JP3760650B2 - GaN phosphor manufacturing method - Google Patents

GaN phosphor manufacturing method Download PDF

Info

Publication number
JP3760650B2
JP3760650B2 JP37353898A JP37353898A JP3760650B2 JP 3760650 B2 JP3760650 B2 JP 3760650B2 JP 37353898 A JP37353898 A JP 37353898A JP 37353898 A JP37353898 A JP 37353898A JP 3760650 B2 JP3760650 B2 JP 3760650B2
Authority
JP
Japan
Prior art keywords
gan
compound
phosphor
producing
gasified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP37353898A
Other languages
Japanese (ja)
Other versions
JP2000192035A (en
Inventor
義孝 佐藤
順子 須田
文昭 片岡
均 土岐
裕司 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP37353898A priority Critical patent/JP3760650B2/en
Priority to TW088121932A priority patent/TW498102B/en
Priority to KR10-1999-0062528A priority patent/KR100384397B1/en
Priority to FR9916519A priority patent/FR2787805B1/en
Priority to US09/472,011 priority patent/US6303403B1/en
Publication of JP2000192035A publication Critical patent/JP2000192035A/en
Application granted granted Critical
Publication of JP3760650B2 publication Critical patent/JP3760650B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、Ga1-x Inx N:A,B(0≦x<1、A=Zn,Mg,B=Si,Ge)蛍光体の製造方法に関する。
【0002】
【従来の技術】
近年、GaNは、単結晶の場合にはLED、LD等の発光素子において青色、緑色の高輝度発光を示す材料として知られている。また、一般式Ga1-x Inx N:A,B(0≦x<1、A=Zn,Mg,B=Si,Ge)で表される場合には、青色から赤色までの広い範囲での発光が可能である。
【0003】
従来、GaN蛍光体を製造するには、原料物質であるGa化合物にドープ物質の化合物を混合し、これを焼成炉内に配置してアンモニアを流しながら高温で焼成し、Gaを窒化させるとともにドープ物質をドープさせる。
【0004】
このようにして得られた材料を電子線で発光させる試みは過去にあるが、粉体状にした蛍光体については実用的な輝度を得るに至っていない。
【0005】
【発明が解決しようとする課題】
輝度が得られない最大の理由として、他の蛍光体材料と異なり窒化の困難さが挙げられる。すなわち、この材料は窒化される温度(700℃〜1000℃)と分解が始まる温度(950℃以上)の差が小さいため、通常の加熱による反応では窒化と分解が同時に進行しやすい。このため、GaNはできるが、蛍光体として使用できる程に結晶性が高いGaNを作ることはできなかった。
【0006】
また、窒化ガリウム蛍光体は、Gaより価数が1多いドナーと、Gaより価数が1少ないアクセプターとによるペア発光のため、ドナーおよびアクセプターのドープ物質を窒化ガリウムにドープする必要がある。ドープ物質をドープする場合も、より高い温度が必要であるが、前述したようにGaNは高温で分解しやすいため、温度が上げられず、充分なドーピングができない。
【0007】
さらに、GaNのような窒化物を得るには、一般的には原料物質であるGa化合物をアンモニアを用いた雰囲気中において高温で焼成して窒化するが、この際、アンモニアの分解によって生成した水素には強力な還元作用がともなう。この還元作用により、GaNが還元されてGaが遊離してしまう。また、この還元作用により、GaNに混合したドープ物質はGaNに拡散する前に分解飛散してしまい、ドープ物質の十分な拡散ができない。このような水素による還元の弊害を防ぐには反応を低温で行う必要があるが、これではドープ物質をGaN内にドープすることができない。このような問題があるため、従来の製造方法では、満足な輝度で発光しうるGaN系蛍光体を得ることができなかった。
【0008】
本発明は、電子線の励起により実用上十分な輝度で発光するGaN系蛍光体の製造方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
請求項1に記載されたGaN蛍光体の製造方法は、Ga1-x Inx N:A(0≦x<1、A=Zn,Mg)で表されるGaN蛍光体の製造方法において、NH3 ガスが所定方向に流される焼成炉の内部において、H2 と反応する元素としてSとOから任意に選択された物質を含むとともに加熱によりガス化する前記Aの化合物を上流側に配置し、前記化合物を含む母体元素化合物を下流側に配置して、SとOから任意に選択された物質及びガス化した前記Aを含む雰囲気中で水素による還元作用を抑えながら焼成を行うことを特徴としている。
【0011】
請求項2に記載されたGaN蛍光体の製造方法は、請求項1記載のGaN蛍光体の製造方法において、上流側に配置する記化合物が、ZnS,ZnSO4 ,ZnO,ZnCO3 、MgS,MgSO4 ,MgCO3 からなる群から選択された物質であることを特徴としている。
【0012】
請求項に記載されたGaN蛍光体の製造方法は、請求項1記載のGaN蛍光体の製造方法において、前記AとしてZnが0.002〜1atm%含まれていることを特徴としている。
【0013】
請求項に記載されたGaN蛍光体の製造方法は、請求項1記載のGaN蛍光体の製造方法において、前記母体元素化合物を相対的に高い温度で加熱し、前記Aの化合物を相対的に低い温度で加熱することを特徴としている。
【0014】
請求項5に記載されたGaN蛍光体の製造方法は、Ga 1-x In x N:A,B(0≦x<1、A=Zn,Mg、B=Si,Ge)で表されるGaN蛍光体の製造方法において、NH 3 ガスが所定方向に流される焼成炉の内部において、H 2 と反応する元素としてSとOから任意に選択された物質を含むとともに加熱によりガス化する前記Aの化合物を上流側に配置し、前記化合物及び前記Bの化合物を含む母体元素化合物を下流側に配置して、SとOから任意に選択された物質及びガス化した前記Aを含む雰囲気中で水素による還元作用を抑えながら焼成を行うことを特徴としている。
【0015】
【発明の実施の形態】
本発明者等は、前述した一連の問題を解決するためには、GaNの分解を抑えつつGaNの結晶化を行い、さらにドープ物質の拡散を十分に行う必要があると考えた。そのためには、水素による還元作用を抑えながら高温でGaNの結晶化を行い、同時にこの高温下で効率的にドープ物質のドープを進行させる方法が必要である。
【0016】
具体的な方法としては、図1に示す管状炉1を焼成炉として使用する。管状炉1の周囲には加熱手段としてのヒータ2が螺旋状に巻かれており、管状炉1の内部を任意の温度に設定することができる。但し、ヒータ2が巻装されている加熱範囲の中心部(イ)では相対的に高温になり、加熱範囲の端部(ロ)では相対的に低温になる。管状炉1の両端は開放されており、一方(上流側)から他方(下流側)に向けて反応に必要なガスを流すことができる。
【0017】
前記焼成炉1の内部において、H2 と反応する元素を含むとともに加熱によりガス化するドープ物質の化合物3を上流側の加熱範囲の端部(ロ)に配置する。また、GaN蛍光体の母体の原料物質であるGa化合物4を下流側の加熱範囲の中央部(イ)に配置する。NH3 ガスを流しながら、ヒータ2で管状炉1内を加熱する。ドープ物質の化合物3は相対的に低温で加熱され、Ga化合物4は相対的に高温で加熱される。
【0018】
アンモニアによりドープ物質の化合物3が分解・飛散し、Ga化合物4付近にS、Oおよびドープ物質を含む雰囲気が生成される。この結果、S、OによってGa化合物4付近の水素による還元作用が抑えられるためGaNの分解がおこり難くなり、前述した相対的に高い焼成温度でも問題が生じない。さらにGa化合物4の周囲がアンモニアとともにガス状になったドープ物質で覆われるため、生成されたGaNに十分な量のドープ物質を拡散させることができる。このため、焼成温度を高くすることにより、結晶性が高い、ドープ物質が十分にドープしたGaN蛍光体が得られる。このような方法で製造されたGaN蛍光体によれば、十分に実用的な輝度が得られる。
【0019】
【実施例】
(1)実施例1
GaN:Zn蛍光体の製造方法を示す。
Gaの原料物質(母体元素化合物)としては、Ga2 3 を使用する。ドープ物質であるZnの原料物質としてはZnSを使用する。具体的には、Ga2 3 を3gと、ZnSを0.6g、互いに良く混合し、焼成ボートに載せる。図1に示したように、管状炉1内の上流側にもZnS(ドープ物質の化合物3)を配置する。この際、Gaの原料物質4は、管状炉1の加熱範囲の略中央部(イ)である均熱帯(所定の温度に加熱される領域)に置く。ZnS(ドープ物質の化合物3)は還元雰囲気により飛散しやすいため、均熱帯よりも低温になる加熱範囲の端部(ロ)に配置する。これにより、焼成中のZnS飛散を持続させる。この状態で350ml/minのアンモニアを流しながら、Gaの原料物質を1150℃で2時間焼成し、GaN蛍光体を得た。この時、ZnSは1050℃に加熱される。
【0020】
得られたGaN蛍光体をVFDのアノード基板に塗布し、アノード電圧30Vで発光させて評価した。さらにFEDのアノード基板に塗布し、アノード電圧400Vで発光させて評価した。
【0021】
このGaN蛍光体中には十分なドープ物質が検出された。図2にZnS飛散量とGaN蛍光体中のドープ物質(Zn)の量の関係を示す。GaN蛍光体中のドープ物質の量は炉内GaNガス上流部のZnS飛散量を増減することにより制御できることが分かる。
【0022】
図3にGaN中のZn量に対する輝度の関係を示す。通常高い輝度を得るには0.002%以上のZn濃度が必要である。ZnSを炉内で飛散させない場合は、図2の横軸の0molに示すようにGaN中にはZnがドープせず、縦軸に示すように高い輝度は得られない。必要なZnのドープ量の範囲としては、0.002%〜1%が好ましい。
【0023】
(2)実施例2
GaInN:Mg蛍光体の製造方法を示す。
母体元素化合物であるGa2 3 を2g、母体元素化合物であるIn2 3 を1g、ドープ物質の化合物であるMgSを0.4g、それぞれ良く混合し、焼成ボートに載せる。母体元素化合物であるGa2 3 等の混合物と、ドープ物質の化合物であるMgSとを、実施例1と同様の配置で管状炉1内に配置する。アンモニアを350ml/min流しながら、均熱帯の温度を1100℃として原料を3時間焼成すると、GaInN:Mg蛍光体が得られた。このGaInN蛍光体には十分なMgの拡散が確認された。実施例1と同様に、VFDまたはFEDに実装して評価したところ、緑色の発光が得られた。
【0024】
(3)実施例3
蛍光体上流部に配置するS,Oを含むドープ物質の化合物として、ZnO,ZnSO4 ,ZnCO3 ,MgSO4 ,MgCO3 から任意の物質を選択して用いた場合にも、実施例1、2と略同様の効果が得られる。ZnO,ZnSO4 ,ZnCO3 ,ZnSO4 ,MgCO3 の場合は、還元雰囲気中にて分解飛散しやすいので、ZnSよりもさらに低い温度領域に配置する必要がある。
【0025】
(4)実施例4
GaN:Zn,Si蛍光体の製造方法を示す。
Gaの原料物質としてGa2 3 を2g、ZnとしてZnSを0.4g、SiとしてSiO2 を0.0003g、それぞれ良く混合し、焼成ボートに載せる。前記母体元素化合物であるGa2 3 等の混合物を実施例1と同様に管状炉の中央部に置き、さらにその上流に、ドープ物質の化合物であるZnSを配置する。アンモニアを350ml/min流しながら、1150℃で2時間焼成することにより、GaN:Zn,Si蛍光体を得た。このGaN:Zn,Si蛍光体には十分なZnおよびSiの拡散が確認された。実施例1と同様にVFDまたはFEDに実装して評価したところ、青色の発光が得られた。
【0026】
(5)実施例5
GaInN:Zn,Ge蛍光体の製造方法を示す。
原料物質としてGa2 3 を2g、In2 3 を1g、ZnとしてZnSを0.4g、GeとしてGeO2 を0.0005g、それぞれ良く混合し、焼成ボートに載せる。前記母体元素化合物であるGa2 3 等の混合物を実施例1と同様に管状炉の中央部に置き、さらにその上流に、ドープ物質の化合物であるZnSを配置する。アンモニアを350ml/min流しながら、1100℃で3時間焼成してGaInN:Zn,Ge蛍光体を得た。このGaInN:Zn,Ge蛍光体には十分なZnおよびGeの拡散が確認された。実施例1と同様にVFDまたはFEDに実装して評価したところ、緑色の発光が得られた。
【0027】
【発明の効果】
本発明の蛍光体の製造方法によれば、NH3 ガスが流される焼成炉の内部で、H2 と反応する元素を含むとともに加熱によりガス化するドープ物質の化合物を上流側に配置し、母体元素化合物を下流側に配置して焼成を行うので、次のような効果が得られる。
【0028】
1.GaN作製時にGaNの周囲がアンモニアとともにドープ物質で覆われるため、GaN蛍光体に十分なドープ物質の拡散ができる。
【0029】
2.また、GaN作製時にGaNの周囲がS、Oに包まれることによりGaNの分解がおこり難くなるため、焼成温度を上げることが可能になり、GaNの結晶化が促進され欠陥の少ない結晶性の高い蛍光体が得られる。
【0030】
3.上記のため、発光強度の高いGaN蛍光体が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態乃至実施例で使用される管状炉の断面図である。
【図2】本発明の実施例におけるZnS飛散量とGaN中のZn量との関係を示すグラフを表した図である。
【図3】本発明の実施例におけるGaN中のZn量とFED・VFDの相対輝度値との関係を示すグラフを表した図である。
【符号の説明】
1…焼成炉としての管状炉、2…加熱手段としてのヒータ、3…ドープ物質の化合物、4…Gaの原料物質(母体元素化合物)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a Ga 1-x In x N: A, B (0 ≦ x <1, A = Zn, Mg, B = Si, Ge) phosphor.
[0002]
[Prior art]
In recent years, GaN has been known as a material that emits blue and green high luminance light emitting elements such as LEDs and LDs in the case of a single crystal. Further, in the case of being represented by the general formula Ga 1-x In x N: A, B (0 ≦ x <1, A = Zn, Mg, B = Si, Ge), a wide range from blue to red Can emit light.
[0003]
Conventionally, in order to manufacture a GaN phosphor, a Ga compound as a raw material is mixed with a compound of a doping material, and this is placed in a firing furnace and baked at a high temperature while flowing ammonia to nitride and Ga. Dope material.
[0004]
There have been attempts in the past to emit light from the material thus obtained with an electron beam, but no practical luminance has been achieved with respect to a phosphor in powder form.
[0005]
[Problems to be solved by the invention]
Unlike the other phosphor materials, the biggest reason why the luminance cannot be obtained is difficulty in nitriding. That is, since this material has a small difference between the nitriding temperature (700 ° C. to 1000 ° C.) and the temperature at which decomposition starts (950 ° C. or more), nitriding and decomposition are likely to proceed simultaneously in a normal heating reaction. For this reason, although GaN can be produced, GaN having such a high crystallinity that it can be used as a phosphor cannot be produced.
[0006]
In addition, the gallium nitride phosphor needs to be doped with gallium nitride as a donor and acceptor doping material for pair emission by a donor having a valence one higher than Ga and an acceptor having a valence one less than Ga. Even when doping a doping material, a higher temperature is required. However, as described above, since GaN is easily decomposed at a high temperature, the temperature cannot be increased and sufficient doping cannot be performed.
[0007]
Further, in order to obtain a nitride such as GaN, generally, a Ga compound as a raw material is baked and nitrided at a high temperature in an atmosphere using ammonia. At this time, hydrogen generated by decomposition of ammonia is used. Has a powerful reducing action. This reduction action reduces GaN and liberates Ga. Also, due to this reduction action, the doped material mixed with GaN is decomposed and scattered before diffusing into GaN, and the doped material cannot be sufficiently diffused. In order to prevent such an adverse effect of reduction by hydrogen, the reaction needs to be performed at a low temperature. However, this makes it impossible to dope the GaN into the GaN. Because of such problems, the conventional manufacturing method cannot obtain a GaN-based phosphor that can emit light with satisfactory luminance.
[0008]
An object of the present invention is to provide a method for producing a GaN-based phosphor that emits light with practically sufficient luminance by excitation of an electron beam.
[0009]
[Means for Solving the Problems]
The method for producing a GaN phosphor according to claim 1 is a method for producing a GaN phosphor represented by Ga 1-x In x N: A (0 ≦ x <1, A = Zn, Mg) . Inside the firing furnace in which NH 3 gas is allowed to flow in a predetermined direction, the compound of A that contains a substance arbitrarily selected from S and O as an element that reacts with H 2 and is gasified by heating is disposed upstream. , characterized in that the firing base element compounds comprising said compounds arranged on the downstream side, while suppressing the reduction action of hydrogen in an atmosphere containing the a was arbitrarily selected material and gasified from S and O It is said.
[0011]
Method of manufacturing a GaN phosphor of claim 2, claim in the manufacturing method of the GaN phosphor according 1, the hear compounds before being placed into the upstream side, ZnS, ZnSO 4, ZnO, ZnCO 3, It is a substance selected from the group consisting of MgS, MgSO 4 , and MgCO 3 .
[0012]
According to a third aspect of the present invention, there is provided a method for producing a GaN phosphor according to the first aspect, wherein the A contains Zn in an amount of 0.002 to 1 atm%.
[0013]
The method for producing a GaN phosphor according to claim 4 is the method for producing a GaN phosphor according to claim 1, wherein the matrix element compound is heated at a relatively high temperature, and the compound of A is relatively It is characterized by heating at a low temperature.
[0014]
The method for producing a GaN phosphor according to claim 5 is characterized in that Ga 1-x In x N: A, B (0 ≦ x <1, A = Zn, Mg, B = Si, Ge) In the phosphor manufacturing method, the inside of the firing furnace in which NH 3 gas flows in a predetermined direction contains a substance arbitrarily selected from S and O as an element that reacts with H 2 and is gasified by heating. A compound is arranged on the upstream side, a matrix element compound containing the compound and the compound of B is arranged on the downstream side, and a substance arbitrarily selected from S and O and hydrogen in an atmosphere containing gasified A It is characterized in that firing is performed while suppressing the reducing action due to.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the series of problems described above, the present inventors considered that it is necessary to crystallize GaN while suppressing decomposition of GaN, and to sufficiently diffuse the doped material. For this purpose, a method is required in which GaN is crystallized at a high temperature while suppressing the reduction action by hydrogen, and at the same time, the doping of the doping material is efficiently advanced at this high temperature.
[0016]
As a specific method, the tubular furnace 1 shown in FIG. 1 is used as a firing furnace. A heater 2 as a heating means is spirally wound around the tubular furnace 1, and the inside of the tubular furnace 1 can be set to an arbitrary temperature. However, the temperature is relatively high at the center (A) of the heating range around which the heater 2 is wound, and the temperature is relatively low at the end (B) of the heating range. Both ends of the tubular furnace 1 are open, and a gas necessary for the reaction can flow from one (upstream side) to the other (downstream side).
[0017]
Inside the firing furnace 1, a compound 3 of a doping substance that contains an element that reacts with H 2 and is gasified by heating is placed at the end (b) of the upstream heating range. In addition, the Ga compound 4 which is a raw material of the base material of the GaN phosphor is disposed in the central portion (A) of the downstream heating range. While flowing NH 3 gas, the inside of the tubular furnace 1 is heated by the heater 2. The compound 3 of the doping substance is heated at a relatively low temperature, and the Ga compound 4 is heated at a relatively high temperature.
[0018]
The compound 3 of the doping substance is decomposed and scattered by ammonia, and an atmosphere containing S, O and the doping substance is generated in the vicinity of the Ga compound 4. As a result, the reduction action by hydrogen in the vicinity of the Ga compound 4 is suppressed by S and O, so that GaN is hardly decomposed, and no problem occurs even at the relatively high firing temperature described above. Furthermore, since the periphery of the Ga compound 4 is covered with a doping material that is gaseous with ammonia, a sufficient amount of the doping material can be diffused into the generated GaN. For this reason, by increasing the firing temperature, a GaN phosphor having high crystallinity and sufficiently doped with a doped substance can be obtained. According to the GaN phosphor manufactured by such a method, sufficiently practical luminance can be obtained.
[0019]
【Example】
(1) Example 1
A method for manufacturing a GaN: Zn phosphor will be described.
Ga 2 O 3 is used as a Ga source material (matrix element compound). ZnS is used as a source material for Zn as a doping material. Specifically, 3 g of Ga 2 O 3 and 0.6 g of ZnS are mixed well together and placed on a firing boat. As shown in FIG. 1, ZnS (compound 3 of a doping substance) is also arranged on the upstream side in the tubular furnace 1. At this time, the Ga source material 4 is placed in the soaking zone (region heated to a predetermined temperature), which is the substantially central portion (A) of the heating range of the tubular furnace 1. Since ZnS (dope compound 3) is likely to be scattered in a reducing atmosphere, it is disposed at the end (b) of the heating range where the temperature is lower than that of the soaking zone. Thereby, the ZnS scattering during baking is maintained. In this state, Ga source material was baked at 1150 ° C. for 2 hours while flowing 350 ml / min of ammonia to obtain a GaN phosphor. At this time, ZnS is heated to 1050 ° C.
[0020]
The obtained GaN phosphor was applied to an anode substrate of a VFD and evaluated by emitting light at an anode voltage of 30V. Furthermore, it apply | coated to the anode board | substrate of FED, it was made to light-emit by the anode voltage 400V and evaluated.
[0021]
Sufficient doping material was detected in the GaN phosphor. FIG. 2 shows the relationship between the amount of scattered ZnS and the amount of doped material (Zn) in the GaN phosphor. It can be seen that the amount of the doping substance in the GaN phosphor can be controlled by increasing or decreasing the ZnS scattering amount in the upstream portion of the GaN gas in the furnace.
[0022]
FIG. 3 shows the relationship of luminance with respect to the amount of Zn in GaN. Usually, Zn concentration of 0.002% or more is necessary to obtain high luminance. When ZnS is not scattered in the furnace, Zn is not doped into GaN as indicated by 0 mol on the horizontal axis in FIG. 2, and high luminance cannot be obtained as indicated by the vertical axis. The range of the necessary Zn doping amount is preferably 0.002% to 1%.
[0023]
(2) Example 2
A method for producing a GaInN: Mg phosphor will be described.
2 g of Ga 2 S 3 which is a matrix element compound, 1 g of In 2 S 3 which is a matrix element compound, and 0.4 g of MgS which is a compound of a doping substance are mixed well and placed on a firing boat. A mixture of a base element compound such as Ga 2 S 3 and MgS that is a compound of a doping substance are placed in the tubular furnace 1 in the same manner as in Example 1. When the raw material was baked for 3 hours at a temperature of 1100 ° C. while flowing ammonia at 350 ml / min, a GaInN: Mg phosphor was obtained. Sufficient Mg diffusion was confirmed in this GaInN phosphor. As in Example 1, when mounted on a VFD or FED and evaluated, green light emission was obtained.
[0024]
(3) Example 3
S to place the phosphor upstream section, as a compound of the dopant containing O, ZnO, ZnSO 4, ZnCO 3, MgSO 4, even when used by selecting any substances from MgCO 3, Examples 1 and 2 And substantially the same effect. ZnO, the case of ZnSO 4, ZnCO 3, ZnSO 4 , MgCO 3, since decomposes easily scattered in a reducing atmosphere, it is necessary to arrange the lower temperature region than ZnS.
[0025]
(4) Example 4
A method for manufacturing a GaN: Zn, Si phosphor will be described.
2 g of Ga 2 S 3 as a source material of Ga, 0.4 g of ZnS as Zn, and 0.0003 g of SiO 2 as Si are mixed well and placed on a firing boat. A mixture of Ga 2 S 3 or the like as the matrix element compound is placed in the center of the tubular furnace in the same manner as in Example 1, and ZnS as the compound of the doping substance is placed further upstream. By firing ammonia at 350 ml / min for 2 hours at 1150 ° C., a GaN: Zn, Si phosphor was obtained. Sufficient Zn and Si diffusion was confirmed in this GaN: Zn, Si phosphor. As in Example 1, when mounted on a VFD or FED and evaluated, blue light emission was obtained.
[0026]
(5) Example 5
A method for manufacturing a GaInN: Zn, Ge phosphor will be described.
As raw materials, 2 g of Ga 2 S 3 , 1 g of In 2 S 3 , 0.4 g of ZnS as Zn, and 0.0005 g of GeO 2 as Ge are mixed well and placed on a firing boat. A mixture of Ga 2 S 3 or the like, which is the matrix element compound, is placed in the center of the tubular furnace in the same manner as in Example 1, and ZnS, which is a compound of a doping substance, is further arranged upstream of the mixture. Firing was performed at 1100 ° C. for 3 hours while flowing ammonia at 350 ml / min to obtain a GaInN: Zn, Ge phosphor. Sufficient Zn and Ge diffusion was confirmed in this GaInN: Zn, Ge phosphor. When mounted and evaluated in a VFD or FED in the same manner as in Example 1, green light emission was obtained.
[0027]
【The invention's effect】
According to the phosphor manufacturing method of the present invention, a dope substance compound that contains an element that reacts with H 2 and is gasified by heating is disposed upstream in a firing furnace in which NH 3 gas flows. Since the elemental compound is disposed on the downstream side and firing is performed, the following effects are obtained.
[0028]
1. Since the periphery of GaN is covered with a doping material together with ammonia at the time of GaN production, the GaN phosphor can be sufficiently diffused.
[0029]
2. In addition, since GaN is not easily decomposed by being surrounded by S and O during GaN production, the firing temperature can be increased, crystallization of GaN is promoted, and crystallinity with few defects is high. A phosphor is obtained.
[0030]
3. For this reason, a GaN phosphor with high emission intensity can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a tubular furnace used in embodiments and examples of the present invention.
FIG. 2 is a graph showing a relationship between the ZnS scattering amount and the Zn amount in GaN in an example of the present invention.
FIG. 3 is a graph showing a relationship between the amount of Zn in GaN and the relative luminance value of FED / VFD in an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Tubular furnace as a baking furnace, 2 ... Heater as a heating means, 3 ... Compound of dope substance, 4 ... Raw material substance of Ga (matrix element compound)

Claims (5)

Ga1-x Inx N:A(0≦x<1、A=Zn,Mg)で表されるGaN蛍光体の製造方法において、
NH3 ガスが所定方向に流される焼成炉の内部において、H2 と反応する元素としてSとOから任意に選択された物質を含むとともに加熱によりガス化する前記Aの化合物を上流側に配置し、前記化合物を含む母体元素化合物を下流側に配置して、SとOから任意に選択された物質及びガス化した前記Aを含む雰囲気中で水素による還元作用を抑えながら焼成を行うことを特徴とするGaN蛍光体の製造方法。
In the method for producing a GaN phosphor represented by Ga 1-x In x N: A (0 ≦ x <1, A = Zn, Mg) ,
Inside the firing furnace in which NH 3 gas is allowed to flow in a predetermined direction, the compound of A that contains a substance arbitrarily selected from S and O as an element that reacts with H 2 and is gasified by heating is disposed upstream. , characterized in that the firing base element compounds comprising said compounds arranged on the downstream side, while suppressing the reduction action of hydrogen in an atmosphere containing the a was arbitrarily selected material and gasified from S and O A method for producing a GaN phosphor.
上流側に配置する記化合物が、ZnS,ZnSO4 ,ZnO,ZnCO3 、MgS,MgSO4 ,MgCO3 からなる群から選択された物質であることを特徴とする請求項1記載のGaN蛍光体の製造方法。 Asked compound prior to placing on the upstream side, ZnS, ZnSO 4, ZnO, ZnCO 3, MgS, MgSO 4, GaN according to claim 1, wherein a from the group consisting of MgCO 3 is selected substances A method for producing a phosphor. 前記AとしてZnが0.002〜1atm%含まれていることを特徴とする請求項1記載のGaN蛍光体の製造方法。  2. The method for producing a GaN phosphor according to claim 1, wherein the A contains 0.002 to 1 atm% of Zn. 前記母体元素化合物を相対的に高い温度で加熱し、前記化合物を相対的に低い温度で加熱することを特徴とする請求項1記載のGaN蛍光体の製造方法。The maternal element compound is heated at relatively high temperatures, The process according to claim 1 GaN phosphor according to previous characterized by heating the hear compounds at relatively low temperatures. Ga 1-x In x N:A,B(0≦x<1、A=Zn,Mg、B=Si,Ge)で表されるGaN蛍光体の製造方法において、
NH 3 ガスが所定方向に流される焼成炉の内部において、H 2 と反応する元素としてSとOから任意に選択された物質を含むとともに加熱によりガス化する前記Aの化合物を上流側に配置し、前記化合物及び前記Bの化合物を含む母体元素化合物を下流側に配置して、SとOから任意に選択された物質及びガス化した前記Aを含む雰囲気中で水素による還元作用を抑えながら焼成を行うことを特徴とするGaN蛍光体の製造方法。
In the method for producing a GaN phosphor represented by Ga 1-x In x N: A, B (0 ≦ x <1, A = Zn, Mg, B = Si, Ge),
Inside the firing furnace in which NH 3 gas is allowed to flow in a predetermined direction, the compound of A that contains a substance arbitrarily selected from S and O as an element that reacts with H 2 and is gasified by heating is disposed upstream. The matrix element compound containing the compound and the compound B is disposed on the downstream side, and is fired while suppressing the reduction action by hydrogen in an atmosphere containing a substance arbitrarily selected from S and O and the gasified A. A method for producing a GaN phosphor , characterized in that :
JP37353898A 1998-12-28 1998-12-28 GaN phosphor manufacturing method Expired - Fee Related JP3760650B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP37353898A JP3760650B2 (en) 1998-12-28 1998-12-28 GaN phosphor manufacturing method
TW088121932A TW498102B (en) 1998-12-28 1999-12-15 A process for preparing GaN fluorescent substance
KR10-1999-0062528A KR100384397B1 (en) 1998-12-28 1999-12-27 Method for preparing gallium nitride phosphor
FR9916519A FR2787805B1 (en) 1998-12-28 1999-12-27 PROCESS FOR THE PREPARATION OF A GALLIUM NITRIDE LUMINOPHORE
US09/472,011 US6303403B1 (en) 1998-12-28 1999-12-27 Method for preparing gallium nitride phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37353898A JP3760650B2 (en) 1998-12-28 1998-12-28 GaN phosphor manufacturing method

Publications (2)

Publication Number Publication Date
JP2000192035A JP2000192035A (en) 2000-07-11
JP3760650B2 true JP3760650B2 (en) 2006-03-29

Family

ID=18502336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37353898A Expired - Fee Related JP3760650B2 (en) 1998-12-28 1998-12-28 GaN phosphor manufacturing method

Country Status (1)

Country Link
JP (1) JP3760650B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4020412B2 (en) * 2002-04-09 2007-12-12 日亜化学工業株式会社 Gallium nitride phosphor, method for producing the same, and display device using the phosphor
JP7122245B2 (en) * 2018-12-25 2022-08-19 デンカ株式会社 Manufacturing method of phosphor

Also Published As

Publication number Publication date
JP2000192035A (en) 2000-07-11

Similar Documents

Publication Publication Date Title
KR100384397B1 (en) Method for preparing gallium nitride phosphor
KR100261972B1 (en) Phosphor and method for producing same
EP2368964A2 (en) Method of manufacturing quantum dots
US6531072B1 (en) Phosphor
WO1999038218A1 (en) Semiconductor light emitting element and method for manufacturing the same
JP3760650B2 (en) GaN phosphor manufacturing method
JP2000198978A (en) Preparation of gallium nitride fluorescent substance, preparation of gallium oxide and gallium oxide
JP2790242B2 (en) Nitride semiconductor light emitting diode
KR20210017408A (en) Method of manufacturing quantum dot
JPH05109621A (en) Method for growing gallium nitride thin film
JPH0940490A (en) Production of gallium nitride crystal
US5986288A (en) Epitaxial wafer for a light-emitting diode and a light-emitting diode
JP3867425B2 (en) GaN phosphor manufacturing method
JPH10200160A (en) Gaasp epitaxial wafer and its manufacture
JP3873507B2 (en) GaN phosphor manufacturing method and GaN phosphor
JP3133829B2 (en) EL display element manufacturing method
JP3316406B2 (en) Method for manufacturing indium gallium nitride semiconductor
JPH04328823A (en) Manufacture of epitaxial wafer for light emitting diode
JP3937622B2 (en) Phosphor production container
JP3584714B2 (en) Method for manufacturing impurity diffusion layer in compound semiconductor
JP2000236114A (en) Semiconductor light emitting element and its manufacture
JP2002025928A (en) Heat treating method for p-type gallium nitride compound semiconductor crystal
JPH01169933A (en) Heat-treating method for ii-vi compound crystal
JPS60198738A (en) Crystal growth method of semiconductor
JPH0693522B2 (en) Method for manufacturing gallium phosphide green light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100120

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees