉部にもより一層確実にガスを導入することができる。この時の圧縮圧力は、溶融樹脂の射出充填時の型締め力もしくは型閉じ圧縮時のプレス圧力より低く設定されれば良いが、プレス圧P1 とガス圧P2 は、P1 (kg/cm2 )≧P2 (kg/cm2 )であることが好ましい。
【0039】
本発明によると、特に加圧ガスの非圧入側の成形品10の表面状態、すなわち加圧ガスの圧入によってキャビティ面1bに押圧される側の成形品10の表面状態が向上する。従って、成形品10の使用時に人目に触れにくい側を加圧ガスの圧入側とすることが好ましい。例えば、電気機器のハウジングにおいては、内面側を加圧ガスの圧入側とすることが好ましい。
【0040】
【実施例】
以下に示す比較例1〜2及び実施例1〜3では、図1に示した金型2を用いて図2に示した成形品10を成形した。
【0041】
成形機としては、成形中に可動型を自由に移動保持可能なコマツ社製射出成形機「IP・1050」を使用した。この成形機は、型締力、プレス圧力、プレス速度、プレス開始位置が設定可能である。
【0042】
金型2では、樹脂ゲート9とガス注入口5は対面した位置に配置されている。可動型2aには、成形品の厚肉部11に対応する凹部4が、ガス注入口5と交差して形成されている。射出ノズル20はホットランナ、バルブゲート構造を有する。エジェクターピン6は、内径2mm,外径4mmの段付きスリーブ6aと、外径1.98mmの軸ピン6bの組み合わせとし、特にクリアランスの調整はしていない。また、エジェクターピン6の先端部(注入口5)は成形品に対してフラットにしている。
【0043】
成形品10は、天面が250mm×250mm(天面部板厚設定は自由)、側面高さが80mm(側面部抜き勾配が10度)、天面裏面には幅3mm、高さ5mmのリブ(厚肉部11)が放射状に設定されている。
【0044】
使用する樹脂は、ABS(スタイラック191F)、変性PPE(ザイロン220Z)、ABS−GF(スタイラックR220A GF10%補強)、HIPS(スタイロン408)の4種類とし、金型温度は70℃に設定した。
【0045】
(比較例1)
天面板厚が2mmに固定できるように金型可動側と固定側の間にスペーサをはさみ、金型を型締め力300tonで完全に型締めした状態で、通常射出成形品重量の98%の樹脂を射出した。射出完了直後から圧力75kg/cm2 の窒素ガスを30秒間圧入した。冷却完了後、金型を開放して成形品を取り出した。得られた成形品のヒケのレベルは通常の射出成形品に比べ改善はするものの満足できるレベルではなかった。
【0046】
(比較例2)
金型寸開状態(天面部板厚4mm)で溶融樹脂を射出完了後、ただちに型閉じ圧縮した。この際、溶融樹脂の充填量は最終製品板厚が2mmになるように調整し、圧縮圧力は150kg/cm2 とした。圧縮完了後ただちに窒素ガスを70kg/cm2 の圧力で30秒間、型内へ圧入した。冷却完了後、金型を開放して成形品を取り出した。得られた成形品のヒケのレベルは通常の射出成形品に比べ改善はするものの満足できるレベルではなかった。
【0047】
(実施例1)
金型寸開状態(天面部板厚4mm)で溶融樹脂を射出完了後、ただちに型閉じ圧縮し、これと同時に射出スクリューを9mm後退させた。この際、溶融樹脂の充填量は最終製品板厚が1.8mmになるように調整し、圧縮圧力は150kg/cm2 とした。圧縮完了後ただちに窒素ガスを55kg/cm2 の圧力で30秒間、型内へ圧入した。冷却完了後、金型を開放して成形品を取り出した。得られた成形品のヒケのレベルは比較例2に比べはるかに改善された。
【0048】
(実施例2)
型閉じ圧縮により成形品板厚が1.8mmに到達後、ただちに型締め圧力を150kg/cm2 から80kg/cm2 に降下させ、型内に圧入する窒素ガス圧力を35kg/cm2 にした以外は、実施例1と同様にして成形した。得られた成形品のヒケのレベルは、低いガス圧にもかかわらず実施例1と同様に改善された。
【0049】
(実施例3)
型内へのガスの圧入を溶融樹脂の射出開始と同時に実施した以外は、実施例2と同様に成形した。得られた成形品のヒケのレベルは、低いガス圧にもかかわらず実施例1と同様に改善された。
【0050】
(実施例4)
図7に示した、樹脂ゲート9とガス注入口5が同じ側(固定型2b側)に配置された金型2を用いて、図8に示した成形品10を実施例3と同様に成形した。尚、この成形品10は、大きさ250mm×250mm、板厚1.8mmで、その裏面には幅3mm、高さ5mmのリブ(厚肉部11)が設定されている。
【0051】
得られた成形品のヒケのレベルは、低いガス圧にもかかわらず実施例1と同様であった。
【0052】
以上の比較例及び実施例で得られた成形品における、ヒケの測定結果及び目視による外観評価を表1に示す。
【0053】
【表1】

Figure 0003762527
【0054】
【発明の効果】
本発明は以上説明した通りのものであり、以下の効果を奏するものである。
【0055】
(1)型閉じ圧縮時に、厚肉リブ部近傍の樹脂ゲートからの樹脂の逆流により、厚肉リブ部の樹脂圧力を極めて効果的に低下させることができるため、ガスを確実に厚肉リブ部の周囲に導くことができる。したがって、圧縮成形における樹脂展延効果を犠牲にせず、かつ低圧のガスを用いて厚肉リブ部を選択的に押圧することができ、ガスの押圧効果を高めることができる。
【0056】
(2)型閉じ圧縮時における樹脂の逆流に伴い圧縮代を増大させることができ、キャビティ内の樹脂圧の均一化が図られる。このため、特に箱形状の成形品を成形する場合においても、成形品の末端部分へも圧縮圧力を十分に作用させることができる。
【0057】
(3)したがって、低いガス圧で広範囲に厚肉部を設定したデザインにも容易に対応でき、厚肉部のヒケの無い良好な外観を有する成形品を安定して成形することができる。
【図面の簡単な説明】
【図1】本発明に用いる金型の一例を示す断面図である。
【図2】本発明により成形される成形品の一例を示す図である。
【図3】本発明の第1の射出圧縮成形方法を説明するための図である。
【図4】本発明の第2の射出圧縮成形方法を説明するための図である。
【図5】本発明により成形される成形品の厚肉部の形状例を示す断面図である。
【図6】本発明により成形される成形品の他の例を示す図である。
【図7】実施例4で用いた金型を示す断面図である。
【図8】実施例4で成形した成形品を示す図である。
【符号の説明】
1 キャビティ
1a,1b キャビティ面
2 金型
2a 可動型(コア型)
2b 固定型(キャビ型)
3 溶融樹脂
4 厚肉部に対応する凹部
5 圧入口
6 エジェクターピン
6a スリーブ
6b 軸ピン
7 加圧流体路
8a〜8d シール材
9 樹脂ゲート
10 成形品
11 厚肉部
20 射出ノズル
21 ノズルゲート
22 射出スクリュー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an injection compression molding method for a molded product having a thick rib portion, and more particularly, to an injection compression molding method performed by using a mold clamping force and a gas pressure in combination.
[0002]
[Prior art]
Conventionally, in order to improve sink marks of a molded product having a thick part, a gas injection molding method in which a gas is injected into the thick part to make it hollow is widely known.
[0003]
In such a gas injection molding method, the resin must be filled into the mold cavity at a very low pressure in order to inject the gas into the molten resin, and as a result, the transferability of the mold is lowered, and the appearance is easily damaged. In some cases, secondary processing such as painting was necessary. In addition, it is also known that in order to make a desired thick part hollow, various technical studies such as arrangement of the thick part, dimensions, and gate arrangement are necessary. In addition, the gas pressure to be used is generally high, the amount of gas consumption is large, and this has been a factor in raising the production cost. Furthermore, when processing such as plating is required, the plating solution easily enters the hollow part from the hole in the gas inlet part, and defective products are likely to be generated. For this reason, a pre-process for sealing the hole in the gas inlet part is necessary. It takes time and effort.
[0004]
As an injection molding method for solving the problems in the gas injection molding method as described above, there is an injection compression molding method using a mold clamping force and a gas pressure in combination. For example, in Japanese Patent Laid-Open No. 7-314484, a molten resin is injected in a state where the mold is not completely closed, and after the molten resin reaches the thick part by mold-clamping compression, the resin and the mold in the thick part A method of injecting gas between the two is disclosed.
[0005]
[Problems to be solved by the invention]
The injection compression molding method using the mold clamping force and the gas pressure as described above is said to be effective for molding a molded product having a locally thick part such as a boss. In other words, if such a molded product is molded by normal injection molding, sinking is likely to occur in the thick-walled portion, and it is easy to cause an appearance defect. However, according to the combination type injection compression molding method as described above, gas injection molding is performed. It is said that there is no problem in the method, the occurrence of sink marks is prevented, and a molded product excellent in appearance is easily obtained.
[0006]
However, the conventional combined type injection compression molding method has the following problems.
[0007]
When gas injection is performed in a state where the mold clamping pressure is maintained after the mold clamping is completed, it is relatively easy to directly apply the gas pressure to a locally thick part such as a boss. For continuous thick portions such as ribs, it is difficult to sufficiently apply gas pressure to the entire thick portion due to an increase in the molten resin pressure in the mold due to the mold clamping pressure being maintained. For this reason, when forming continuous thick parts such as ribs, it is necessary to increase the gas pressure or provide a large number of gas injection ports. Inevitably, the level of sink marks in the resulting molded product is not satisfactory.
[0008]
The present invention has been made in view of the above problems in the conventional combined type injection compression molding method, and can easily cope with a wide range of thick part designs with a low gas pressure, and there is no sink in the thick part. It is an object of the present invention to make it possible to stably mold a molded product having a good appearance.
[0009]
[Means for Solving the Problems]
The configuration of the present invention made to achieve the above object is as follows.
[0010]
That is, in the first injection compression molding method of the present invention, as shown in FIG. 3, the molten resin 3 is injected into the cavity 1 in a state where the mold 2 is not completely closed (FIG. 3A). ), In an injection compression molding method of molding a molded product having a thick rib 11 by closing and compressing the mold and spreading the molten resin 3;
A resin gate 9 is provided in the vicinity of the thick rib portion, the resin is injected from the resin gate 9, and gas is injected from the thick rib portion before the mold is closed and compressed. The gas is caused to flow (FIG. 3 (b)), and then the mold is closed and compressed, and the resin is caused to flow back from the resin gate 9 to further flow the gas around the thick rib portion. This is an injection compression molding method.
[0011]
Further, in the second injection compression molding method of the present invention, as shown in FIG. 4, the molten resin 3 is injected into the cavity 1 in a state where the mold 2 is not completely closed (FIG. 4A). ), In an injection compression molding method of molding a molded product having a thick rib 11 by closing and compressing the mold and spreading the molten resin 3;
A resin gate 9 is provided in the vicinity of the thick-walled rib portion, and the resin is injected from the resin gate 9 (FIG. 4A). Subsequently, the mold is closed and compressed, and at the same time or after the resin is caused to flow backward from the resin gate 9. The injection compression molding method is characterized in that a gas is injected from the thick rib portion (FIG. 4B) and the gas flows around the thick rib portion.
[0012]
The gas combined injection compression molding method of the present invention is further characterized as follows:
Using the mold 2 in which the gas injection port 5 is arranged at a position substantially facing the resin gate 9;
It also includes reducing the compression pressure immediately after completing the mold closing compression.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing an example of a mold used in an embodiment of the present invention. In the method of the present invention, since the molten resin is injected in a state where the mold is not completely closed (opened or half-opened state), as shown in FIG. Use a mold that cannot be opened.
[0014]
The cavity 1 is open at one end side in the opening / closing direction of the mold 2 and is surrounded by the other end side in the opening / closing direction of the mold 2 and the periphery thereof, such as a molded product 10 such as a packaging box, for example, To form molded products such as electrical equipment housings, cabinet doors and vanities, as well as exterior parts such as wheel caps, bumpers and spoilers in automobiles, instrument panels, door linings, and interior parts of pillars. belongs to.
[0015]
Further, the mold 2 will be described. As shown in FIG. 1, a cavity 1 is formed between the movable mold 2a and the fixed mold 2b. In the drawing, the core mold is the movable mold 2a and the cavity mold is the fixed mold 2b, but the core mold may be the fixed mold 2b and the cabinet mold may be the movable mold 2a.
[0016]
A concave portion 4 corresponding to the thick rib portion 11 of the molded product is formed on the movable mold 2a side, and a resin gate 9 is provided in the vicinity of the concave portion 4 on the fixed mold 2b side. Further, on the movable mold 2 a side, an ejector pin 6 that penetrates the movable mold 2 a faces the cavity 1 at a position where its tip end surface intersects the recess 4. The ejector pin 6 is composed of a tubular sleeve 6a and a shaft pin 6b inserted into the sleeve 6a, and a pressurized gas passage to be described later is provided between the sleeve 6a and the shaft pin 6b. A gap is left. The rear end of the ejector pin 6 is in contact with the pressurized gas path 7. The position of the ejector pin 6 can be arbitrarily set as long as the front end surface faces the recess 4.
[0017]
Pressurized gas supplied via the pressurized gas path 7 passes through the gap between the sleeve 6a and the shaft pin 6b from the rear end of the ejector pin 6 and is then cavityd from the gas injection port 5 at the front end portion of the ejector pin 6. 1 is supplied to the inside. In addition, 8a-8d is a sealing material.
[0018]
As an example of the first injection compression molding method of the present invention, see FIG. 3 for an example of molding the molded product 10 as shown in FIG. 2 using the mold 2 having the configuration as shown in FIG. Specific explanation will be given. In FIG. 3, the ejector pin 6 is shown in a simplified manner.
[0019]
First, in the mold open state shown in FIG. 3A, the molten resin 3 is injected from the resin gate 9 into the cavity 1 by the injection nozzle 20. As the resin, a thermoplastic resin used in general injection molding or extrusion molding can be widely used. Moreover, a thermosetting resin can also be used as needed. Further, these resins include fillers such as fillers and reinforcing fibers and various additives (for example, plasticizers, lubricants, ultraviolet absorbers, dyes, pigments, antifogging agents, antistatic agents, flame retardants, etc.) Can be added.
[0020]
Next, as shown in FIG. 3B, pressurized gas is injected into the cavity 1 from the gas injection port 5. As the gas, for example, an inert gas such as nitrogen gas or air can be used. Note that an inert gas such as nitrogen gas is preferable because it can prevent gas burning and the like. Further, in the molding method of the present invention, a sufficiently satisfactory molded product can be molded using a low-pressure gas (for example, 60 kg / cm 2 or less). The supply device is also simple and can be molded at a lower cost than when nitrogen gas or the like is used.
[0021]
No special control is required for gas injection, and it may be left. Also, controlling the gas injection timing and injection time using the injection start signal, mold clamping start signal, etc. of the molding machine is more effective in terms of gas consumption.
[0022]
The injection of the pressurized gas is not limited to the method performed through the ejector pin 6, and may be performed by separately forming a pressurized gas passage in the mold 2. Of course, gas can also be supplied using a gas supply facility used in the gas injection molding method.
[0023]
Next, as shown in FIG. 3C, the mold 2 is closed and compressed, and the resin in the cavity 1 is caused to flow backward from the resin gate 9. Specifically, by closing and compressing the mold while the nozzle gate 21 of the injection nozzle 20 remains open, the resin can flow backward from the resin gate 9 into the injection nozzle 20. Further, after the injection of the molten resin is completed, the nozzle gate 21 is once closed, the mold is closed and compressed, the resin is spread in the cavity 1, and then the nozzle gate 21 is opened again while maintaining the mold closed compression. The resin can also flow backward into the injection nozzle 20. In either case, the injection screw 22 moves backward when the resin flows backward.
[0024]
The retraction of the injection screw 22 can be forcibly performed while timing the mold closing compression. Specifically, when the mold closing compression or the mold clamping pressure is increased, for example, the injection screw 22 is controlled to be retracted by a set amount using a mold closing compression start signal, or the mold clamping force or the mold opening pressure is increased. It is possible to detect the amount and use the detection signal to control the injection screw 22 to retreat.
[0025]
After completion of the mold closing compression, the mold is held for a predetermined time. After the molded product 10 is cooled, the mold 2 is opened and the molded product 10 is taken out.
[0026]
Next, as an example of the second injection compression molding method of the present invention, the molded product 10 as shown in FIG. 2 is molded using the mold 2 having the configuration as shown in FIG. An example will be specifically described with reference to FIG. FIG. 4 also shows the ejector pin 6 in a simplified manner.
[0027]
First, in the mold open state shown in FIG. 4A, the aforementioned molten resin 3 is injected from the resin gate 9 into the cavity 1 by the injection nozzle 20.
[0028]
Next, as shown in FIG. 4B, the mold 2 is closed and compressed, and the resin in the cavity 1 is caused to flow backward from the resin gate 9. At the same time as or after the mold closing compression, the pressurized gas is injected into the cavity 1 from the gas injection port 5. When the resin flows backward, the injection screw 22 moves backward as in the first injection compression molding method of the present invention.
[0029]
According to the injection compression molding method of the present invention, the resin pressure of the thick rib portion 11 is extremely effective due to the back flow of the resin from the resin gate 9 provided in the vicinity of the thick rib portion 11 during mold closing compression. Thus, the gas can be reliably guided around the thick rib portion 11 without excessively increasing the gas pressure.
[0030]
That is, in the first injection compression molding method of the present invention, the gas injected before the mold closing compression flows to some extent between the core mold 2a and the molten resin 3, and then the general plate thickness portion during the mold closing compression. It cools later than the (thin wall portion) and is preferentially guided to the periphery of the thick rib portion 11 having high fluidity. Further, in the second injection compression molding method of the present invention, the gas injected after the mold closing compression is started is preferentially guided to the periphery of the thick rib portion 11 during the mold closing compression. For this reason, the thick rib part 11 can be selectively pressed, and the press effect of gas can be heightened. The gas pressure may be 60 kg / cm 2 or less, usually 5 to 40 kg, although it varies depending on the gas flow rate, the opening amount of the mold 2, and the resin pressure of the gas inlet 5 depending on the resin filling amount in that state. About / cm 2 is sufficient.
[0031]
Further, according to the injection compression molding method of the present invention, the compression allowance can be increased with the back flow of the resin during mold closing compression, and the resin pressure in the cavity can be made uniform. For this reason, particularly when a box-shaped molded product as shown in FIG. 2 is molded, it is possible to sufficiently apply the compression pressure to the end portion (box-shaped side surface portion) of the molded product.
[0032]
In the molded product obtained by the injection compression molding method of the present invention, the thick rib portion 11 is pressed by the gas, and thus does not reflect the shape of the cavity 1 as it is. That is, the AA cross section of the thick rib portion 11 of the molded product 10 of FIG. 2 is as shown in FIG. 5A and FIG. 5B, for example. The dotted line in FIG. 5 shows the cavity surface, and the space between the cavity surface and the thick rib portion 11 is a space in which gas is confined or flows. The final shape of the thick rib portion 11 varies depending on the shape of the cavity corresponding to the thick rib portion 11, the resin filling amount, the amount of trapped gas, the gas pressure, and the like. However, since thick portions such as ribs and bosses are formed on the back surface of the molded product, there is no fear of damaging the appearance of the molded product.
[0033]
The injection compression molding method of the present invention does not directly press the general plate thickness portion with gas, but the general surface is only compressed by mechanical press, and only the thick rib portion 11 is pressed with gas. Sinking of the appearance surface is improved by pressing the gas to the thick part.
[0034]
In the injection compression molding method of the present invention, the gas is selectively guided around the thick wall portion that is delayed in cooling and rich in fluidity, and therefore corresponds to the thick wall portion of the molded product as shown in FIG. A gas inlet 5 is provided at a position intersecting with the recess 4. In addition, the gas inlet 5 is preferably disposed particularly at a position facing the resin gate 9, thereby reducing the resin pressure at the gas inlet 5 portion very effectively due to the backflow of the resin during mold closing compression, Gas can be introduced smoothly.
[0035]
In the case of molding a molded article 10 having a plurality of independent thick portions 11a and 11b as shown in FIG. 6A, a mold having a plurality of gas injection ports provided at positions intersecting with the thick portions. Is preferably used.
[0036]
Moreover, as shown in FIG.6 (b), it is also preferable to provide the thick part 11c which connects said thick part 11a and 11b, and to make all the thick parts continuous. Thereby, gas pressure can be made to act on all the thick parts from one gas injection port. However, when the total length of the thick wall portion is particularly long, it is preferable to provide a plurality of gas injection ports. At this time, in addition to the resin gate 9 for injecting the molten resin, a gate for performing the back flow of the resin Can be separately provided at a position facing each inlet.
[0037]
Further, in the injection compression molding method of the present invention, it is preferable to lower the compression pressure immediately after the mold closing compression is completed, that is, immediately after the set compression time is up or the mold movable side reaches the set compression completion position. .
[0038]
In this way, when the compression pressure is finally lowered, the gas can be more reliably introduced into the thick portion around the molded product far away from the gas inlet 5. The compression pressure at this time may be set lower than the mold clamping force at the time of injection filling of the molten resin or the press pressure at the time of mold closing compression, but the press pressure P 1 and the gas pressure P 2 are P 1 (kg / kg). cm 2 ) ≧ P 2 (kg / cm 2 ).
[0039]
According to the present invention, the surface state of the molded product 10 on the non-injection side of the pressurized gas, that is, the surface state of the molded product 10 on the side pressed against the cavity surface 1b by the pressurized gas injection is improved. Therefore, it is preferable that the side that is difficult to touch when the molded product 10 is used is the pressurized gas press-fitting side. For example, in the housing of an electric device, it is preferable that the inner surface side is a press-fitting side of pressurized gas.
[0040]
【Example】
In Comparative Examples 1-2 and Examples 1-3 shown below, the molded product 10 shown in FIG. 2 was molded using the mold 2 shown in FIG.
[0041]
As the molding machine, an injection molding machine “IP · 1050” manufactured by Komatsu, which can freely move and hold the movable mold during molding, was used. In this molding machine, a mold clamping force, a press pressure, a press speed, and a press start position can be set.
[0042]
In the mold 2, the resin gate 9 and the gas injection port 5 are arranged at facing positions. In the movable mold 2 a, a recess 4 corresponding to the thick part 11 of the molded product is formed so as to intersect with the gas inlet 5. The injection nozzle 20 has a hot runner and valve gate structure. The ejector pin 6 is a combination of a stepped sleeve 6a having an inner diameter of 2 mm and an outer diameter of 4 mm and a shaft pin 6b having an outer diameter of 1.98 mm, and the clearance is not particularly adjusted. Moreover, the front-end | tip part (injection port 5) of the ejector pin 6 is made flat with respect to a molded article.
[0043]
Molded product 10 has a top surface of 250 mm × 250 mm (the top surface plate thickness can be freely set), a side surface height of 80 mm (side surface draft angle is 10 degrees), a top surface of the rib having a width of 3 mm and a height of 5 mm ( The thick part 11) is set radially.
[0044]
The resin used is ABS (Stylac 191F), modified PPE (Zylon 220Z), ABS-GF (Stylac R220A GF 10% reinforced), HIPS (Styron 408), and the mold temperature is set to 70 ° C. .
[0045]
(Comparative Example 1)
With a spacer between the mold movable side and the fixed side so that the top plate thickness can be fixed at 2 mm, the mold is clamped completely with a mold clamping force of 300 tons, and the resin is 98% of the normal injection molded product weight. Was injected. Immediately after completion of injection, nitrogen gas having a pressure of 75 kg / cm 2 was injected for 30 seconds. After cooling was completed, the mold was opened and the molded product was taken out. Although the level of sink marks in the obtained molded product was improved as compared with a normal injection molded product, it was not a satisfactory level.
[0046]
(Comparative Example 2)
Immediately after the injection of the molten resin was completed in the mold open state (top plate thickness 4 mm), the mold was closed and compressed. At this time, the filling amount of the molten resin was adjusted so that the final product plate thickness was 2 mm, and the compression pressure was 150 kg / cm 2 . Immediately after compression, nitrogen gas was injected into the mold at a pressure of 70 kg / cm 2 for 30 seconds. After cooling was completed, the mold was opened and the molded product was taken out. Although the level of sink marks in the obtained molded product was improved as compared with a normal injection molded product, it was not a satisfactory level.
[0047]
Example 1
Immediately after the injection of the molten resin was completed in the mold open state (top plate thickness 4 mm), the mold was closed and compressed, and at the same time, the injection screw was retracted 9 mm. At this time, the filling amount of the molten resin was adjusted so that the final product plate thickness was 1.8 mm, and the compression pressure was 150 kg / cm 2 . Immediately after completion of compression, nitrogen gas was injected into the mold at a pressure of 55 kg / cm 2 for 30 seconds. After cooling was completed, the mold was opened and the molded product was taken out. The level of sink marks in the obtained molded product was much improved as compared with Comparative Example 2.
[0048]
(Example 2)
Immediately after the mold thickness reaches 1.8 mm by mold closing compression, the mold clamping pressure is reduced from 150 kg / cm 2 to 80 kg / cm 2 , and the nitrogen gas pressure into the mold is set to 35 kg / cm 2. Was molded in the same manner as in Example 1. The level of sink marks in the molded product obtained was improved as in Example 1 despite the low gas pressure.
[0049]
Example 3
Molding was performed in the same manner as in Example 2 except that gas injection into the mold was performed simultaneously with the start of injection of the molten resin. The level of sink marks in the molded product obtained was improved as in Example 1 despite the low gas pressure.
[0050]
(Example 4)
Using the mold 2 shown in FIG. 7 in which the resin gate 9 and the gas injection port 5 are arranged on the same side (fixed mold 2b side), the molded product 10 shown in FIG. did. The molded product 10 has a size of 250 mm × 250 mm and a plate thickness of 1.8 mm, and a rib (thick portion 11) having a width of 3 mm and a height of 5 mm is set on the back surface.
[0051]
The level of sink marks in the obtained molded product was the same as in Example 1 despite a low gas pressure.
[0052]
Table 1 shows the measurement results of the sink marks and the visual appearance evaluation in the molded products obtained in the above comparative examples and examples.
[0053]
[Table 1]
Figure 0003762527
[0054]
【The invention's effect】
The present invention is as described above, and has the following effects.
[0055]
(1) When the mold is closed and compressed, the resin pressure in the thick rib portion can be extremely effectively reduced by the back flow of the resin from the resin gate in the vicinity of the thick rib portion. Can be guided around. Therefore, the thick rib portion can be selectively pressed using a low-pressure gas without sacrificing the resin spreading effect in compression molding, and the gas pressing effect can be enhanced.
[0056]
(2) The compression allowance can be increased with the back flow of the resin during mold closing compression, and the resin pressure in the cavity can be made uniform. For this reason, even when a box-shaped molded product is molded, the compression pressure can be sufficiently applied to the end portion of the molded product.
[0057]
(3) Therefore, it is possible to easily cope with a design in which a thick part is set in a wide range with a low gas pressure, and a molded product having a good appearance without sinking of the thick part can be stably formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a mold used in the present invention.
FIG. 2 is a view showing an example of a molded product molded according to the present invention.
FIG. 3 is a view for explaining a first injection compression molding method of the present invention.
FIG. 4 is a view for explaining a second injection compression molding method of the present invention.
FIG. 5 is a cross-sectional view showing an example of the shape of a thick portion of a molded product molded according to the present invention.
FIG. 6 is a view showing another example of a molded product molded according to the present invention.
7 is a cross-sectional view showing a mold used in Example 4. FIG.
8 is a view showing a molded product molded in Example 4. FIG.
[Explanation of symbols]
1 Cavity 1a, 1b Cavity surface 2 Mold 2a Movable type (core type)
2b Fixed type (Cabinet type)
DESCRIPTION OF SYMBOLS 3 Molten resin 4 Recessed part corresponding to thick part 5 Pressure inlet 6 Ejector pin 6a Sleeve 6b Shaft pin 7 Pressurized fluid path 8a-8d Sealing material 9 Resin gate 10 Molded article 11 Thick part 20 Injection nozzle 21 Nozzle gate 22 Injection screw

Claims (4)

金型が完全に閉鎖していない状態でキャビティ内に溶融樹脂を射出し、型閉じ圧縮し溶融樹脂を展延して厚肉リブを有する成形品を成形する射出圧縮成形方法において、
厚肉リブ部近傍に樹脂ゲートを設け、該樹脂ゲートから樹脂を射出し、型閉じ圧縮する以前にガスを厚肉リブ部から注入して厚肉リブ部の樹脂と金型との間にガスを流動させ、しかる後、型閉じ圧縮するとともに該樹脂ゲートから樹脂を逆流させて、ガスを該厚肉リブ部周辺にさらに流動させてなることを特徴とする射出圧縮成形方法。
In an injection compression molding method in which a molten resin is injected into the cavity in a state where the mold is not completely closed, the mold is closed and compressed, and the molten resin is spread to form a molded product having a thick rib.
A resin gate is provided in the vicinity of the thick rib portion, and the resin is injected from the resin gate, and before the mold is closed and compressed, gas is injected from the thick rib portion to provide a gas between the resin of the thick rib portion and the mold. The resin is then closed and compressed, and the resin is made to flow backward from the resin gate to further flow the gas around the thick rib portion.
金型が完全に閉鎖していない状態でキャビティ内に溶融樹脂を射出し、型閉じ圧縮し溶融樹脂を展延して厚肉リブを有する成形品を成形する射出圧縮成形方法において、
厚肉リブ部近傍に樹脂ゲートを設け、該樹脂ゲートから樹脂を射出し、つづいて型閉じ圧縮するとともに該樹脂ゲートから樹脂を逆流させると同時またはその後に、厚肉リブ部からガスを注入して、ガスを該厚肉リブ部周辺に流動させてなることを特徴とする射出圧縮成形方法。
In an injection compression molding method in which a molten resin is injected into the cavity in a state where the mold is not completely closed, the mold is closed and compressed, and the molten resin is spread to form a molded product having a thick rib.
A resin gate is provided in the vicinity of the thick rib portion, and the resin is injected from the resin gate, then the mold is closed and compressed, and at the same time or after the resin is flown back from the resin gate, gas is injected from the thick rib portion. An injection compression molding method characterized by flowing gas around the thick rib portion.
樹脂ゲートと略対面した位置にガス注入口を配置した金型を用いることを特徴とする請求項1又は2に記載の射出圧縮成形方法。The injection compression molding method according to claim 1 or 2, wherein a mold having a gas injection port disposed at a position substantially facing the resin gate is used. 型閉じ圧縮を完了した直後に、圧縮圧力を降下させることを特徴とする請求項1〜3のいずれかに記載の射出圧縮成形方法。The injection compression molding method according to any one of claims 1 to 3, wherein the compression pressure is lowered immediately after completion of mold closing compression.
JP24490797A 1996-09-10 1997-09-10 Injection compression molding method Expired - Lifetime JP3762527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24490797A JP3762527B2 (en) 1996-09-10 1997-09-10 Injection compression molding method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-238282 1996-09-10
JP23828296 1996-09-10
JP24490797A JP3762527B2 (en) 1996-09-10 1997-09-10 Injection compression molding method

Publications (2)

Publication Number Publication Date
JPH10138304A JPH10138304A (en) 1998-05-26
JP3762527B2 true JP3762527B2 (en) 2006-04-05

Family

ID=26533628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24490797A Expired - Lifetime JP3762527B2 (en) 1996-09-10 1997-09-10 Injection compression molding method

Country Status (1)

Country Link
JP (1) JP3762527B2 (en)

Also Published As

Publication number Publication date
JPH10138304A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
US5993723A (en) Injection compression molding method
US7422426B2 (en) Injection molding method and injection molding apparatus
KR100919690B1 (en) Method for expansion injection molding
JP3174962B2 (en) Gas utilization method for improving surface properties in plastic molding
CA2435947A1 (en) Moulding
JP3762527B2 (en) Injection compression molding method
JPH10138305A (en) Injection compression molding method
JP2717758B2 (en) Injection molding method and injection mold
JP3423426B2 (en) Injection molding equipment for synthetic resin molded products
JP3615650B2 (en) Gas assist injection molding method and gas assist injection molding apparatus
JPH06848A (en) Stack mold
JPH10138303A (en) Injection compression molding method
JP2788669B2 (en) Manufacturing method of hollow resin products
JPH0374892B2 (en)
JPH06262645A (en) Injection molder and injection molding method
JP3220272B2 (en) Injection molding method to paint simultaneously with molding
US6146579A (en) Process for producing thermoplastic resin hollow molded article
JP2004291324A (en) Mold for multicolor molding and multicolor molding method
JP3266900B2 (en) Injection molding method and injection molding die apparatus used for this method
JP2551186Y2 (en) Injection molding equipment
JPH0548167B2 (en)
JP3734672B2 (en) Inert gas blowing part structure of injection molding equipment
JP2984890B2 (en) Injection molding method
JPH08267510A (en) Injection molding method
JPH06238698A (en) Molding equipment for blow molding

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051227

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term