JP3760742B2 - Steel plate manufacturing method with excellent laser cutting ability - Google Patents

Steel plate manufacturing method with excellent laser cutting ability Download PDF

Info

Publication number
JP3760742B2
JP3760742B2 JP2000276632A JP2000276632A JP3760742B2 JP 3760742 B2 JP3760742 B2 JP 3760742B2 JP 2000276632 A JP2000276632 A JP 2000276632A JP 2000276632 A JP2000276632 A JP 2000276632A JP 3760742 B2 JP3760742 B2 JP 3760742B2
Authority
JP
Japan
Prior art keywords
scale
cutting
steel
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000276632A
Other languages
Japanese (ja)
Other versions
JP2002080913A (en
Inventor
友弥 川畑
明彦 永吉
光 岡田
一郎 瀬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2000276632A priority Critical patent/JP3760742B2/en
Publication of JP2002080913A publication Critical patent/JP2002080913A/en
Application granted granted Critical
Publication of JP3760742B2 publication Critical patent/JP3760742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、一般構造用鋼材,溶接構造用鋼材,機械構造用鋼材等として使用することができるレ−ザ切断性に優れた鋼板の製造方法に係り、特に優れた“ピアス性(穴あけ性:ピアッシング性) ",“曲線切断時の切断面品質”を示すレ−ザ切断用鋼板を提供する技術に関するものである。
【0002】
【従来の技術】
例えば構造用部材等として使用される厚鋼板は、製造コストの関係から一般に圧延のままで製品とされる場合が殆どであり、またこのような厚鋼板の切断にはガス切断法が普通に適用されていた。
しかし、ガス切断法では“切断精度”や“切断後のゆがみ”の点で問題を生じることがあったため、近年、高精度切断が可能な「レ−ザ切断法」が脚光を浴びつつある。
【0003】
ただ、レ−ザによる鋼板の切断法は従来は主として薄鋼板の切断に適用されていたものであって、これをそのまま厚鋼板の切断に適用しようとしても“切断能力(切断速度)”や“切断面粗さ”の点で問題があり、そのため広く実用されるまでに至っていないのが実情であった。
つまり、厚鋼板の場合には、薄鋼板の場合と比較してレ−ザ出力,レンズ焦点距離,切断条件等の適正範囲が狭く、それ故に常に安定した切断を実施することが難しいという事情があった。
また、厚鋼板は一般的にスケ−ルが表面に付着したままの状態で切断加工される場合が殆どであるため、このスケ−ルが安定したレ−ザ切断の障害となる場合が多かった。
【0004】
そこで、鋼板のレ−ザ切断性を向上すべく、これまでにも幾つかの提案がなされている。
例えば、特開平5−112821号公報を見ると、素材鋼の化学組成及び圧延条件を調整することによってスケ−ルの剥離性を向上させ、これによりレ−ザ切断性(穴あけ性,切断持続性)を向上させる技術が開示されている。
また、特開平8−3692号公報には、鋼板の化学組成を調整してスケ−ルの定着性を改善すると共に、スケ−ルの表面粗さを規定して平滑性を確保することによりレ−ザ光の乱反射を防止し、これらによって切断性を向上させる技術が開示されている。
更に、特開平9−20962号公報には、鋼板の化学組成を工夫してレ−ザ切断時の酸化反応熱利用性を向上させると共に、鋼材表面の光沢度をスケ−ルの色調や表面粗さの調整により15%以下に抑えてレ−ザ光の吸収率を上げ、これらの手立てによりレ−ザ切断性を向上させる技術が開示されている。
【0005】
しかしながら、これらの技術はレ−ザ切断法による鋼板の切断性向上に大きく資すると考えられるものではあったが、何れの場合も実際に厚鋼板の切断に適用した際に良好な切断性を安定して示さない場合のあることが分かった。
【0006】
そこで、この問題について検討したところ、従来の提案になる前記各手法は鋼材にレ−ザ切断性の中でも良好なピアス性(レ−ザビ−ムによる穴あけ性)を安定付与する点で十分な技術とは言えず、また曲線切断を行った時の切断面品質についても満足できない場合がしばしば認められた。
なお、レ−ザ切断時の切断反応速度と密接に相関する鋼板のピアス性は、切断の効率に決定的な影響を及ぼすために極力改善することが望まれる性能である。また、曲線切断時の切断面品質も切断加工品には重要な要件であるが、良好な切断面品質を得るための最適切断条件の範囲が非常に狭く、この最適切断条件に鋼板の表面状態が深く関わっていて表面状態が悪いと切断面が粗くなる傾向にあると考えられた。
【0007】
【発明が解決しようとする課題】
このようなことから、本発明が目的としたのは、レ−ザ切断性、特にピアス性及び曲線切断時の切断面品質が著しく優れた鋼板を安定して製造し得る実際的な手段を提供することである。
【0008】
【課題を解決するための手段】
本発明者等は、上記目的を達成すべく鋭意研究を重ねた結果、レ−ザ切断性、特に“ピアス性",“曲線切断時の切断面品質”に決定的な影響を及ぼす因子は、母材鋼板の特性もさることながら、特に母材鋼板面に生成するスケ−ルの性状が重きなしていることを知った。
【0009】
即ち、本発明者等は、まず、「レ−ザ切断ではレ−ザビ−ムの高密度エネルギ−が鋼板に蓄積されて切断反応の限界に達したときに切断反応が開始するので、 鋼板側でもこの高密度エネルギ−をどれだけ吸収するかが切断反応の速度にとって極めて重要である」との観点に立って検討を行い、レ−ザビ−ムによる鋼板のピアス性や曲線切断時の切断面品質を改善するためには鋼板面のスケ−ルの色度制御が重要であることを確認した。
そして、鋼板面のスケ−ルを黒色化スケ−ルに制御し、JIS Z8729にて定義する色度a* で特に「a* <1」を満足する色調とすれば、この黒色化したスケ−ルはレ−ザ切断時における鋼板のレ−ザ光吸収率を向上させ、良好な切断性をもたらすようになることを見出した。
更に、鋼板面に生成するスケ−ルの色度a* が「a* <1」を満足するには、熱間圧延での仕上温度を高温に制御する必要があることも分かった。
【0010】
しかしながら、特筆すべき知見であるが、本発明者等の研究により、熱間圧延により鋼板を製造する際の仕上温度にのみ配慮しても実際には色度a* が「a* <1」を満足する黒色化スケ−ルを安定して得ることは難しく、赤スケ−ルが発生して均質な黒スケ−ル化がなされにくいばかりか、例え「a* <1」を満足する色度のスケ−ルを備える鋼板が得られたとしても十分に満足できる“ピアス性",“曲線切断時の切断面品質”を示さない場合のあることが明らかとなった。
【0011】
そのため、本発明者等は多種条件下で熱間圧延して得た鋼板を観察・調査し、レ−ザビ−ムによる鋼板のピアス性,曲線切断時の切断面品質には熱間圧延での仕上温度だけではなく、熱間圧延中の待ち時間(非ロ−ル時間)も見逃せない影響を及ぼしており、優れたピアス性,曲線切断時の切断面品質を確保するためには熱間圧延中の待ち時間(非ロ−ル時間)にも配慮しなければならないということを見出した。
【0012】
即ち、鋼板の熱間圧延では、図1の(a)に示すように、ロ−ル通過直後には圧延ワ−クロ−ルによる抜熱のため鋼板の表面部が内部に比べて温度低下し低温となる。そして、次パスへ移行するのに十分な待ち時間(非ロ−ル時間)があれば復熱によって図1の(b)に示す如く再び鋼板は内部,表面部とも平均化した温度分布となるが、待ち時間の極めて少ない圧延を連続的に実施し、ロ−ル通過直後の鋼板に次パス圧延を直ちに施すと、復熱が十分に完了しないために鋼板表面部の低温化が助長される結果となる。
【0013】
そのため、高温で圧延を実施している場合でも鋼板表面は局部的に低温化し、赤スケ−ルである Fe23(ヘマタイト)が生成しやすい状況となって均質な黒スケ−ル化がなされず、ピアス性,曲線切断時の切断面品質に悪影響が出てくる。また、外観では色度a* が「a* <1」を満たす黒色化スケ−ルが生成しているように見えても、局部的に不均一な温度で圧延がなされることに起因して、得られる鋼板のレ−ザビ−ムによるピアス性や曲線切断時の切断面品質が悪影響を受けることになる。 従って、これを避けるためには、鋼板の熱間圧延時に必要な待ち時間(非ロ−ル時間)をとって復熱する時間を十分に確保することが肝要となる。
【0014】
なお、最終製品鋼板に形成されるスケ−ル層の生成時期を考えると、圧延早期でのスケ−ルは途中の圧延により剥離したり、高水圧のデスケ−ルにより除去されてしまう上、圧延早期では鋼板の温度も高いのでロ−ル通過後の復熱も速やかに起きる。そのため、最終スケ−ル層や母材鋼板の特性に対して大きな影響を及ぼすのは仕上圧延の最終3パスであり、これらのパスでの非ロ−ル時間を確保すれば鋼板に所望するピアス性や曲線切断時の切断面品質を具備させることができる。
【0015】
一方、鋼板表面とスケ−ルとの界面にこれら相互の密着性を高めるフィアライト(Fe2SiO4)が生成しがちであることが知られているが、スケ−ルの密着性が向上すると高圧水デスケ−リングによるスケ−ル剥離が起きにくくなる。高圧水デスケ−リングで剥離しなかったスケ−ルは、圧延により粉砕され、赤色のスケ−ルとなってレ−ザ切断性に害を及ぼすので、このフィアライトの生成は極力抑える必要がある。
【0016】
ただ、上記フィアライトは、母材(鋼板)にSiが特定量以上含まれると生成するという特徴を持っている。そのため、母材鋼板のSi含有量を特定値以下に規制することで、フィアライトの生成を抑えることができる。
【0017】
また、前記フィアライトは、Si酸化物が溶融する温度以上に加熱されると母材とスケ−ル層の界面に生成しやすくなる。そのため、熱間圧延に際しての素材鋼の加熱温度をSi酸化物の融点である1200℃以下に規制することにより、母材とスケ−ル層の界面にフィアライトが生成する頻度は一層低下してスケ−ルの剥離性は極めて良好となり、赤色のスケ−ルの生成抑制効果は一段と向上する。
【0018】
更に、前述した手立てによりレ−ザ光の吸光度が良好なスケ−ル色度や鋼板特性を得られれば、ピアス性や曲線切断時の切断面品質を含めたレ−ザ切断性が向上するものの、鋼板の熱間圧延仕上温度との関連でスケ−ル厚を適正に制御するようにすれば、得られる鋼板のピアス性,曲線切断時の切断面品質を安定して高位に維持させ得ることも分かった。
つまり、鋼板面に生成するスケ−ルが黒色化スケ−ルであってもその厚さが厚すぎるとレ−ザビ−ムによるピアス性や曲線切断時の切断面品質が劣化するが、熱延仕上温度と生成するスケ−ルの厚さを特定の条件に従って制御することでレ−ザ切断性に優れた鋼板の製造安定性を確保できることを見つけた。
【0019】
本発明は、上記知見事項等を基になされたもので、次の(1)項及び(2)項に示すレ−ザ切断用鋼板の製造方法を提供するものである。
(1) 素材鋼のSi含有量を 0.5重量%以下とし、これに“仕上圧延の最終3パスにおける合計非ロ−ル時間”を10秒以上確保した熱間圧延を施すと共に、850℃以上の温度で圧延を仕上げ、かつ平均スケ−ル厚s(μm)を熱間圧延仕上温度Tf (℃)との関係で
s≦(Tf −790)/2
の範囲に制御することを特徴とする、表面に付着するスケ−ルの平均色度a * が「a * <1」であるレ−ザ切断性に優れた鋼板の製造方法。
(2) 素材鋼のSi含有量を 0.5重量%以下とし、これを1200℃を超えない温度に加熱してから、“仕上圧延の最終3パスにおける合計非ロ−ル時間”を10秒以上確保した熱間圧延を施すと共に、850℃以上の温度で圧延を仕上げ、かつ平均スケ−ル厚s(μm)を熱間圧延仕上温度Tf (℃)との関係で
s≦(Tf −790)/2
の範囲に制御することを特徴とする、表面に付着するスケ−ルの平均色度a * が「a * <1」であるレ−ザ切断性に優れた鋼板の製造方法。
【0020】
なお、本発明において素材鋼の化学組成は特に限定されるものではなく、一般構造用鋼,溶接構造用鋼,機械構造用等といった何れの鋼種であっても良いが、Si含有量については後述するように 0.5重量%以下に規制する必要がある。
また、前記「色度a* 」は、JIS Z8729の定義に従うものであり、色彩色差計にて測定すれば良い。
【0021】
以下、本発明をその作用と共に説明する。
先に述べたように、鋼板のレ−ザ切断における切断性に著しい影響を与えるのは“スケ−ルの性状”であるが、優れたレ−ザ切断性を確保するためにはスケ−ルの平均色度a* が「a* <1」の範囲にある黒色化スケ−ルを形成させなければならない。
【0022】
スケ−ル層は鋼板の製造時に不可避的に生成するものであるが、そのスケ−ル層は厚さ方向に化学組成が変化しており、一般には鋼板表面から順に Fe23(ヘマタイト)→ Fe34(マグネタイト)→FeO (ウスタイト)となっている。
このうち、ヘマタイトは赤く見えるものであり、この厚みが厚い場合には所謂「赤スケ−ル」と言われる状況となるが、レ−ザ切断にとってはレ−ザ光の吸収率が高い黒色化したスケ−ルが望ましいことから、このヘマタイトは極力少なくしたい酸化物である。
【0023】
平均色度a* が「a* <1」の範囲にある黒色化スケ−ルを熱間圧延工程で確実に得るためには、熱延仕上温度を850℃以上の高温に制御する必要があり、仕上温度が850℃よりも低くなるとヘマタイトの生成が顕著に促進されるようになって「a* <1」を満足するスケ−ルが形成されなくなる。
つまり、熱間圧延仕上温度を適正に制御することにより安定したスケ−ルが生成され、色度をより黒色化することができる。そして、黒色化したスケ−ルはレ−ザ切断時のレ−ザ光吸収率を向上させ、良好な切断性の確保に資する。
【0024】
しかし、熱延仕上温度を850℃以上に制御するだけではレ−ザビ−ムによる“ピアス性" や“曲線切断時の切断面品質”の優れた鋼板を安定して製造することができない。
これらの特性には、熱間圧延中の待ち時間(非ロ−ル時間:鋼板が圧延ロ−ルに接触していない時間)、特に仕上圧延の最終3パスでの非ロ−ル時間も大きな影響を及ぼす。
即ち、仕上圧延の最終3パスでの合計非ロ−ル時間が10秒を下回ると、圧延中の鋼板の表面部が局部的に温度低下した状態となり、仕上温度を高くしたとしてもヘマタイトが生成しやすい状況となって均質な黒スケ−ル化がなされず、スケ−ルの平均色度a* が「a* <1」を満たさなくなる。
また、仕上圧延の最終3パスでの合計非ロ−ル時間が10秒を下回ると、スケ−ルの平均色度a* が「a* <1」を満たしていても、局部的に不均一な温度で圧延がなされることに起因して得られる鋼板のレ−ザビ−ムによるピアス性や曲線切断時の切断面品質が悪影響を受ける。
従って、鋼板の熱間圧延は、仕上圧延の最終3パスにおける合計非ロ−ル時間(待ち時間の合計)を10秒以上確保した圧延とする必要がある。
【0025】
鋼板面に生成するスケ−ルの剥離性も最終スケ−ルの色度a* に少なからぬ影響を及ぼし、密着性の高いスケ−ルが形成される状況下では最終スケ−ルの平均色度a* が「a* <1」を満たさなくなる。
即ち、Siを含む鋼板の場合には鋼板表面とスケ−ルとの界面に Fe2SiO4(フィアライト)が生成してスケ−ルの密着性を高めがちであり、熱間圧延前に行われる高圧水デスケ−リングによるスケ−ル剥離を難しくするが、高圧水デスケ−リングで剥離しなかったスケ−ルは圧延により粉砕されて赤色のスケ−ルとなり、レ−ザ切断性を阻害する。
しかし、素材鋼のSi含有量が 0.5重量%以下では上記 Fe2SiO4 の生成が殆ど起きないことから、本発明では優れたレ−ザ切断性を確保するために素材鋼のSi含有量を 0.5重量%以下に規制することとした。
【0026】
なお、上記 Fe2SiO4(フィアライト)はSi酸化物が溶融する温度以上に加熱されると母材とスケ−ル層との界面に生成しやすい性質を有しているので、熱間圧延に際しての素材鋼の加熱温度をSi酸化物の融点である1200℃以下に規制することによりその生成頻度を更に低下させることができ、優れたレ−ザ切断性の確保がより一層安定化する。
【0027】
ただ、850℃以上の熱間圧延仕上温度と10秒以上の仕上圧延最終3パスにおける合計非ロ−ル時間を確保し、平均色度a* が「a* <1」を満足する密着性が低いスケ−ル層を形成させたとしても、スケ−ル層の厚さが厚すぎるとレ−ザビ−ムによるピアス性や曲線切断時の切断面品質が劣化する。
しかし、本発明者等は、数多くの試験によって、熱間圧延仕上温度と平均スケ−ル厚との間に“優れたピアス性や曲線切断時の切断面品質”を確保する上で許容できるバランス線が存在することを見出した。
つまり、平均スケ−ル厚s(μm)を熱間圧延仕上温度Tf ( ℃)との関係で
s≦(Tf −790)/2
の範囲に制御することにより、ピアス性や曲線切断時の切断面品質の優れた鋼板の製造安定性を一段と向上できること知った。
【0028】
なお、図2は、「レ−ザビ−ムによる鋼板のピアス性に及ぼす熱間圧延仕上温度Tf ( ℃)と平均スケ−ル厚s(μm)との関係について調査した結果を整理して示したグラフ」であるが、熱間圧延仕上温度が850℃以上の領域では「s≦(Tf −790)/2」という式がレ−ザ切断時のピアス性能と良く相関することが分かる。
【0029】
ここで、鋼板面に生成するスケ−ル厚の制御は素材鋼の化学組成に応じた加熱温度,熱間圧延条件,冷却条件等の調整により行われることは言うまでもない。
【0030】
続いて、本発明を実施例により説明する。
【実施例】
表1に示す化学組成の各素材鋼を加熱してから熱間圧延し、何れも板厚が20mmの熱延鋼板を製造した。
上記表1には、素材鋼の加熱温度,仕上圧延での圧延条件,製品熱延鋼板の表面に形成されたスケ−ルの平均厚さと平均色度a* 、並びに本発明における条件式「(Tf −790)/2」値を併記した{但し、 Tf は熱間圧延仕上温度}。ここで、色度a* は、JIS Z8729の定義に従い色彩色差計にて測定した。なお、表2は、仕上圧延の最終3パスでの非ロ−ル時間を明らかにするため、表1に記載の熱間仕上圧延における仕上圧延機全ての圧延条件の詳細(パスの実績)を示している。
【0031】
【表1】

Figure 0003760742
【0032】
【表2】
Figure 0003760742
【0033】
続いて、得られた20mm厚の各熱延鋼板につき、レ−ザ切断でのピアス時間と曲線切断面の外観評価を行った。
なお、ピアス時間については、2kW出力のレ−ザ加工機を用い、出力が 1.9kW、ガス圧が0.6kgf/cm2、焦点距離が2mmというレ−ザ切断作業条件下で測定した。
これらの結果も、前記表1に併せて示す。
【0034】
さて、表1に示された結果から分かるように、本発明の規定条件に従った試験番号1〜3では、得られた熱延鋼板には何れも平均色度a* が「a* <1」を満たすスケ−ルが生成しており、優れたレ−ザピアス性能を示すと共に、曲線切断面の様相も良好となっている。
【0035】
中でも、試験番号3は、仕上温度が比較的低くてスケ−ル色度が高いにもかかわらず、良好な曲線切断面,ピアス性能を示しているが、これは加熱温度が低いためにSi酸化物の溶融現象が発生しなかったことによるものと考えられる。
【0036】
これに対して、試験番号4〜6は素材鋼のSi含有量が本発明の規定範囲を逸脱している例であるが、加熱温度を試験番号3などより低めに設定しているにもかかわらず、得られた熱延鋼板はピアス性能,曲線切断面性状の双方とも不芳な結果となっている。
【0037】
また、試験番号7〜8は、仕上圧延の最終3パスにおける合計非ロ−ル時間が本発明の規定範囲を下回るものであるが、何れも、得られた熱延鋼板はピアス性能,曲線切断面性状の双方とも不芳な結果となっている。
試験番号9〜10は、何れも熱間圧延の仕上温度が低温となって本発明の規定範囲を逸脱したものであるが、得られた熱延鋼板は何れも結果としてスケ−ルの平均色度が本発明の規定範囲を逸脱していることもあり、ピアス性能,曲線切断面性状の双方とも不芳な結果を示している。
【0038】
そして、試験番号11〜12では、何れも得られた熱延鋼板の平均スケ−ル厚sが本発明で規定する「s≦(Tf −790)/2」の条件を満たしておらず、そのためピアス性能,曲線切断面性状の双方とも不芳な結果となっている
【0039】
【発明の効果】
以上に説明した如く、この発明によれば、ピアス性及び曲線切断時の切断面品質を含めたレ−ザ切断性が著しく優れた鋼板を安定して提供することができ、各種構造用鋼板等を使用する鋼構造物や機械・設備の製造性や性能を一段と向上させることが可能になるなど、産業上有用な効果がもたらされる。
【図面の簡単な説明】
【図1】圧延材のロ−ル通過直後における板厚方向の温度分布と、復熱後の板厚方向の温度分布とを比較した説明図である。
【図2】レ−ザビ−ムによる鋼板のピアス性に及ぼす熱間圧延仕上温度Tf ( ℃)と平均スケ−ル厚s(μm)との関係について調査した結果を整理して示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel plate having excellent laser cutting ability, which can be used as a general structural steel material, a welded structural steel material, a mechanical structural steel material, and the like. The present invention relates to a technique for providing a steel sheet for laser cutting that exhibits “piercing properties”, “cut surface quality during curved cutting”.
[0002]
[Prior art]
For example, thick steel plates used as structural members, etc., are almost always rolled as products because of manufacturing costs, and the gas cutting method is usually applied to such thick steel plates. It had been.
However, since the gas cutting method sometimes causes problems in terms of “cutting accuracy” and “distortion after cutting”, in recent years, the “laser cutting method” capable of high-precision cutting has been in the spotlight.
[0003]
However, the method of cutting a steel plate with a laser is conventionally applied mainly to the cutting of thin steel plates. Even if this is applied to the cutting of thick steel plates as it is, the “cutting ability (cutting speed)” and “ The actual situation is that there is a problem in terms of “cut surface roughness” and, therefore, it has not been widely used.
In other words, in the case of thick steel plates, the appropriate ranges of laser output, lens focal length, cutting conditions, etc. are narrower than in the case of thin steel plates, and therefore it is difficult to always carry out stable cutting. there were.
In addition, thick steel plates are generally cut with the scale attached to the surface in most cases, so this scale often hinders stable laser cutting. .
[0004]
Therefore, some proposals have been made so far in order to improve the laser cutting property of the steel sheet.
For example, see Japanese Patent Application Laid-Open No. 5-112821, improving the peelability of the scale by adjusting the chemical composition and rolling conditions of the raw steel, thereby improving the laser cutting ability (drilling ability, cutting sustainability). ) Is disclosed.
Japanese Patent Application Laid-Open No. 8-3692 discloses that the chemical composition of the steel sheet is adjusted to improve the fixing property of the scale, and the surface roughness of the scale is specified to ensure smoothness. -Techniques for preventing irregular reflection of the light and improving the cutting performance by these are disclosed.
Further, JP-A-9-20962 discloses that the chemical composition of the steel sheet is devised to improve the utilization of heat of oxidation reaction at the time of laser cutting, and the glossiness of the steel surface is adjusted to the color tone of the scale and the surface roughness. A technique is disclosed in which the laser light absorption rate is increased to 15% or less by adjusting the height, and the laser cutting property is improved by these measures.
[0005]
However, these technologies were thought to contribute greatly to improving the cutting performance of the steel sheet by the laser cutting method, but in any case, stable cutting performance was achieved when actually applied to the cutting of thick steel sheets. It was found that there are cases where it is not shown.
[0006]
Then, when this problem was examined, each of the above-described methods proposed in the prior art is sufficient in terms of stably imparting a good piercing property (piercing property by laser beam) to a steel material among laser cutting properties. However, it was often observed that the quality of the cut surface when the curve was cut was not satisfactory.
In addition, the piercing property of the steel sheet, which is closely correlated with the cutting reaction rate at the time of laser cutting, is a performance that is desired to be improved as much as possible in order to have a decisive influence on the cutting efficiency. The cut surface quality at the time of curved cutting is also an important requirement for cut products, but the range of optimum cutting conditions for obtaining good cutting surface quality is very narrow, and the surface condition of the steel sheet It was thought that the cut surface tended to be rough when the surface was deeply involved and the surface condition was poor.
[0007]
[Problems to be solved by the invention]
For these reasons, the object of the present invention is to provide a practical means for stably producing a steel plate having excellent laser cutting performance, particularly piercing performance and cutting surface quality at the time of curved cutting. It is to be.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have a decisive influence on laser cutting performance, particularly “piercing performance” and “cutting surface quality when cutting a curve”. In addition to the characteristics of the base steel plate, I learned that the scale produced on the base steel plate surface is particularly important.
[0009]
That is, the present inventors firstly stated that, in laser cutting, the cutting reaction starts when the high-energy energy of the laser beam is accumulated in the steel plate and reaches the limit of the cutting reaction. However, how much this high-density energy is absorbed is extremely important for the speed of the cutting reaction, "and the piercing property of the steel plate by laser beam and the cutting surface when cutting the curve. In order to improve the quality, it was confirmed that the chromaticity control of the scale on the steel sheet surface is important.
Then, if the scale of the steel sheet surface is controlled to a blackening scale, and the color tone satisfying “a * <1” is particularly satisfied with the chromaticity a * defined in JIS Z8729, this blackened scale is used. It has been found that the steel improves the laser light absorption rate of the steel sheet during laser cutting and brings about good cutting properties.
Furthermore, it has also been found that in order for the chromaticity a * of the scale formed on the steel sheet surface to satisfy “a * <1”, it is necessary to control the finishing temperature in hot rolling to a high temperature.
[0010]
However, although this is a notable finding, the chromaticity a * is actually “a * <1” even if only the finishing temperature when producing a steel sheet by hot rolling is considered by the study of the present inventors. It is difficult to stably obtain a blackening scale that satisfies the above conditions, and a red scale is generated and a uniform black scale is not easily formed. For example, a chromaticity that satisfies “a * <1” Even if a steel plate with the same scale is obtained, it has been revealed that there are cases in which “pierceability” and “cut surface quality at the time of curved cutting” are not sufficiently satisfied.
[0011]
Therefore, the present inventors observed and investigated the steel sheet obtained by hot rolling under various conditions. The piercing property of the steel sheet by laser beam and the cut surface quality at the time of curve cutting were determined by hot rolling. Not only the finishing temperature but also the waiting time (non-roll time) during hot rolling has an effect that cannot be overlooked, and hot rolling is necessary to ensure excellent piercing and cut surface quality during curve cutting. I found that I had to consider the waiting time (non-roll time).
[0012]
That is, in hot rolling of a steel sheet, as shown in FIG. 1A, immediately after passing through the roll, the temperature of the surface portion of the steel sheet decreases compared to the inside due to heat removal by the rolling work. It becomes low temperature. If there is a sufficient waiting time (non-roll time) to move to the next pass, the steel plate will again have an averaged temperature distribution inside and on the surface as shown in FIG. However, if rolling with extremely low waiting time is continuously performed and the next pass rolling is immediately performed on the steel sheet immediately after passing through the roll, the reheating is not completed sufficiently, and thus the lowering of the steel sheet surface portion is promoted. Result.
[0013]
Therefore, even when rolling is performed at high temperatures, the steel sheet surface is locally lowered in temperature, and red scale Fe 2 O 3 (hematite) is likely to be generated, resulting in a uniform black scale. Otherwise, the piercing property and cut surface quality at the time of curve cutting will be adversely affected. Further, even though it appears that a blackened scale satisfying chromaticity a * of “a * <1” is generated in appearance, rolling is performed at a locally uneven temperature. The piercing property of the obtained steel plate by the laser beam and the cut surface quality at the time of curve cutting are adversely affected. Therefore, in order to avoid this, it is important to secure a sufficient time for reheating by taking a waiting time (non-roll time) required during hot rolling of the steel sheet.
[0014]
In addition, considering the generation time of the scale layer formed on the final product steel plate, the scale in the early rolling stage may be peeled off by rolling in the middle or removed by high-pressure descaling, and rolling. At an early stage, the temperature of the steel sheet is high, so recuperation after passing through the roll also occurs quickly. Therefore, the final scale layer and the properties of the base steel plate have a great influence on the final three passes of finish rolling. If the non-roll time in these passes is ensured, the desired piercing for the steel plate is achieved. And cut surface quality at the time of cutting a curve can be provided.
[0015]
On the other hand, it is known that phyllite (Fe 2 SiO 4 ), which increases the mutual adhesion, tends to be generated at the interface between the steel sheet surface and the scale, but when the adhesion of the scale is improved. Scale peeling due to high pressure water descaling is less likely to occur. The scale that has not been peeled off by the high pressure water descaling is crushed by rolling and becomes a red scale, which is detrimental to laser cutting properties. Therefore, it is necessary to suppress the formation of this fluorite as much as possible. .
[0016]
However, the phyllite has a feature that it is generated when a certain amount or more of Si is contained in the base material (steel plate). For this reason, by controlling the Si content of the base steel sheet to a specific value or less, it is possible to suppress the formation of phierite.
[0017]
Further, the phyllite is likely to be generated at the interface between the base material and the scale layer when heated to a temperature higher than the melting temperature of the Si oxide. Therefore, by controlling the heating temperature of the raw steel during the hot rolling to 1200 ° C. or less, which is the melting point of Si oxide, the frequency of the formation of fibrillite at the interface between the base material and the scale layer is further reduced. The peelability of the scale becomes extremely good, and the effect of suppressing the formation of the red scale is further improved.
[0018]
Furthermore, if the scale chromaticity and the steel plate characteristics with good laser light absorbance can be obtained by the above-mentioned procedure, the laser cutting performance including the piercing property and the cut surface quality at the time of curve cutting will be improved. If the scale thickness is appropriately controlled in relation to the hot rolling finishing temperature of the steel sheet, the piercing property of the obtained steel sheet and the cut surface quality at the time of curve cutting can be stably maintained at a high level. I understand.
In other words, even if the scale generated on the steel plate surface is a blackened scale, if the thickness is too thick, the piercing property by the laser beam and the cut surface quality at the time of curve cutting deteriorate, but hot rolling It was found that the production stability of a steel sheet having excellent laser cutting ability can be secured by controlling the finishing temperature and the thickness of the scale to be produced according to specific conditions.
[0019]
The present invention has been made on the basis of the above knowledge and the like, and provides a method for producing a laser cutting steel sheet shown in the following items (1) and (2) .
(1) The Si content of the steel material is 0.5% by weight or less, and this is subjected to hot rolling in which “the total non-roll time in the final three passes of finish rolling” is secured for 10 seconds or more, and at least 850 ° C. up finish rolling at a temperature, or one average scale - Le thickness s (μm) s ≦ a in relation to the hot rolling finish temperature T f (℃) (T f -790) / 2
A method for producing a steel sheet excellent in laser cutability, wherein the average chromaticity a * of the scale adhering to the surface is “a * <1”, characterized in that the steel sheet is controlled in a range of
(2) The Si content of the material steel is 0.5 wt% or less, and after heating it to a temperature not exceeding 1200 ° C, "total non-roll time in the final three passes of finish rolling" is secured for 10 seconds or more. is performed with respect to the hot rolling, up finish rolling at 850 ° C. or higher, or one average scale - s ≦ Le thickness s of ([mu] m) in relation to the hot rolling finish temperature T f (℃) (T f -790) / 2
A method for producing a steel sheet excellent in laser cutability, wherein the average chromaticity a * of the scale adhering to the surface is “a * <1”, characterized in that the steel sheet is controlled in a range of
[0020]
In the present invention, the chemical composition of the material steel is not particularly limited, and may be any steel type such as general structural steel, welded structural steel, and mechanical structural steel. The Si content will be described later. Therefore, it is necessary to regulate to 0.5% by weight or less.
The “chromaticity a * ” conforms to the definition of JIS Z8729, and may be measured with a color difference meter.
[0021]
Hereinafter, the present invention will be described together with its operation.
As described above, it is the “scale property” that has a significant effect on the laser cutting ability of a steel sheet. However, in order to ensure excellent laser cutting ability, A blackening scale having an average chromaticity a * of “a * <1” must be formed.
[0022]
The scale layer is inevitably generated during the production of the steel sheet, but the chemical composition of the scale layer changes in the thickness direction, and generally Fe 2 O 3 (hematite) in order from the steel sheet surface. → Fe 3 O 4 (magnetite) → FeO (wustite).
Among them, hematite looks red, and when this thickness is thick, it is said to be a so-called “red scale”, but for laser cutting, it is blackened with a high laser light absorption rate. Therefore, this hematite is an oxide to be reduced as much as possible.
[0023]
In order to reliably obtain a blackened scale having an average chromaticity a * in the range of “a * <1” in the hot rolling process, it is necessary to control the hot rolling finishing temperature to a high temperature of 850 ° C. or higher. When the finishing temperature is lower than 850 ° C., the formation of hematite is remarkably promoted and a scale satisfying “a * <1” is not formed.
That is, a stable scale is generated by appropriately controlling the hot rolling finishing temperature, and the chromaticity can be made more black. And the blackened scale improves the laser light absorption rate at the time of laser cutting, and contributes to ensuring good cutting performance.
[0024]
However, it is not possible to stably produce a steel plate excellent in “piercing properties” by laser beams and “cut surface quality at the time of curve cutting” only by controlling the hot rolling finishing temperature to 850 ° C. or more.
These characteristics include a large waiting time during hot rolling (non-roll time: time during which the steel sheet is not in contact with the rolling roll), particularly non-roll time in the final three passes of finish rolling. affect.
That is, when the total non-roll time in the final three passes of finish rolling is less than 10 seconds, the surface portion of the steel sheet being rolled is in a state where the temperature is locally lowered, and even if the finish temperature is increased, hematite is generated. As a result, a uniform black scale is not achieved, and the average chromaticity a * of the scale does not satisfy “a * <1”.
Also, if the total non-roll time in the final three passes of finish rolling is less than 10 seconds, even if the average chromaticity a * of the scale satisfies “a * <1”, it is locally uneven. The piercing property by the laser beam of the steel plate obtained due to rolling at various temperatures and the quality of the cut surface at the time of curve cutting are adversely affected.
Therefore, the hot rolling of the steel sheet needs to be a rolling in which the total non-roll time (total waiting time) in the final three passes of finish rolling is secured for 10 seconds or more.
[0025]
The peelability of the scale formed on the steel sheet surface has a considerable influence on the chromaticity a * of the final scale, and the average chromaticity of the final scale in a situation where a highly adhesive scale is formed. a * does not satisfy “a * <1”.
In other words, in the case of a steel plate containing Si, Fe 2 SiO 4 (fierite) tends to be formed at the interface between the steel plate surface and the scale, and the adhesion of the scale tends to be increased. It is difficult to peel off the scale by high pressure water descaling, but the scale that has not been peeled off by high pressure water descaling is crushed by rolling into a red scale, which impairs the laser cutting ability. .
However, since the production of Fe 2 SiO 4 hardly occurs when the Si content of the raw steel is 0.5% by weight or less, in the present invention, the Si content of the raw steel is set to ensure excellent laser cutting ability. It was decided to regulate to 0.5% by weight or less.
[0026]
The above Fe 2 SiO 4 (Fialite) has the property of being easily formed at the interface between the base material and the scale layer when heated to a temperature higher than the melting temperature of the Si oxide. By restricting the heating temperature of the raw steel to 1200 ° C. or less, which is the melting point of Si oxide, the generation frequency can be further reduced, and the securing of excellent laser cutting properties is further stabilized.
[0027]
However, it has a hot rolling finishing temperature of 850 ° C. or more and a total non-roll time in the final three passes of 10 seconds or more, and has an adhesiveness that satisfies the average chromaticity a * of “a * <1”. Even if a low scale layer is formed, if the thickness of the scale layer is too thick, the piercing property by the laser beam and the quality of the cut surface at the time of curve cutting are deteriorated.
However, the present inventors have found that, through numerous tests, an acceptable balance for ensuring “excellent piercing properties and cut surface quality at the time of curve cutting” between the hot rolling finishing temperature and the average scale thickness. I found that a line exists.
That is, the average scale thickness s (μm) is related to the hot rolling finishing temperature T f (° C.) by s ≦ (T f −790) / 2.
It was found that the production stability of the steel sheet with excellent piercing property and cut surface quality at the time of curve cutting can be further improved by controlling in this range.
[0028]
In addition, FIG. 2 arranges the result of investigating the relationship between the hot rolling finishing temperature T f (° C.) and the average scale thickness s (μm) which affects the piercing property of a steel plate by laser beam. As shown in the graph, in the region where the hot rolling finishing temperature is 850 ° C. or higher, the expression “s ≦ (T f −790) / 2” correlates well with the piercing performance at the time of laser cutting. .
[0029]
Here, it goes without saying that control of the thickness of the scale generated on the steel sheet surface is performed by adjusting the heating temperature, hot rolling conditions, cooling conditions, etc. according to the chemical composition of the raw steel.
[0030]
Subsequently, the present invention will be described with reference to examples.
【Example】
Each material steel having the chemical composition shown in Table 1 was heated and then hot-rolled to produce hot-rolled steel sheets each having a thickness of 20 mm.
In Table 1 above, the heating temperature of the raw steel, the rolling conditions in finish rolling, the average thickness and average chromaticity a * of the scale formed on the surface of the product hot-rolled steel sheet, and the conditional expression “( T f −790) / 2 ”values are shown together (where T f is the hot rolling finish temperature). Here, the chromaticity a * was measured with a color difference meter in accordance with the definition of JIS Z8729. Table 2 shows details of rolling conditions for all finish rolling mills in the hot finish rolling described in Table 1 (pass results) in order to clarify the non-roll time in the final three passes of finish rolling. Show.
[0031]
[Table 1]
Figure 0003760742
[0032]
[Table 2]
Figure 0003760742
[0033]
Subsequently, for each hot-rolled steel sheet having a thickness of 20 mm, the piercing time in laser cutting and the appearance evaluation of the curved cut surface were performed.
The piercing time was measured using a laser processing machine with a 2 kW output under laser cutting work conditions with an output of 1.9 kW, a gas pressure of 0.6 kgf / cm 2 , and a focal length of 2 mm.
These results are also shown in Table 1 above.
[0034]
Now, as can be seen from the results shown in Table 1, in Test No. 1-3 in accordance with the provisions conditions of this invention, both the hot-rolled steel sheet obtained average chromaticity a * is "a * <1 The scale satisfying the above has been produced, exhibiting excellent laser piercing performance, and the appearance of the curved cut surface is also good.
[0035]
In particular, Test No. 3 shows a good curve cut surface and piercing performance despite the relatively low finishing temperature and high scale chromaticity. This is thought to be because the melting phenomenon of the object did not occur.
[0036]
On the other hand, test numbers 4 to 6 are examples in which the Si content of the raw steel deviates from the specified range of the present invention, although the heating temperature is set lower than test number 3 and the like. The obtained hot-rolled steel sheet has poor results in both piercing performance and curved cut surface properties.
[0037]
Test Nos. 7 to 8 are those in which the total non-roll time in the final three passes of finish rolling is less than the specified range of the present invention. Both surface properties are unsatisfactory.
Test Nos. 9 to 10 are those in which the hot rolling finish temperature is low and deviates from the specified range of the present invention. However, as for the obtained hot rolled steel sheets, the average color of the scale is the result. The degree may deviate from the specified range of the present invention, and both the piercing performance and the curved cut surface property show unsatisfactory results.
[0038]
And in the test numbers 11 to 12, the average scale thickness s of the obtained hot rolled steel sheet does not satisfy the condition of “s ≦ (T f −790) / 2” defined in the present invention. For this reason, both the piercing performance and the curved cut surface properties are unsatisfactory .
[0039]
【The invention's effect】
As described above, according to the present invention, it is possible to stably provide a steel plate that is remarkably excellent in laser cutting properties including piercing properties and cut surface quality at the time of curve cutting, such as various structural steel plates. Industrially useful effects such as further improving the manufacturability and performance of steel structures and machinery / equipment that use steel.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram comparing a temperature distribution in a thickness direction of a rolled material immediately after passing through a roll and a temperature distribution in a thickness direction after reheating.
FIG. 2 is a graph summarizing the results of investigations on the relationship between the hot rolling finishing temperature T f (° C.) and the average scale thickness s (μm) on the piercing properties of steel plates by laser beam. It is.

Claims (2)

素材鋼のSi含有量を 0.5重量%以下とし、これに“仕上圧延の最終3パスにおける合計非ロ−ル時間”を10秒以上確保した熱間圧延を施すと共に、850℃以上の温度で圧延を仕上げ、かつ平均スケ−ル厚s(μm)を熱間圧延仕上温度Tf (℃)との関係で
s≦(Tf −790)/2
の範囲に制御することを特徴とする、表面に付着するスケ−ルの平均色度a * が「a * <1」であるレ−ザ切断性に優れた鋼板の製造方法。
The raw steel is made to have a Si content of 0.5% by weight or less, and is subjected to hot rolling that secures “the total non-roll time in the final three passes of finish rolling” for 10 seconds or more and rolled at a temperature of 850 ° C. or more. finish up, or one average scale - s ≦ (T f -790) Le thickness s of ([mu] m) in relation to the hot rolling finish temperature T f (℃) / 2
A method for producing a steel sheet excellent in laser cutability, wherein the average chromaticity a * of the scale adhering to the surface is “a * <1”, characterized in that the steel sheet is controlled in a range of
素材鋼のSi含有量を 0.5重量%以下とし、これを1200℃を超えない温度に加熱してから、“仕上圧延の最終3パスにおける合計非ロ−ル時間”を10秒以上確保した熱間圧延を施すと共に、850℃以上の温度で圧延を仕上げ、かつ平均スケ−ル厚s(μm)を熱間圧延仕上温度Tf (℃)との関係で
s≦(Tf −790)/2
の範囲に制御することを特徴とする、表面に付着するスケ−ルの平均色度a * が「a * <1」であるレ−ザ切断性に優れた鋼板の製造方法。
A hot steel in which the Si content of the material steel is 0.5 wt% or less, heated to a temperature not exceeding 1200 ° C, and the "total non-roll time in the final three passes of finish rolling" is secured for 10 seconds or more. is performed with a rolling up finish rolling at 850 ° C. or higher, and an average scale - s ≦ in relation to the Le thickness s ([mu] m) the hot rolling finishing temperature T f (℃) (T f -790) / 2
A method for producing a steel sheet excellent in laser cutability, wherein the average chromaticity a * of the scale adhering to the surface is “a * <1”, characterized in that the steel sheet is controlled in a range of
JP2000276632A 2000-09-07 2000-09-07 Steel plate manufacturing method with excellent laser cutting ability Expired - Fee Related JP3760742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000276632A JP3760742B2 (en) 2000-09-07 2000-09-07 Steel plate manufacturing method with excellent laser cutting ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000276632A JP3760742B2 (en) 2000-09-07 2000-09-07 Steel plate manufacturing method with excellent laser cutting ability

Publications (2)

Publication Number Publication Date
JP2002080913A JP2002080913A (en) 2002-03-22
JP3760742B2 true JP3760742B2 (en) 2006-03-29

Family

ID=18762065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000276632A Expired - Fee Related JP3760742B2 (en) 2000-09-07 2000-09-07 Steel plate manufacturing method with excellent laser cutting ability

Country Status (1)

Country Link
JP (1) JP3760742B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7536242B2 (en) * 2004-11-12 2009-05-19 The Boeing Company Optical laser guidance system apparatus and method

Also Published As

Publication number Publication date
JP2002080913A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP6829312B2 (en) Steel welded parts with aluminum or aluminum alloy coating and how to prepare them
US20170239755A1 (en) Metal plate for laser processing and method for producing stainless steel plate for laser processing
JP2008506844A (en) Steel bands for doctor blades, coater blades and creping blades, and powder metallurgy methods for producing them
JP2009242843A (en) Aluminum alloy substrate for magnetic disk and method for producing the same
JP6824004B2 (en) Casting product with an alumina barrier layer on the surface and its manufacturing method
JP3760742B2 (en) Steel plate manufacturing method with excellent laser cutting ability
JP2018154881A (en) Production method of grain-oriented electromagnetic steel sheet
JP3872698B2 (en) Steel plate with excellent laser cutting ability and its manufacturing method
JP2005271000A (en) Method for producing high nickel alloy steel plate
JPH03281756A (en) Fe-ni alloy sheet for shadow mask and its manufacture
JP3445998B2 (en) Hot-rolled steel sheet with excellent laser cutting property and method for producing the same
WO2023132342A1 (en) Hot-rolled steel sheet and method for producing same
JPH10158733A (en) Steel plate excellent in laser beam machinability and its production
JPH05317928A (en) Method for repairing rolling roll
JP3577947B2 (en) Thick steel plate excellent in laser cutability and method for producing the same
JPH10158732A (en) Manufacture of steel plate excellent in laser cutting property
JP2023553158A (en) Steel material with excellent laser cutting characteristics and its manufacturing method
JPH06335706A (en) Production of hot rolled steel sheet excellent in surface quality
JPH093543A (en) Production of hot rolled plate and cold rolled sheet of austenitic stainless steel
KR100905653B1 (en) Preparing method of non-pickling galvanized hot-rolled steel sheet with excellent coating adhesion
JPH083692A (en) Steel plate for laser cutting
JPH0748622A (en) Production of scale-controlled steel sheet
JPH09192707A (en) Manufacture of titanium sheet having excellent glare-proof
JP2006249536A (en) Metal material to be mirror polished
JP2001011670A (en) Production of iron-nickel series alloy thick plate excellent in surface property

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3760742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110120

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120120

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130120

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140120

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees