JP3762098B2 - Control method of once-through boiler - Google Patents

Control method of once-through boiler Download PDF

Info

Publication number
JP3762098B2
JP3762098B2 JP11640398A JP11640398A JP3762098B2 JP 3762098 B2 JP3762098 B2 JP 3762098B2 JP 11640398 A JP11640398 A JP 11640398A JP 11640398 A JP11640398 A JP 11640398A JP 3762098 B2 JP3762098 B2 JP 3762098B2
Authority
JP
Japan
Prior art keywords
amount
steam
water
temperature
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11640398A
Other languages
Japanese (ja)
Other versions
JPH11304108A (en
Inventor
篤 津田
誠司 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP11640398A priority Critical patent/JP3762098B2/en
Publication of JPH11304108A publication Critical patent/JPH11304108A/en
Application granted granted Critical
Publication of JP3762098B2 publication Critical patent/JP3762098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は貫流ボイラの制御方法に関する。更に詳しくは、本発明は、貫流ボイラの定常状態での運転(以下、定常運転という)中に蒸発管の過熱度を算出し、これを一定に維持することを目標として、給水量及び/又は気水分離器抜出し水量を制御することにより、貫流ボイラの経済的な運転を図る方法に関する。
【0002】
【従来の技術】
一般に、貫流ボイラには、加熱炉内の壁面に多数の蒸発管が設けられており、その蒸発管に給水量調節弁から節炭器を経て脱塩水が供給されることで、蒸発管の出口蒸気が湿り飽和蒸気、即ち霧状の水滴を含む飽和蒸気となるように調節されている。蒸発管出口の湿り飽和蒸気は、気水分離器に導かれて気水分離された後に、乾き飽和蒸気、即ち水滴を含まない飽和蒸気となって過熱器に供給される。気水分離器の凝縮水は抜出し水量調節弁によってブロー水として抜き出される。
【0003】
貫流ボイラの運転に当たっては、各蒸発管の異常過熱を防止しつつ蒸気発生の経済性向上を図ることが重要であり、その手法の一つとして、蒸発管出口の湿り飽和蒸気の湿り度(以下、モイスチャーという)、即ち、過熱蒸気中に含まれる霧状の水滴の割合、を制御することが行われる。
【0004】
蒸発管出口の湿り蒸気のモイスチャーを制御する方法としては、この蒸気を気水分離した後の乾き蒸気流量に対するボイラ主給水流量の比率を設定する等の方法があるが、これ等の設定値としては、ボイラメーカーの推奨値やユーザーの経験値が用いられているのが現状であり、最適な運転がなされているとは言い難い。
【0005】
【発明が解決しようとする課題】
各蒸発管出口で飽和蒸気のモイスチャーのバランスをとる方法としては、ボイラ負荷が一定の状態で全蒸発管の出口蒸気温度が過熱域になるまで給水を減少させ、その温度が一定の範囲内に収まるように絞り弁を手動調整して均一化を図る方法がある。しかし、この方法では、絞り弁の調整後も、気水分離器入口蒸気のモイスチャーと各蒸発管出口蒸気のモイスチャー、特に蒸発管のモイスチャーのうち最低のもの(以下、最低モイスチャーという)、との偏差は十分に改善されないまま定常運転を実施することになる。ここで、気水分離器入口蒸気のモイスチャーは、抜出し水量と給水量との比などのようなマスバランスから容易に算出することが出来るが、定常運転では蒸気温度が飽和域にあり、気水分離器のモイスチャーから各蒸発管の出口蒸気のモイスチャーを算出することはできない。従って、定常運転においては、気水分離器入口蒸気のモイスチャーのみを管理する運転となるが、絞り弁のスケーリングや加熱炉内の熱バランス変化等により、気水分離器入口蒸気のモイスチャーと蒸発管出口の最低モイスチャーとの相関関係も変化するので、常に蒸発管が異常過熱しないように管理しようとすると、モイスチャーの設定値は徐々に増加傾向となり、不経済運転の原因となる。従って、蒸発管が異常過熱しないように管理し、かつモイスチャーの設定値が不経済運転とならないような制御方法が要請されている。
【0006】
本発明は、上記に鑑み、蒸発管の異常過熱を防止しつつ、できるだけ高い温度で経済的な運転が可能な貫流ボイラの制御方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、上記従来技術の問題点を解決すべく鋭意検討を重ねた結果、過熱状態に達するに従って蒸発管の出口温度の変化量が大きくなっていくことに着目し、蒸発管の出口温度の変化量に適切な演算を施すことによって、蒸発管の過熱度を算出し、この過熱度を一定に維持するように給水量と気水分離器抜出し水量とを制御することによってモイスチャーを好適に管理し得ることを見出して本発明に到達した。
【0008】
即ち、本発明の要旨は、給水流量を調節可能な給水系と、それぞれが絞り弁を介して前記給水系に接続された複数の蒸発管を有する加熱炉と、前記蒸発管に接続され抜出し水量調節弁を有する気水分離器とを備える貫流ボイラを制御する方法において、
各制御サイクルで出口蒸気の温度又は該温度の変化量が最大である一の蒸発管の前記温度の変化量を検出し、
前記検出された温度の変化量に所定の演算を加えて蒸発管過熱度を算出し、
給水量及び/又は気水分離器抜出し水量を調節して、前記蒸発管過熱度を目標値の近傍に維持することを特徴とする貫流ボイラの制御方法に存する。
【0009】
本発明の貫流ボイラの制御方法によれば、蒸発管の温度変化の最大値に基づいて蒸発管過熱度を定めており、この最大値を示す蒸発管が最も異常過熱を起こす可能性が高いので、蒸発管の異常過熱の監視が容易であり、従って、蒸発管の異常過熱を抑えつつ、モイスチャーが少ない適正な過熱度を維持することができ、経済的なボイラ運転が可能となる。
【0010】
ここで、蒸発管過熱度の目標値は、例えばトライアンドエラー方式で定めることが出来る。この場合、通常の運転中に吸水量を絞り、蒸発管が異常過熱を発生する直前の蒸発管過熱度を求めてこれを目標値として選ぶことが出来る。また、前記所定の演算は、各制御サイクルにおける前記検出された温度の変化量を一次遅れフィルタ又は移動平均フィルタにかけることによって行うことが出来る。この場合、経済運転に適切な蒸発管過熱度が得られる。
【0011】
検出された温度の変化量が負の値であるときには、該負の変化量をその絶対値又は0に置き換えることも本発明の好ましい態様である。この場合、特に急峻な運転条件の変更が避けられる。
【0012】
【発明の実施の形態】
以下、本発明について更に詳細に説明する。図1は、本発明方法を実施するための制御系を含む貫流ボイラの構成例を模式的に示す。同図において、1は加熱炉であり、その内部の壁面には多数(例えば60本程度)の蒸発管2が配置されている。各蒸発管2には絞り弁3が配設され、各絞り弁3を調整することで対応する蒸発管2への給水量を個別に調節できる。供給水は、配管4から給水量調節弁5、節炭器(エコノマイザー)6及び配管7を経て加熱炉1内に導かれ、蒸発管2内で蒸発させられて湿り飽和蒸気となる。この湿り飽和蒸気は、配管8を経て気水分離器9に導かれ、そこで乾き飽和蒸気と水とに気水分離される。分離された水は、抜出し水量調節弁10を経て配管11から抜き出される。乾き飽和水蒸気は、配管12から過熱器13、過熱低減器14(散布水量は散布水量調節弁15によって調節される)及び過熱器16を経てエンタルピー調節されつつ抜き出され、ボイラ発生蒸気として各種の用途に供される。
【0013】
各蒸発管2の出口蒸気の温度はそれぞれ蒸気温度計17によって常時監視され、その温度データは計算機18に入力される。同様に、加熱炉への給水量、気水分離器出口の乾き飽和蒸気流量、気水分離器抜出し水流量に関するデータが計算機18に入力される。ここで、気水分離器抜出し水流量は、直接流量を測定してもよく、或いは、抜出し水量調節弁の開度とその弁特性から算出してもよい。これらのデータから得られる気水分離器入口飽和蒸気のモイスチャーは、計算機18によりボイラの内部制御装置19に出力され、これによりボイラ内部制御装置19内のモイスチャー設定値が変更される。ボイラ内部制御装置19では、変更されたモイスチャーの設定値に従って給水量及び/又は抜出し量が調節され、気水分離器入口の飽和蒸気のモイスチャー制御が行われる。
【0014】
次に過熱度の算出方法について述べる。
▲1▼まず、定常運転中の各蒸発管の出口蒸気の所定時間内の温度の変化量を求める。温度の変化量としては、前回の制御サイクルにおける各蒸発管の温度と、現在の制御サイクルにおける各蒸発管の温度との差を用いるのが望ましい。
▲2▼各蒸発管ごとに求められた出口蒸気の温度の変化量の中から、最大の変化量を選択する。
▲3▼最大の変化量が負数の場合には、これをその絶対値又は0で置き換える。
▲4▼各制御サイクルで得られた最大の温度変化量に適切なフィルターをかけ、値を平滑化することで蒸発管過熱度を算出する。フィルタの例として、1次遅れフィルターや、移動平均フィルター等が挙げられる。
【0015】
算出した蒸発管過熱度を目標値の近傍に維持する制御を行う。設定される目標値は一般にボイラによって個々に異なる。このため、特定のボイラにおいて最初に定める目標値としては、制御の開始前に給水を徐々に減少させて行き、過熱状態に達する直前の過熱度を採用する。それ以後は、実際に運転してその結果から目標値を修正する。
【0016】
蒸発管過熱度をその目標過熱度の近傍に維持するために、給水量及び/又は気水分離器抜出し水量調節弁を調節する。これは、気水分離器入口蒸気のモイスチャーの目標値を調整することでも代用できる。この気水分離器入口蒸気のモイスチャーの調整は、通常、給水量及び/又は抜出し水量調節弁で行われる。
【0017】
▲1▼で各蒸発管の出口蒸気の温度の変化量をすべての蒸発管について求めており、一般的にはこの方法が蒸発管過熱度の算出のために好ましい。しかし、計算機負荷の削減のためには、各蒸発管の中から最高温度を示す蒸発管を求め、この蒸発管の温度の変化量を求めることで代用できる。
【0018】
以上説明した通り、本発明方法は、貫流ボイラの制御に際して、実質的に蒸発管の最大過熱度となる蒸発管過熱度を目標値に維持するように給水量及び/又は気水分離器抜出し水量を制御することにより、ボイラの経済的な運転を図るものである。給水量の調節は、主として加熱炉全体への給水量を調節する調節弁で行われる。
【0019】
ここで、蒸発管の出口蒸気の最大過熱度を直接に制御することにより、万一の場合の蒸発管の異常過熱に対しても、モイスチャーを自動で適切に増加させることにより、迅速かつ安全に処置することが出来る。
【0020】
【実施例】
図1は、本発明の貫流ボイラの制御方法を実施した結果の一例を示すグラフで、モイスチャー(%)、蒸発管最高温度(℃)、及び、蒸発管過熱度の経過を示している。本実施例では、本発明方法による制御開始前はモイスチャーを一定とした従来の制御を実施し、本発明方法で制御を開始した後は、蒸発管過熱度を、まず第1の設定値に、次いで、第2の設定値に夫々維持するように制御している。本発明による制御開始後は、第1及び第2設定値のいずれにおいても、本発明による制御開始前に比してモイスチャーは大幅に低下し、経済的な運転が行われていることが理解できる。また、蒸発管過熱度を高い目標値に維持すると、モイスチャーが少ない経済的な運転が行われることも理解できる。この例では、全蒸発管の中から最高温度である蒸発管を選定し、その温度の変化量を算出し、これから蒸発管過熱度を算出している。ここで、温度変化量が負数の場合にはこれをゼロに置き換え、温度変化量を1次遅れフィルターに通して値を平滑化して蒸発管過熱度を求めている。
【0021】
以上、本発明をその好適な実施形態例に基づいて説明したが、本発明の貫流ボイラの制御方法は、上記実施形態例の構成にのみ限定されるものではなく、上記実施形態例の構成から種々の修正及び変更を施したものも、本発明の範囲に含まれる。
【0022】
【発明の効果】
以上説明したように、本発明の貫流ボイラの制御方法は、貫流ボイラの定常運転中に、蒸発管の異常過熱を監視しつつ制御値である蒸発管過熱度を求め、その過熱度を目標値に維持する制御を行うことによって、貫流ボイラの経済経済的な運転を行うことが出来る。
【図面の簡単な説明】
【図1】本発明の一実施形態例の制御方法を実施するための制御系を含む貫流ボイラの構成を示す模式的ブロック図。
【図2】本発明の一実施例で得られた運転結果を示すグラフ。
【符号の説明】
1 加熱炉
2 蒸発管
3 絞り弁
5 給水量調節弁
6 節炭器
9 気水分離器
10 抜出し水量調節弁
13、16 過熱器
14 過熱低減器
17 蒸気温度計
18 計算機
19 ボイラ内部制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for controlling a once-through boiler. More specifically, the present invention calculates the superheat degree of the evaporation pipe during the steady-state operation of the once-through boiler (hereinafter referred to as steady operation), and aims to maintain this constant. The present invention relates to a method for economically operating a once-through boiler by controlling the amount of water discharged from a steam separator.
[0002]
[Prior art]
In general, a once-through boiler is provided with a large number of evaporation pipes on the wall inside the heating furnace, and when the desalted water is supplied to the evaporation pipes from a water supply amount control valve through a economizer, the outlet of the evaporation pipes is provided. The steam is adjusted so as to become wet saturated steam, that is, saturated steam containing mist-like water droplets. The wet saturated steam at the outlet of the evaporator tube is guided to the steam separator and separated from the steam, and then supplied to the superheater as dry saturated steam, that is, saturated steam containing no water droplets. Condensed water from the steam separator is extracted as blown water by an extraction water amount control valve.
[0003]
In the operation of once-through boilers, it is important to improve the economic efficiency of steam generation while preventing abnormal overheating of each evaporator tube. , Referred to as “moisture”), that is, the ratio of mist-like water droplets contained in superheated steam.
[0004]
As a method for controlling the moisture of the wet steam at the outlet of the evaporator pipe, there is a method of setting the ratio of the boiler main feed water flow rate to the dry steam flow rate after this steam is separated into steam and water. However, it is difficult to say that the optimum operation is being performed because the boiler manufacturer's recommended values and user experience values are currently used.
[0005]
[Problems to be solved by the invention]
As a method of balancing the moisture of saturated steam at the outlet of each evaporator, the water supply is reduced until the outlet steam temperature of all the evaporators reaches a superheated area with a constant boiler load, and the temperature is kept within a certain range. There is a method in which the throttle valve is manually adjusted so that it is kept uniform. However, in this method, even after adjusting the throttle valve, the moisture of the steam separator inlet steam and the moisture of each evaporator outlet steam, especially the lowest one of the evaporator moisture (hereinafter referred to as the lowest moisture), Steady operation will be carried out without sufficiently improving the deviation. Here, the steam moisture at the inlet of the steam separator can be easily calculated from the mass balance such as the ratio of the amount of water withdrawn and the amount of feed water. It is not possible to calculate the moisture of the outlet steam of each evaporator tube from the moisture of the separator. Therefore, in the steady operation, only the steam moisture at the inlet of the steam separator is managed, but the steam moisture at the inlet of the steam separator and the evaporation pipe are changed due to the scaling of the throttle valve and the change in the heat balance in the heating furnace. Since the correlation with the minimum moisture at the outlet also changes, if the evaporator tube is always managed so as not to be overheated abnormally, the set value of the moisture gradually increases, which causes uneconomical operation. Therefore, there is a demand for a control method that manages the evaporator tube so that it does not overheat and prevents the set value of the moisture from becoming uneconomical operation.
[0006]
In view of the above, it is an object of the present invention to provide a method for controlling a once-through boiler capable of economical operation at as high a temperature as possible while preventing abnormal overheating of the evaporation pipe.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems of the prior art, the present inventors pay attention to the fact that the amount of change in the outlet temperature of the evaporator tube increases as the overheated state is reached. Appropriate moisture by calculating the superheat degree of the evaporation pipe by appropriately calculating the temperature change amount, and controlling the amount of water supply and the amount of water extracted from the steam / water separator so as to maintain this superheat degree constant The present invention has been found to be manageable.
[0008]
That is, the gist of the present invention is that a feed water system capable of adjusting a feed water flow rate, a heating furnace having a plurality of evaporation pipes each connected to the feed water system via a throttle valve, and an amount of discharged water connected to the evaporation pipe In a method for controlling a once-through boiler comprising a steam separator having a control valve,
In each control cycle, the temperature of the outlet steam or the amount of change in the temperature of the one evaporation tube where the amount of change in the temperature is maximum is detected,
A predetermined calculation is added to the detected amount of change in temperature to calculate the degree of superheat of the evaporation tube,
The present invention resides in a method for controlling a once-through boiler, characterized in that the amount of water supplied and / or the amount of water extracted from the steam separator is adjusted to maintain the degree of superheat of the evaporator pipe in the vicinity of a target value.
[0009]
According to the control method for the once-through boiler of the present invention, the degree of superheat of the evaporator pipe is determined based on the maximum value of the temperature change of the evaporator pipe, and the evaporator pipe showing this maximum value is most likely to cause abnormal overheating. Therefore, it is easy to monitor the abnormal overheating of the evaporator tube. Therefore, while suppressing the abnormal overheating of the evaporator tube, it is possible to maintain an appropriate degree of superheat with less moisture, and it is possible to economically operate the boiler.
[0010]
Here, the target value of the evaporation pipe superheat degree can be determined by, for example, a trial and error method. In this case, the amount of water absorption can be reduced during normal operation, and the degree of superheat of the evaporator tube immediately before the evaporator tube is abnormally overheated can be obtained and selected as the target value. The predetermined calculation can be performed by applying the detected temperature change amount in each control cycle to a first-order lag filter or a moving average filter. In this case, the degree of superheat of the evaporator tube suitable for economic operation can be obtained.
[0011]
When the detected change in temperature is a negative value, it is also a preferred aspect of the present invention to replace the negative change with its absolute value or zero. In this case, particularly steep changes in operating conditions can be avoided.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail. FIG. 1 schematically shows a configuration example of a once-through boiler including a control system for carrying out the method of the present invention. In the figure, reference numeral 1 denotes a heating furnace, and a large number (for example, about 60) of evaporation tubes 2 are arranged on the inner wall surface. Each evaporation pipe 2 is provided with a throttle valve 3, and by adjusting each throttle valve 3, the amount of water supplied to the corresponding evaporation pipe 2 can be adjusted individually. The supplied water is introduced into the heating furnace 1 from the pipe 4 through the water supply amount adjusting valve 5, the economizer 6 and the pipe 7, and is evaporated in the evaporation pipe 2 to become wet saturated steam. This wet saturated steam is led to the steam separator 9 via the pipe 8, where it is separated into dry saturated steam and water. The separated water is extracted from the pipe 11 through the extraction water amount control valve 10. The dry saturated steam is extracted from the pipe 12 through the superheater 13, the superheat reducer 14 (the amount of sprayed water is adjusted by the sprayed water amount control valve 15) and the superheater 16 while adjusting the enthalpy, and various kinds of boiler generated steam are used. Served for use.
[0013]
The temperature of the outlet steam of each evaporation pipe 2 is constantly monitored by a steam thermometer 17, and the temperature data is input to a computer 18. Similarly, data relating to the amount of water supplied to the heating furnace, the flow rate of dry saturated steam at the outlet of the steam separator, and the flow rate of water discharged from the steam separator are input to the computer 18. Here, the water flow rate withdrawn from the steam / water separator may be measured directly, or may be calculated from the opening degree of the withdrawing water amount control valve and its valve characteristics. The moisture of the steam at the inlet of the steam / water separator obtained from these data is output by the computer 18 to the internal control device 19 of the boiler, whereby the moisture set value in the boiler internal control device 19 is changed. In the boiler internal control device 19, the amount of water supply and / or the amount of withdrawal is adjusted according to the changed set value of moisture, and moisture control of saturated steam at the inlet of the steam separator is performed.
[0014]
Next, a method for calculating the degree of superheat will be described.
(1) First, the amount of change in temperature within a predetermined time of the outlet steam of each evaporator tube during steady operation is obtained. As the amount of change in temperature, it is desirable to use the difference between the temperature of each evaporator tube in the previous control cycle and the temperature of each evaporator tube in the current control cycle.
(2) The maximum amount of change is selected from the amount of change in the temperature of the outlet steam obtained for each evaporator tube.
(3) If the maximum amount of change is a negative number, replace it with its absolute value or zero.
{Circle around (4)} An appropriate filter is applied to the maximum temperature change obtained in each control cycle, and the value is smoothed to calculate the degree of superheat of the evaporation pipe. Examples of the filter include a first-order lag filter and a moving average filter.
[0015]
Control is performed to maintain the calculated degree of superheat of the evaporation pipe in the vicinity of the target value. In general, the set target value varies depending on the boiler. For this reason, as the target value initially determined in a specific boiler, the water supply is gradually decreased before the start of control, and the degree of superheat immediately before reaching the overheat state is adopted. Thereafter, the vehicle is actually operated and the target value is corrected based on the result.
[0016]
In order to maintain the superheat degree of the evaporation pipe in the vicinity of the target superheat degree, the water supply amount and / or the steam / water separator discharge water amount adjustment valve is adjusted. This can also be replaced by adjusting the target value of steam moisture at the steam separator inlet. The adjustment of the moisture of the steam at the steam separator inlet is usually performed by a water supply amount and / or a discharge water amount adjustment valve.
[0017]
In (1), the amount of change in the temperature of the outlet steam of each evaporator tube is obtained for all the evaporator tubes, and this method is generally preferred for calculating the degree of superheat of the evaporator tube. However, in order to reduce the computer load, it can be substituted by obtaining an evaporation tube showing the highest temperature from each of the evaporation tubes and obtaining the amount of change in the temperature of the evaporation tube.
[0018]
As described above, in the method of the present invention, in the control of the once-through boiler, the amount of water supply and / or the amount of water discharged from the steam / water separator is maintained so that the evaporation pipe superheat degree, which is the maximum superheat degree of the evaporation pipe, is maintained at the target value. By controlling this, the boiler is economically operated. The adjustment of the water supply amount is mainly performed by a control valve that adjusts the water supply amount to the entire heating furnace.
[0019]
Here, by directly controlling the maximum superheat degree of the vapor at the outlet of the evaporation pipe, it is possible to quickly and safely increase the moisture automatically and appropriately even in the event of an abnormal overheating of the evaporation pipe in the event of an emergency. Can be treated.
[0020]
【Example】
FIG. 1 is a graph showing an example of a result of carrying out the once-through boiler control method of the present invention, and shows the progress of moisture (%), the maximum temperature of the evaporator tube (° C.), and the degree of superheat of the evaporator tube. In this embodiment, the conventional control with a constant moisture is performed before the start of the control according to the method of the present invention, and after the control is started with the method of the present invention, the evaporation tube superheat is first set to the first set value. Next, control is performed so as to maintain the second set value. After the start of the control according to the present invention, it can be understood that in both the first and second set values, the moisture is drastically reduced compared to before the start of the control according to the present invention, and an economical operation is performed. . It can also be understood that if the evaporative tube superheat degree is maintained at a high target value, economical operation with less moisture is performed. In this example, the evaporator tube having the highest temperature is selected from all the evaporator tubes, the amount of change in the temperature is calculated, and the degree of superheat of the evaporator tube is calculated therefrom. Here, when the temperature change amount is a negative number, this is replaced with zero, the temperature change amount is passed through a first-order lag filter, and the value is smoothed to obtain the degree of superheat of the evaporation tube.
[0021]
As mentioned above, although this invention was demonstrated based on the suitable embodiment example, the control method of the once-through boiler of this invention is not limited only to the structure of the said embodiment example, From the structure of the said embodiment example. Various modifications and changes are also included in the scope of the present invention.
[0022]
【The invention's effect】
As described above, the control method for the once-through boiler according to the present invention obtains the superheat degree of the evaporation pipe as a control value while monitoring the abnormal superheat of the evaporator pipe during the steady operation of the once-through boiler, and sets the superheat degree to the target value. By performing the control to maintain the current, the once-through boiler can be operated economically and economically.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing a configuration of a once-through boiler including a control system for carrying out a control method according to an embodiment of the present invention.
FIG. 2 is a graph showing an operation result obtained in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Evaporation pipe 3 Throttle valve 5 Water supply amount adjustment valve 6 Eco-saving device 9 Steam / water separator 10 Extraction water amount adjustment valve 13, 16 Superheater 14 Superheat reducer 17 Steam thermometer 18 Computer 19 Boiler internal control device

Claims (3)

給水流量を調節可能な給水系と、それぞれが絞り弁を介して前記給水系に接続された複数の蒸発管を有する加熱炉と、前記蒸発管に接続され抜出し水量調節弁を有する気水分離器とを備える貫流ボイラを制御する方法において、
各制御サイクルで出口蒸気の温度又は該温度の変化量が最大である一の蒸発管の前記温度の変化量を検出し、
前記検出された温度の変化量に所定の演算を加えて蒸発管過熱度を算出し、
給水量及び/又は気水分離器抜出し水量を調節して、前記蒸発管過熱度を目標値の近傍に維持することを特徴とする貫流ボイラの制御方法。
A water supply system capable of adjusting the water supply flow rate, a heating furnace having a plurality of evaporation pipes each connected to the water supply system via a throttle valve, and a steam / water separator having an extraction water amount adjustment valve connected to the evaporation pipe In a method for controlling a once-through boiler comprising:
In each control cycle, the temperature of the outlet steam or the amount of change in the temperature of the one evaporation tube where the amount of change in the temperature is maximum is detected,
A predetermined calculation is added to the detected amount of change in temperature to calculate the degree of superheat of the evaporation tube,
A method for controlling a once-through boiler, characterized in that the amount of water supplied and / or the amount of water extracted from a steam / water separator is adjusted to maintain the degree of superheat of the evaporator pipe in the vicinity of a target value.
前記所定の演算は、各制御サイクルにおける温度の変化量を一次遅れフィルタ又は移動平均フィルタにかけることによって行われる、請求項1に記載の貫流ボイラの制御方法。The method of controlling a once-through boiler according to claim 1, wherein the predetermined calculation is performed by applying a first-order lag filter or a moving average filter to a temperature change amount in each control cycle. 前記検出された温度の変化量が負の値であるときには、該負の変化量をその絶対値又は0に置き換える、請求項1又は2に記載の貫流ボイラの制御方法。The method for controlling a once-through boiler according to claim 1 or 2, wherein when the detected change amount of the temperature is a negative value, the negative change amount is replaced with an absolute value or zero.
JP11640398A 1998-04-27 1998-04-27 Control method of once-through boiler Expired - Fee Related JP3762098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11640398A JP3762098B2 (en) 1998-04-27 1998-04-27 Control method of once-through boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11640398A JP3762098B2 (en) 1998-04-27 1998-04-27 Control method of once-through boiler

Publications (2)

Publication Number Publication Date
JPH11304108A JPH11304108A (en) 1999-11-05
JP3762098B2 true JP3762098B2 (en) 2006-03-29

Family

ID=14686195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11640398A Expired - Fee Related JP3762098B2 (en) 1998-04-27 1998-04-27 Control method of once-through boiler

Country Status (1)

Country Link
JP (1) JP3762098B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766527B2 (en) * 2011-06-24 2015-08-19 三菱日立パワーシステムズ株式会社 Method and apparatus for controlling once-through boiler
DE102013202249A1 (en) * 2013-02-12 2014-08-14 Siemens Aktiengesellschaft Steam temperature control device for a gas and steam turbine plant

Also Published As

Publication number Publication date
JPH11304108A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
CA2649284C (en) Utilisation of waste heat in the dryer section of paper machines
US4430962A (en) Forced flow vapor generator plant
KR101606293B1 (en) Method for operating a recirculating waste heat steam generator
JP2007017107A (en) Drying system
JPS6218724B2 (en)
JP2006343042A (en) Operating method for single/double effect absorption refrigerating machine
US20170241285A1 (en) Turbine control unit comprising a thermal stress controller as a master controller
JPH09170705A (en) Cleaning method of water-steam circuit of combined gas-steam-power generation facility
AU2009214171B2 (en) Method for starting a continuous steam generator
JP3762098B2 (en) Control method of once-through boiler
JPH1193620A (en) Gas-steam-generator of combination type
JP7111525B2 (en) Once-through heat recovery boiler and control system for once-through heat recovery boiler
JP6844256B2 (en) Steam generation system
KR19990029030A (en) Method of operation of gas and steam turbine devices, and devices operating accordingly
JP6981614B2 (en) Drying / concentration system
WO2015170564A1 (en) Drain recovery device
JP5818963B2 (en) Method for operating once-through boiler and boiler configured to carry out this method
CN215372400U (en) Pure steam generating device
JP6394896B2 (en) Steam generation system
JP4466914B2 (en) Combined power plant and starting method
JPH09228806A (en) Air bleed type steam turbine plant
JP7228925B2 (en) Superheated steam generation utilization system
CN112963816B (en) Pure steam generating device and working method thereof
RU2581012C1 (en) Method for automatic control of drying process of high-dispersed materials
CN114087888B (en) Condenser double constant operation control method and system and two-loop system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees