JP3761108B2 - Air layer insulation duct - Google Patents

Air layer insulation duct Download PDF

Info

Publication number
JP3761108B2
JP3761108B2 JP05424096A JP5424096A JP3761108B2 JP 3761108 B2 JP3761108 B2 JP 3761108B2 JP 05424096 A JP05424096 A JP 05424096A JP 5424096 A JP5424096 A JP 5424096A JP 3761108 B2 JP3761108 B2 JP 3761108B2
Authority
JP
Japan
Prior art keywords
spiral
pipe
layer
air layer
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05424096A
Other languages
Japanese (ja)
Other versions
JPH09222257A (en
Inventor
清人 大沼
忠男 鈴木
唯司 矢崎
裕樹 初田
和彦 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Fujimori Sangyo Co Ltd
Original Assignee
Takenaka Corp
Fujimori Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Fujimori Sangyo Co Ltd filed Critical Takenaka Corp
Priority to JP05424096A priority Critical patent/JP3761108B2/en
Publication of JPH09222257A publication Critical patent/JPH09222257A/en
Application granted granted Critical
Publication of JP3761108B2 publication Critical patent/JP3761108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Duct Arrangements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体例えば空気調和用気体を移送させるための空気層断熱ダクトに関するものである。
【0002】
【従来の技術】
従来の空気調和用の断熱ダクトは、例えば薄板鋼板製のダクト本管の表面を厚さ20〜25mmの断熱材5(グラスウール、ロックウール等)で覆い、更に、形状保持、破損防止のため、その断熱材の表面を保護カバーで覆っているものである。
そして、現場においては、一般に、ダクト施設工事が終了した後に、施設したダクトの表面を断熱材で覆い、かつ、その表面を保護カバーで覆う断熱工事を行っているため、現場での工事期間を長くとる必要があった。
また、グラスウール、ロックウール等の断熱材は、一般に吸水性があり、一度吸水すると乾燥しずらいため、吸水し易い環境、例えば屋外での工事や建築途中の工事については、特別な水濡れ防止対策を講ずる必要があった。特に、グラスウールやロックウールのような断熱材は、吸水して濡れると、断熱性能が低下するという現象を内在しているので、特別な配慮が必要であった。
【0003】
これらの不都合を改善するために、先に、本出願人の一員等により実願平5-70562 号の二重管式断熱ダクトを開発している。
この二重管式断熱ダクトは、流路となる内管と該内管を覆う外管との間に、適宜間隔ごとにスペーサーを介在させて厚さ10〜30mmの空気層を形成しものであり、スペーサーとしては、例えば鞍形等に形成したガラスウールやロックウールの成形物、炭酸カルシウム発泡体或いはプラスチックやエラストマーの成形物等を用いるものである。
このような二重管式断熱ダクトによれば、その空気層によって適切な断熱効果を発揮させることができて、上述のような不都合を改善することができる。
【0004】
【発明が解決しようとする課題】
しかし、製品として具現化させためには、未だ解決しなければならない次のような問題点が残されている。
▲1▼ 内管と外管の他に、別部材のスペーサーを作製しなければならない。
▲2▼ 内管の外周面各所にスペーサーを固定した後に、外管を嵌合させることとなるが、内管へのスペーサーの固定が容易でない。
▲3▼ 重ね合わせる内管と外管とがかなりの長さを有している上に、その外管を各所に固定されている多数のスペーサーの外側に嵌合させるため、嵌合が容易でない。
▲4▼ 工場作業とはいえ、組立作業が主として手作業に頼ることとなるため、組み立てに多くの手間と時間がかかる。
▲5▼ 部材の損傷が多く、歩留が悪い。
▲6▼ 総じて、かなりのコスト高となる。
そこで、本発明は、前述の不都合を改善するとともに、これらの問題点をも解決しようとするものである。
【0005】
【課題を解決するための手段】
ここにおいて、請求項1の空気層断熱ダクトの発明は、内管として、空気調和用気体移送用の流路となるダクト本管を、また外管として、上記ダクト本管を覆う被覆外管を、それぞれ筒形に形成し、かつ、
上記内管にスパイラル状外向き山型リブを、また外管にスパイラル状内向き山型リブをそれぞれ逆巻きに形成して相互に交差するように設け更に両スパイラル状山型リブが交差箇所で接点を有することにより、これら内外両管の間に厚さ5〜20mmの空気層を保持するように設けたことを特徴とする。
【0006】
請求項2の空気層断熱ダクトの発明は、請求項1の発明にあって、上記被覆外管の外側に、該被覆外管との間に空気層を保有して別の被覆外管を重ねることで、空気層を複数層とした
【0007】
請求項3の空気層断熱ダクトの発明は、内管として、空気調和用気体移送用の流路となるダクト本管を、また外管として、上記ダクト本管を覆う被覆外管を、それぞれ筒形に形成し、かつ
上記内管にスパイラル状外向き鰭リブを、また外管にスパイラル状内向き鰭リブをそれぞれ逆巻きに形成して相互に交差するように設け、更に両スパイラル状鰭リブが交差箇所で接点を有することにより、これら内外両管の間に厚さ5〜20mmの空気層を保持するように設けたことを特徴とする。
【0008】
【発明の実施の形態】
その1.
図1は、請求項1、請求項2の発明に係る空気層断熱ダクトの一実施形態を示した断面図である。
図1において、1は、内管たるダクト本管であり、このダクト本管1は、例えば板厚0.5〜2.0mmの亜鉛引き鋼板、ステンレス鋼板、塩化ビニール樹脂引き鋼板等の帯板により、ハゼ締めスパイラル製筒形成する。11は、ハゼ締めである。
そして、その製作の過程で、このダクト本管1にリブ高さ3〜20mm程度のスパイラル状外向き山型リブ12を、例えば右巻きスパイラル製筒のときは右巻きに成形して配置させている。
2は、ダクト本管1の外側に厚さが5〜20mm程度の断熱層たる空気層3を保有させて重ねた被覆外管であり、この被覆外管2もダクト本管1の場合と同様に、例えば板厚0.5〜2.0mmの亜鉛引き鋼板、ステンレス鋼板、塩化ビニール樹脂引き鋼板等の帯板により、ダクト本管1と逆スパイラルにハゼ締めスパイラル製筒形成しており、その製作の過程で、この被覆外管2にリブ高さ3〜20mm程度のスパイラル状内向き山型リブ22を、例えば左巻きスパイラル製筒のとき(この場合ダクト本管1とそのスパイラル状外向き山型リブ12は右巻きスパイラル)には同じ左巻きに形成して配置させ、該スパイラル状内向き山型リブ22にダクト本管1のスパイラル状外向き山型リブ12と交差接点を形成させて、上記空気層3を形成、保有させている。21は、ハゼ締めである。
【0009】
これらダクト本管1と被覆外管2とは、ハゼ締めスパイラル製筒形成機により連続的に製筒すればよく、両者を同時に又は後者を前者の次行程で製作すればよい。こうすることで、手作業に頼ることなく高速度に生産できて、生産性を格段に向上させることができ、また、シンプルで経済的なものにできて、製品コストを大幅に低減でき、かつ、軽量化を得るとができる。また、スパイラル状外向き山型リブ12、スパイラル状内向き山型リブ22、ハゼ締め11,21により機械的強度を大幅に増強できる。空気層3の厚さは、上述のように5〜20mm程度とするが、これにより最良の断熱効果が得られる。つまり、空気層3の厚さが5mm未満では、いわゆる輻射伝熱的、ヒートブリッジ的現象が生じて、断熱効果が低下し、20mmを超えると、空気層内で対流が発生し易くなって、断熱効果が低下するからである。実験に徴するに、断熱効果については、空気層3が単層であっても、断熱材及び保護カバーを付した従来品に比べて遜色のない良好なデータを得ることができた。工事現場での施工試験では、その軽量化により作業が容易となり、また、ダクト施設工事だけで足りて、断熱材及び保護カバーを被覆する断熱工事や水濡れ防止工事等が全て省略できることを確認した。ダクト施設工事後の露出した被覆外管2は宇宙時代の感覚にマッチした美麗な外観を呈した。なお、ダクト本管1と被覆外管2は、ハゼ締めスパイラル製筒形成に代えて縦巻き溶接製筒成形してもよい。
【0010】
その2.
図2は、空気層を2層とした請求項2の発明に係る空気層断熱ダクトの一実施形態を示した断面図である。
図2において、1は、内管たるダクト本管であり、このダクト本管1は、例えば板厚0.5〜2.0mmの亜鉛引き鋼板、ステンレス鋼板、塩化ビニール樹脂引き鋼板等の帯板により、ハゼ締めスパイラル製筒形成する。11は、ハゼ締めである。
そして、その製作の過程で、このダクト本管1にリブ高さ3〜20mm程度のスパイラル状外向き山型リブ12を、例えば右巻きスパイラル製筒のときは右巻きに成形して配置させている。
2-1は、ダクト本管1の外側に厚さが5〜20mm程度の断熱層たる第1層の空気層3-1を保有させて重ねた第1層の被覆外管、2-2は、該第1層の被覆外管の外側に厚さが5〜20mm程度の断熱層たる第2層の空気層3-2を保有させて重ねた第2層の被覆外管であり、これらの被覆外管もダクト本管1の場合と同様に、例えば板厚0.5〜2.0mmの亜鉛引き鋼板、ステンレス鋼板、塩化ビニール樹脂引き鋼板等の帯板により、第1層の被覆外管2-1がダクト本管1と、第2層の被覆外管2-2が第1層の被覆外管と、それぞれ逆スパイラルの関係でハゼ締めスパイラル製筒形成しており、その製作の過程で、各被覆外管2-1,2-2にリブ高さ3〜20mm程度のスパイラル状内向き山型リブ22-1,22-2とスパイラル状外向き山型リブ23-1を、例えば第1層の被覆外管2-1が左巻きスパイラル製筒、第2層の空気層3-2が右巻きスパイラル製筒のとき(この場合ダクト本管1とそのスパイラル状外向き山型リブ12は右巻きスパイラル)には、第1層の被覆外管2-1に左巻きの、また、第2層の被覆外管2-2に右巻きの、つまり、それぞれのスパイラル方向に順応させたスパイラル状内向き山型リブ22-1,22-2とスパイラル状外向き山型リブ23-1とを相応に形成して配置させ、第1層の被覆外管2-1のスパイラル状内向き山型リブ22-1とダクト本管1のスパイラル状外向き山型リブ12、第2層の被覆外管2-2のスパイラル状内向き山型リブ22-2と第1層の被覆外管2-1のスパイラル状外向き山型リブ23-1とにそれぞれ交差接点を形成させて、上記第1層に空気層3-1及び第2層の空気層3-2を形成、保有させている。21-1,21-2は、ハゼ締めである。ただし、第2層の被覆外管2-2にはスパイラル状外向き山型リブを設けていないが、あっても差し支えはない(図3参照)。
なお、製作、機能、用途、性能等については、その1.の場合と同様であり、省略する。
【0011】
その3.
図3は、空気層を3層とした請求項2の発明に係る空気層断熱ダクトの他の実施形態を示した断面図である。
図3の場合は、上記その2.の空気層断熱ダクトの外側に更に厚さが5〜20mm程度の断熱層たる第3層の空気層3-3を保有させて第3層の被覆外管2-3を重ねたものである。
この場合の第3層の被覆外管2-3は、第2層の被覆外管2-2と同様にして、かつ、逆スパイラルの関係でハゼ締めスパイラル製筒形成し、そのスパイラル状内向き山型リブ22-3及びスパイラル状外向き山型リブ23-3も順方向に形成して配置させ、また、第2層の被覆外管2-2にも同様に相応のスパイラル状外向き山型リブ23-3を形成、配置させて、第3層の被覆外管2-3のスパイラル状内向き山型リブ22-3と第2層の被覆外管2-2のスパイラル状外向き山型リブ23-2とに交差接点を形成させることにより、上記第3層の空気層3-3を形成、保有させている。21-3は、ハゼ締めである。ただし、第3層の被覆外管2-3のスパイラル状外向き山型リブ23-3は無くてもよい。
他は、上記その2.と同じにつき、説明を省略する。
【0012】
その4.
図4は、請求項3の発明に係る空気層断熱ダクトの一実施形態を示した断面図である。
この図4の場合は、上記その1.の空気層断熱ダクトにおいて、ダクト本管1のスパイラル状外向き山型リブ12と、第1層の被覆外管2のスパイラル状内向き山型リブ23とを、スパイラル状外向き鰭リブ13とスパイラル状内向き鰭リブ24に代えたものである。
他は、上記その1.の場合と同じにつき、説明を省略する。
【0013】
【発明の効果】
請求項1、請求項2、請求項3の発明によれば、既述構成としたので、次の効果を奏する。
(1) 内管と外管とに逆関係のスパイラル状山型リブ又は鰭リブを形成して交差接点を形成させるので、断熱層たる空気層の形成を確実化できる。
(2) 内管と外管との逆関係のスパイラル状山型リブ又は鰭リブで交差接点を形成させるので、内管と外管との間の接触面積を極力小さくできて、ヒートブリッジも小さくでき、断熱性能を良好に保つことができる。
(3) 内管と外管との逆関係のスパイラル状山型リブ又は鰭リブに交差接点を形成させることで空気層を生じさせるので、別部材のスペーサーが不要である。
(4) 別部材のスペーサーを要しないから、内管の外周面各所にスペーサーを固定する必要もなく、手間がかからない。
(5) 工場において、機械的自動的に連続して製作でき、長い内管と外管を嵌め合わせる必要がない。
(6) 機械的自動的に連続して製作できて、手作業に頼る必要がなく、組み立ての手間と時間がかからない。
(7) 専ら機械的自動的に連続して製作できるから、高速度に生産できて、生産性を格段に向上させることができる。
(8) 機械的自動的に連続して製作できるから、製作過程での損傷が少なく、また、内管と外管との逆関係のスパイラル状山型リブ又は鰭リブにより空気層を確実に形成できるので、歩留を格段に向上させることができる。
(9) 内管と外管との逆関係のスパイラル状山型リブ又は鰭リブにより機械的強度を大幅に増大させることができる。
(10)別部材のスペーサーや断熱材等を要しないから、製品をシンプルで経済的なものにできて適正に簡素化でき、軽量化できる。
(11)以上より製品コストを大幅に低減できる。
(12)製品の軽量化により工事現場の作業を容易にできる。
(13)製品そのものに断熱性を保有させたから、工事現場では、ダクト施設工事を行なえば足り、ダクト外面を断熱材や保護カバーで被覆する断熱工事が不要である。
(14)製品そのものがもつ断熱層が空気層であり、吸水性を有する断熱材等を用いないので、水濡れ防止対策を講じる必要がない。
(15)ダクト施設工事だけてよいので、工事の品質を格段に向上させることができて、手戻り作業を少なくでき、仕上がりを美麗にできる。
(16)以上より工事現場では工期を大幅に短縮できる。
(17)総じて、施工コストを大幅に縮減できる。
【図面の簡単な説明】
【図1】 請求項1及び請求項2の発明に係る空気層断熱ダクトの実施の形態その1.の断面図である。
【図2】 請求項1及び請求項2の発明に係る空気層断熱ダクトの実施の形態その2.の断面図である。
【図3】 請求項1及び請求項2の発明に係る空気層断熱ダクトの実施の形態その3.の断面図である。
【図4】 請求項3の発明に係る空気層断熱ダクトの実施の形態その4.の断面図である。
【符号の説明】
1…ダクト本管
2…被覆外管
2-1…第1層の被覆外管 2-2…第2層の被覆外管
2-3…第3層の被覆外管
3…空気層
3-1…第1層の空気層 3-2…第2層の空気層
3-3…第3層の空気層
11…ダクト本管のハゼ締め
21…被覆外管のハゼ締め
21-1…第1層の被覆外管のハゼ締め 21-2…第2層の被覆外管のハゼ締め
21-3…第3層の被覆外管のハゼ締め
12…ダクト本管スパイラル状外向き山型リブ
22…被覆外管のスパイラル状内向き山型リブ
22-1…第1層の被覆外管のスパイラル状内向き山型リブ
22-2…第2層の被覆外管のスパイラル状内向き山型リブ
22-3…第2層の被覆外管のスパイラル状内向き山型リブ
23-1…第1層の被覆外管のスパイラル状外向き山型リブ
23-2…第2層の被覆外管のスパイラル状外向き山型リブ
23-3…第2層の被覆外管のスパイラル状外向き山型リブ
13…スパイラル状外向き鰭リブ
24…スパイラル状内向き鰭リブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air layer insulation duct for transferring a fluid, for example, an air conditioning gas.
[0002]
[Prior art]
Conventional heat-insulating ducts for air conditioning are, for example, the surface of a duct main pipe made of a thin steel plate is covered with a heat insulating material 5 (glass wool, rock wool, etc.) having a thickness of 20 to 25 mm. The surface of the heat insulating material is covered with a protective cover.
In general, on the site, after the duct facility work is completed, the surface of the installed duct is covered with a heat insulating material, and the surface is covered with a protective cover. It was necessary to take long.
Insulation materials such as glass wool and rock wool are generally water-absorbing and are difficult to dry once they absorb water. It was necessary to take. In particular, heat insulating materials such as glass wool and rock wool inherently have a phenomenon in which the heat insulating performance deteriorates when water is absorbed and wetted.
[0003]
In order to remedy these inconveniences, a double pipe type heat insulation duct of Japanese Patent Application No. 5-70562 has been developed by a member of the present applicant.
This double-pipe heat insulation duct forms an air layer having a thickness of 10 to 30 mm by interposing spacers at appropriate intervals between an inner tube serving as a flow path and an outer tube covering the inner tube. In addition, as the spacer, for example, a glass wool or rock wool molded product formed in a bowl shape, a calcium carbonate foam, a plastic or elastomer molded product, or the like is used.
According to such a double-pipe heat insulation duct, an appropriate heat insulation effect can be exhibited by the air layer, and the above disadvantages can be improved.
[0004]
[Problems to be solved by the invention]
However, the following problems still need to be solved in order to realize the product.
(1) In addition to the inner and outer tubes, a separate spacer must be prepared.
(2) After fixing the spacers at various locations on the outer peripheral surface of the inner tube, the outer tube is fitted, but it is not easy to fix the spacer to the inner tube.
(3) The inner tube and the outer tube to be overlapped have a considerable length, and the outer tube is fitted to the outside of a number of spacers fixed in various places, so that fitting is not easy. .
(4) Although it is a factory work, the assembly work mainly relies on manual work, and therefore it takes a lot of labor and time to assemble.
(5) There is much damage to members, and the yield is poor.
(6) Overall, the cost is considerably high.
Therefore, the present invention aims to solve the above-mentioned problems and solve these problems.
[0005]
[Means for Solving the Problems]
Here, the invention of the air layer heat insulation duct according to claim 1 is characterized in that a duct main pipe serving as a flow path for air conditioning gas transfer is used as an inner pipe, and a coated outer pipe covering the duct main pipe is used as an outer pipe. Each formed into a cylindrical shape, and
A spiral outward chevron rib is formed on the inner tube and a spiral inward chevron rib is formed on the outer tube so as to cross each other, and further, both spiral chevron ribs are provided at the intersection. By having a contact, it is provided to hold an air layer having a thickness of 5 to 20 mm between these inner and outer tubes .
[0006]
According to a second aspect of the present invention, there is provided an air-layer heat insulation duct according to the first aspect of the present invention , wherein an outer layer is provided on the outer side of the coated outer tube and another coated outer tube is overlapped with the outer coated tube. it is, to an air layer of a plurality of layers.
[0007]
The invention of the air-layer heat insulation duct according to claim 3 is characterized in that a duct main pipe serving as a flow path for air conditioning gas transfer is used as an inner pipe, and a coated outer pipe covering the duct main pipe is used as an outer pipe. Formed into a shape, and
The inner pipe is provided with spiral outward ribs and the inner pipe is formed in a reverse winding so as to cross each other, and both spiral ribs have a contact at the intersection. Thus, an air layer having a thickness of 5 to 20 mm is provided between the inner and outer pipes .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Part 1.
FIG. 1 is a cross-sectional view showing an embodiment of an air layer heat insulation duct according to the first and second aspects of the present invention.
In FIG. 1, 1 is a duct main pipe which is an inner pipe, and this duct main pipe 1 is a belt plate made of, for example, a galvanized steel plate, a stainless steel plate, a vinyl chloride resin-coated steel plate having a thickness of 0.5 to 2.0 mm. Thus, a gob-tight spiral cylinder is formed. 11 is goby tightening.
In the course of its production, a spiral outward chevron rib 12 having a rib height of about 3 to 20 mm is formed in the duct main pipe 1 and, for example, in the case of a right-handed spiral cylinder, it is molded and arranged in a right-handed manner. Yes.
Reference numeral 2 denotes a sheathed outer tube that is stacked on the outside of the duct main tube 1 with an air layer 3 as a heat insulating layer having a thickness of about 5 to 20 mm. The sheathed outer tube 2 is also the same as the case of the duct main tube 1. In addition, for example, a strip made of galvanized steel plate, stainless steel plate, vinyl chloride resin-coated steel plate having a thickness of 0.5 to 2.0 mm is formed into a spiral tube made of a goose-tightened spiral duct 1 and a reverse spiral. In the process of manufacturing, a spiral inward mountain-shaped rib 22 having a rib height of about 3 to 20 mm is formed on the outer sheath tube 2 in the case of, for example, a left-handed spiral cylinder (in this case, the duct main tube 1 and its spiral outward mountain). The mold rib 12 is a right-handed spiral) and is arranged in the same left-handed manner, and the spiral inward chevron rib 22 is formed with a cross-contact with the spiral outward chevron rib 12 of the duct main pipe 1. The air layer 3 is formed and held 21 is goby tightening.
[0009]
The duct main pipe 1 and the outer sheath pipe 2 may be continuously formed by a gouge-tight spiral cylinder forming machine, and both may be manufactured at the same time or the latter in the subsequent process of the former. By doing so, it can be produced at high speed without relying on manual work, the productivity can be greatly improved, it can be made simple and economical, and the product cost can be greatly reduced, and , it is possible to obtain a lighter. Further, the mechanical strength can be greatly enhanced by the spiral outward chevron rib 12, the spiral inward chevron rib 22, and the gouge fastenings 11 and 21. As described above, the thickness of the air layer 3 is set to about 5 to 20 mm. In other words, if the thickness of the air layer 3 is less than 5 mm, so-called radiation heat transfer and heat bridge phenomena occur, and the heat insulation effect is reduced, and if it exceeds 20 mm, convection easily occurs in the air layer. This is because the heat insulation effect is reduced. As for the heat insulation effect, even if the air layer 3 is a single layer, good data comparable to the conventional product with the heat insulating material and the protective cover could be obtained. The construction test at the construction site made it easier to work due to its light weight, and it was confirmed that the duct facility construction was sufficient, and that all insulation work and water-wetting prevention work covering the insulation and protective cover could be omitted. . The exposed outer tube 2 after the duct facility construction had a beautiful appearance that matched the sense of the space age. Note that the duct main pipe 1 and the outer sheath pipe 2 may be formed by vertical winding welding instead of forming a gob-tight spiral cylinder.
[0010]
Part 2.
FIG. 2 is a cross-sectional view showing an embodiment of an air layer heat insulation duct according to the invention of claim 2 in which two air layers are provided.
In FIG. 2, 1 is a duct main pipe which is an inner pipe, and this duct main pipe 1 is a strip plate made of, for example, galvanized steel plate, stainless steel plate, vinyl chloride resin-coated steel plate having a thickness of 0.5 to 2.0 mm. Thus, a gob-tight spiral cylinder is formed. 11 is goby tightening.
In the course of its production, a spiral outward chevron rib 12 having a rib height of about 3 to 20 mm is formed in the duct main pipe 1 and, for example, in the case of a right-handed spiral cylinder, it is molded and arranged in a right-handed manner. Yes.
2-1 is a first outer sheath tube 2-2 that is laminated by holding a first air layer 3-1, which is a heat insulating layer having a thickness of about 5 to 20 mm, outside the duct main pipe 1. The outer layer of the second layer is an outer tube of the second layer which is stacked by holding the air layer 3-2 of the second layer, which is a heat insulating layer having a thickness of about 5 to 20 mm, outside the outer layer of the first layer. As in the case of the duct main pipe 1, the outer jacket pipe is also a first-layer outer jacket pipe made of, for example, a strip of zinc-coated steel sheet, stainless steel sheet, vinyl chloride resin-coated sheet steel having a thickness of 0.5 to 2.0 mm. 2-1 is a duct main tube 1 and the second outer sheath tube 2-2 is a first layer outer sheath tube, each of which is formed in a spiral shape with a reverse spiral relationship. Then, each of the coated outer pipes 2-1 and 2-2 is provided with a spiral inward chevron rib 22-1, 22-2 having a rib height of about 3 to 20 mm and a spiral outward chevron rib 23-1, for example. Of the first layer When the outer tube 2-1 is a left-handed spiral tube and the second air layer 3-2 is a right-handed spiral tube (in this case, the duct main pipe 1 and its spiral outward chevron rib 12 are a right-handed spiral. ) Includes a left-handed outer sheath 2-1 on the first layer and a right-handed outer sheath 2-2 on the second layer, that is, a spiral inward mountain adapted to the respective spiral direction. The mold ribs 22-1, 22-2 and the spiral outward chevron ribs 23-1 are formed and arranged accordingly, and the spiral inward chevron ribs 22- of the first-layer coated outer tube 2-1 are arranged. 1 and the spiral outward chevron rib 12 of the duct main pipe 1, the spiral inward chevron rib 22-2 of the second outer sheathed pipe 2-2, and the spiral of the outer sheath outer pipe 2-1 of the first layer A cross contact is formed on each of the outwardly facing chevron ribs 23-1, and an air layer 3-1 and a second air layer 3-2 are formed and held in the first layer. 21-1 and 21-2 are goby tightening. However, the coated outer tube 2-2 of the second layer is not provided with the spiral outward chevron rib, but it may be present (see FIG. 3).
The production, function, application, performance, etc. are the same as in case 1 and are omitted.
[0011]
Part 3.
FIG. 3 is a cross-sectional view showing another embodiment of the air-layer heat insulation duct according to the invention of claim 2 in which the air layer has three layers.
In the case of FIG. 3, a third layer air layer 3-3, which is a heat insulation layer having a thickness of about 5 to 20 mm, is further held outside the air layer heat insulation duct of part 2 above, so that the third layer coated outer tube is provided. It is a stack of 2-3.
In this case, the third-layer coated outer tube 2-3 is formed in the same manner as the second-layer coated outer tube 2-2 and in a reverse spiral relationship, and is formed as a spiral-clamped spiral tube. The chevron rib 22-3 and the spiral outward chevron rib 23-3 are also formed and arranged in the forward direction, and the corresponding spiral outward chevron is similarly applied to the outer sheath tube 2-2 of the second layer. The mold ribs 23-3 are formed and arranged, and the spiral inward mountain-shaped ribs 22-3 of the third-layer coated outer tube 2-3 and the spiral-shaped outer mountain of the second-layer coated outer tube 2-2 are formed. The third air layer 3-3 is formed and held by forming a cross contact with the mold rib 23-2. 21-3 is goby tightening. However, the spiral outward chevron rib 23-3 of the third outer sheath tube 2-3 may be omitted.
Others are the same as those described in Part 2 above and will not be described.
[0012]
Part 4.
FIG. 4 is a sectional view showing an embodiment of an air layer heat insulation duct according to the invention of claim 3.
In the case of FIG. 4, in the air layer heat insulation duct of part 1 above, the spiral outward chevron rib 12 of the duct main pipe 1 and the spiral inward chevron rib 23 of the first outer sheath pipe 2. Are replaced with a spiral outward flange 13 and a spiral inward flange 24.
Others are the same as in case 1 above, and the description is omitted.
[0013]
【The invention's effect】
According to the first, second, and third aspects of the invention, the configuration described above has the following effects.
(1) Since the cross-contact is formed by forming spiral chevron ribs or ridge ribs having an inverse relationship between the inner pipe and the outer pipe, the formation of an air layer as a heat insulating layer can be ensured.
(2) Since the cross-contacts are formed by spiral chevron ribs or ridge ribs that have an inverse relationship between the inner and outer pipes, the contact area between the inner and outer pipes can be minimized, and the heat bridge is also small. And heat insulation performance can be kept good.
(3) Since an air layer is formed by forming a cross contact point on the spiral chevron rib or ridge rib having an inverse relationship between the inner tube and the outer tube, a separate spacer is not required.
(4) Since a separate spacer is not required, it is not necessary to fix the spacers at various locations on the outer peripheral surface of the inner tube.
(5) It can be manufactured automatically and continuously in the factory, and there is no need to fit long inner pipe and outer pipe.
(6) It can be manufactured continuously mechanically, so there is no need to rely on manual work, and it does not take time and effort for assembly.
(7) Since it can be manufactured exclusively mechanically and continuously, it can be produced at a high speed and the productivity can be greatly improved.
(8) Since it can be manufactured continuously mechanically, there is little damage in the manufacturing process, and the air layer is reliably formed by spiral chevron ribs or ribs that are inversely related to the inner and outer pipes. As a result, the yield can be significantly improved.
(9) The mechanical strength can be greatly increased by the spiral chevron rib or the rib rib having the inverse relationship between the inner tube and the outer tube.
(10) Since a separate spacer or heat insulating material is not required, the product can be made simple and economical, can be appropriately simplified, and can be reduced in weight.
(11) Product cost can be greatly reduced from the above.
(12) Work on the construction site can be facilitated by reducing the weight of the product
(13) Since the product itself has heat insulation properties, it is only necessary to perform duct facility construction at the construction site, and there is no need for heat insulation work to cover the outer surface of the duct with a heat insulating material or a protective cover.
(14) Since the heat insulation layer of the product itself is an air layer and does not use heat-insulating material with water absorption, it is not necessary to take measures to prevent water wetting.
(15) Since only duct facility construction is required, the construction quality can be greatly improved, the reworking work can be reduced, and the finish can be improved.
(16) From the above, the construction period can be greatly reduced at the construction site.
(17) Overall, construction costs can be greatly reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of Embodiment 1 of an air layer heat insulation duct according to the first and second aspects of the present invention;
FIG. 2 is a sectional view of Embodiment 2 of the air-layer heat insulation duct according to the first and second aspects of the present invention.
FIG. 3 is a sectional view of the third embodiment of the air-layer heat insulation duct according to the first and second aspects of the present invention.
4 is a sectional view of Embodiment 4 of the air-layer heat insulation duct according to the invention of claim 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Duct main pipe 2 ... Coated outer pipe 2-1 ... First layer coated outer pipe 2-2 ... Second layer coated outer pipe 2-3 ... Third layer coated outer pipe 3 ... Air layer 3-1 ... Air layer of the first layer 3-2 ... Air layer of the second layer 3-3 ... Air layer of the third layer
11 ... Tightening the duct main
21… Seal tightening of outer sheath
21-1 ... Seal tightening of the outer sheath of the first layer
21-3… Tightening of the outer sheath of the third layer
12 ... Duct main spiral outward chevron rib
22 ... Spiral inward chevron rib of the outer sheath
22-1 ... Spiral inward chevron rib of the outer sheath of the first layer
22-2 ... Spiral inward chevron rib of the outer sheath of the second layer
22-3 ... Spiral inward chevron rib of the outer sheath of the second layer
23-1 ... Spiral outward chevron rib of the outer sheath of the first layer
23-2 ... Spiral outward chevron rib of the outer sheath of the second layer
23-3 ... Spiral outward chevron rib of the outer sheath of the second layer
13 ... Spiral outward rib
24 ... Spiral inward ribs

Claims (3)

内管として、空気調和用気体移送用の流路となるダクト本管を、また外管として、上記ダクト本管を覆う被覆外管を、それぞれ筒形に形成し、かつ、
上記内管にスパイラル状外向き山型リブを、また外管にスパイラル状内向き山型リブをそれぞれ逆巻きに形成して相互に交差するように設け更に両スパイラル状山型リブが交差箇所で接点を有することにより、これら内外両管の間に厚さ5〜20mmの空気層を保持するように設けたことを特徴とする、空気層断熱ダクト。
As the inner pipe, a duct main pipe serving as a flow path for air conditioning gas transfer, and as the outer pipe, a coated outer pipe covering the duct main pipe is formed in a cylindrical shape, and
A spiral outward chevron rib is formed on the inner tube and a spiral inward chevron rib is formed on the outer tube so as to cross each other, and further, both spiral chevron ribs are provided at the intersection. An air layer insulation duct characterized by having an air layer having a thickness of 5 to 20 mm between the inner and outer pipes by having a contact .
上記被覆外管の外側に、該被覆外管との間に空気層を保有して別の被覆外管を重ねることで、空気層を複数層とした請求項1記載の空気層断熱ダクト。 The air-layer heat insulation duct according to claim 1 , wherein a plurality of air layers are formed by holding an air layer between the outer sheath tube and another outer sheath tube on the outside of the outer sheath tube . 内管として、空気調和用気体移送用の流路となるダクト本管を、また外管として、上記ダクト本管を覆う被覆外管を、それぞれ筒形に形成し、かつ
上記内管にスパイラル状外向き鰭リブを、また外管にスパイラル状内向き鰭リブをそれぞれ逆巻きに形成して相互に交差するように設け、更に両スパイラル状鰭リブが交差箇所で接点を有することにより、これら内外両管の間に厚さ5〜20mmの空気層を保持するように設けたことを特徴とする空気層断熱ダクト。
Forming an inner pipe as a duct main pipe serving as a flow path for air-conditioning gas transfer , and forming an outer pipe as a coated outer pipe covering the duct main pipe in a cylindrical shape; and
The inner pipe is provided with spiral outward ribs and the inner pipe is formed in a reverse winding so as to cross each other, and both spiral ribs have a contact at the intersection. Thus, an air layer heat insulation duct provided to hold an air layer having a thickness of 5 to 20 mm between the inner and outer pipes .
JP05424096A 1996-02-15 1996-02-15 Air layer insulation duct Expired - Fee Related JP3761108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05424096A JP3761108B2 (en) 1996-02-15 1996-02-15 Air layer insulation duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05424096A JP3761108B2 (en) 1996-02-15 1996-02-15 Air layer insulation duct

Publications (2)

Publication Number Publication Date
JPH09222257A JPH09222257A (en) 1997-08-26
JP3761108B2 true JP3761108B2 (en) 2006-03-29

Family

ID=12965029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05424096A Expired - Fee Related JP3761108B2 (en) 1996-02-15 1996-02-15 Air layer insulation duct

Country Status (1)

Country Link
JP (1) JP3761108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6914032B2 (en) * 2016-12-14 2021-08-04 株式会社あさひ産業 Thermal insulation flexible duct
JP6736237B2 (en) * 2018-05-11 2020-08-05 株式会社新富士空調 Dew condensation prevention square duct

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078197A (en) * 1983-09-30 1985-05-02 住友軽金属工業株式会社 Heat-insulating piping material
JPS6132894U (en) * 1984-07-31 1986-02-27 史朗 金尾 drain hose
JPH05133497A (en) * 1990-05-22 1993-05-28 Laco Sa Hollow body for percolating and guiding fluid, manufacture of said hollow body and usage of said hollow body
JPH0569491U (en) * 1991-11-22 1993-09-21 三菱アルミニウム株式会社 Air conditioning duct
JPH0734286U (en) * 1993-12-01 1995-06-23 古河電気工業株式会社 Corrugated composite pipe
JPH0861761A (en) * 1994-08-15 1996-03-08 Takenaka Komuten Co Ltd Multi-air layer type heat insulating duct
JP3622185B2 (en) * 1995-12-01 2005-02-23 住友電気工業株式会社 Cryogenic insulation tube and superconducting cable

Also Published As

Publication number Publication date
JPH09222257A (en) 1997-08-26

Similar Documents

Publication Publication Date Title
US2613166A (en) Thermal insulation
US20050011133A1 (en) Flexible thermally insulative and waterproof barrier
US20050022892A1 (en) Coated fibrous pipe insulation system
JP3761108B2 (en) Air layer insulation duct
KR20200112239A (en) Double insulated pipe
JP2002303395A (en) Cap for sealing end part of heat insulation covered pipe and method of sealing end part of heat insulation covered pipe
HU212025B (en) Insulating case for heat insulation buildingwalls and tubes
JPH0861761A (en) Multi-air layer type heat insulating duct
JP2854535B2 (en) Duct hose
JPH0743508U (en) Double pipe type heat insulation duct
JP3260318B2 (en) Duct hose
JP2004170073A (en) Sound-absorption thermal insulation hose
JPH10281353A (en) Duct hose
KR910005062B1 (en) Themal insulation-cover
JPH10299983A (en) Heat insulating and cold insulating structure for piping
SU1622548A1 (en) Ferroconcrete panel
JP7379412B2 (en) Sheet metal exterior materials and construction methods for sheet metal exterior materials
US4520796A (en) Lightweight solar collector
JP4488501B2 (en) Insulating duct and inner surface layer exchange method thereof
JP2000170992A (en) Heat-insulating hose
JP2000249392A (en) Double pipe adiabatic duct
JPS5820857Y2 (en) solar hose
JPH1194341A (en) Sound proof and heat insulating hose and manufacture therefor
JPH082550Y2 (en) Combined pipe for hot water supply, water absorption, air conditioning
JP3088808B2 (en) Insulated hose

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060106

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090120

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees