JP3758580B2 - LCD drive circuit - Google Patents

LCD drive circuit Download PDF

Info

Publication number
JP3758580B2
JP3758580B2 JP2002023052A JP2002023052A JP3758580B2 JP 3758580 B2 JP3758580 B2 JP 3758580B2 JP 2002023052 A JP2002023052 A JP 2002023052A JP 2002023052 A JP2002023052 A JP 2002023052A JP 3758580 B2 JP3758580 B2 JP 3758580B2
Authority
JP
Japan
Prior art keywords
potential
gradation
liquid crystal
circuit
potentials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002023052A
Other languages
Japanese (ja)
Other versions
JP2003223153A (en
Inventor
和義 西
香 中島
友和 小島
正嗣 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002023052A priority Critical patent/JP3758580B2/en
Publication of JP2003223153A publication Critical patent/JP2003223153A/en
Application granted granted Critical
Publication of JP3758580B2 publication Critical patent/JP3758580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液晶パネルを駆動する液晶駆動回路に関するものである。
【0002】
【従来の技術】
近年、液晶パネルは携帯電話等の携帯端末用途が急増し、電池による長時間駆動が必要不可欠となってきている。そのため、液晶パネルを駆動するための液晶駆動回路においても低消費電力化が重要となる。
【0003】
以下に、従来の液晶駆動回路について、液晶パネルの表示階調として64階調で、液晶駆動出力数がn出力の場合を説明する。
【0004】
図6は従来の液晶駆動回路の回路図であり、階調電位V1〜V64を発生させる階調電位発生回路50と、階調電位発生回路50を構成する抵抗51〜53と、階調電位V1〜V64のうちの1つを階調選択信号CTL1〜CTLnにより選択する階調選択回路30〜32と、階調選択回路30〜32により選択された階調電位VS1〜VSnを低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして出力するバッファ33〜35とにより構成される。図7は液晶パネルに印加する階調電位と液晶パネルの透過率との関係を示す図であり、階調表示を滑らかに行うために、階調電位V1〜V64を発生するための抵抗51〜53間の比率が決められている。
【0005】
次に、以上のように構成された液晶駆動回路について、液晶駆動出力OUT1〜OUTnの出力動作について説明する。
【0006】
まず、階調電位発生回路50により、液晶パネルを階調表示するための階調電位V1〜V64を発生させ、階調選択回路30で階調電位V1〜V64のうちの1つの階調電位を階調選択信号CTL1により選択し、階調電位VS1としてバッファ33に入力する。バッファ33では、入力された階調電位VS1を低インピーダンス変換後、液晶駆動出力OUT1として液晶パネルへ出力する。同様にして、OUT2〜OUTnも出力する。
【0007】
【発明が解決しようとする課題】
この従来の液晶駆動回路では、階調選択回路30〜32が切換わる時に、階調選択回路30〜32内の寄生容量及びバッファ33〜35の入力容量を充放電するのに十分な階調電位V1〜V64の電流能力を確保するためには、抵抗51〜53の抵抗値をある程度小さくしておく必要があった。このため、抵抗51〜53を介して階調基準電位入力VHから階調基準電位入力VLへ流れる貫通電流I10が大きく、消費電力を小さく出来ないという第一の課題があった。
【0008】
また、液晶パネルに印加する階調電位と液晶パネルの透過率との関係が、液晶パネルの種類毎(透過型パネル、反射型パネル、半透過型パネル、パネルメーカ毎等)に異なるために、同一回路構成で各種液晶パネルに対応することが出来ないという第二の課題と、液晶パネル表示の途中で、階調表示の変更が出来ないために液晶パネル表示の見栄えを途中で変更することができないという第三の課題があった。
【0009】
本発明は、上記従来の課題を解決するものであり、消費電力が小さく、各種液晶パネルの透過率特性に対応でき、途中での階調表示の変更により液晶パネル表示の見栄えを変えることができる液晶駆動回路を提供することを目的とする。
0010
【課題を解決するための手段】
本発明に係る液晶駆動回路では、複数の階調基準電位入力から複数の階調電位を第一の抵抗分割回路により生成し、前記複数の階調電位の中の1つを複数の階調選択回路により選択後、複数の低インピーダンス化回路を介して複数の液晶駆動出力として液晶パネルに供給する液晶駆動回路において、前記第一の抵抗分割回路内の所定電位と同じ電位を発生する第二の抵抗分割回路と、前記第二の抵抗分割回路により発生した前記所定電位を入力とし、低インピーダンス化して出力するバッファと、前記バッファの出力と前記第一の抵抗分割回路内の前記所定電位部分とを接続する第一のトランスファゲートと、前記第二の抵抗分割回路と前記複数の階調基準電位入力とを接続する複数の第二のトランスファゲートとを有し、前記第一の抵抗分割回路のインピーダンスを下げたい時のみ、前記第一のトランスファゲートと前記複数の第二のトランスファゲートとをオンし、前記バッファの出力と前記第一の抵抗分割回路内の前記所定電位部分とを接続し、前記第二の抵抗分割回路と前記複数の階調基準電位入力とを接続し、前記第一のトランスファゲートをオフしている時は、前記バッファもオフすることを特徴とした構成としたものである。
0011
この発明によれば、前記第一の抵抗分割回路の低消費電力化と、前記バッファの消費電力削減と、前記バッファとして、出力電位と入力電位との差であるオフセット電圧が大きいバッファを使用することが出来るとともに、第二の抵抗分割回路の消費電力削減も出来る。
0012
また、他の本発明に係る液晶駆動回路では、複数の階調基準電位入力から複数の階調電位を第一の抵抗分割回路により生成し、前記複数の階調電位の中の1つを複数の階調選択回路により選択後、複数の低インピーダンス化回路を介して複数の液晶駆動出力として液晶パネルに供給する液晶駆動回路において、前記第一の抵抗分割回路内の所定電位部分にソースとドレインのどちらか一方を接続し、他方に第一の電源を接続したNチャネル型MOSトランジスタと、前記第一の抵抗分割回路内の前記所定電位部分にソースとドレインのどちらか一方を接続し、他方に第二の電源を接続したPチャネル型MOSトランジスタと、前記Nチャネル型MOSトランジスタの閾値電圧と前記所定電位との和よりも低電位の第一の電位を発生し、前記Pチャネル型MOSトランジスタの閾値電圧の絶対値と前記所定電位との和よりも高電位の第二の電位を発生する第二の抵抗分割回路を有し、前記Nチャネル型MOSトランジスタのゲートに前記第一の電位を接続し、前記Pチャネル型MOSトランジスタのゲートに前記第二の電位を接続することを特徴とした構成としたものである。
0013
この発明によれば、前記第一の抵抗分割回路の低消費電力化が出来るとともに、制御無しの小回路規模で実現することが出来る。
0014
【発明の実施の形態】
(第1の実施形態)
図1に発明の第1の施形態の液晶駆動回路の回路図を示す。本実施の形態では、液晶駆動出力数がn出力で、液晶パネルの表示階調として64階調で、この64階調電位を基本電位の各8電位から選択する場合を説明する。
0015
1は抵抗分割回路であり、抵抗2〜7により階調基本電位V1、V2(1)〜V2(8)、V3(1)〜V63(8)、V64を発生する機能を有する。10は抵抗分割回路であり、抵抗分割回路1内の所定の電位VMと等しい電位VM0を抵抗11、12により発生する機能を有し、13はトランスファゲートであり、階調基準電位入力VHと抵抗11とを接続する機能を有し、14はトランスファゲートであり、階調基準電位入力VLと抵抗12とを接続する機能を有する。15はバッファであり、電位VM0を入力として低インピーダンス化して出力する機能を有し、16はトランスファゲートであり、バッファ15の出力を抵抗分割回路1内の電位VMへ接続する機能を有する。20〜22は電位選択回路であり、階調基本電位V2(1)〜V2(8)、V3(1)〜V63(8)のうちの各8つの電位を入力として、各1つの電位を選択し階調電位V2〜V63として出力する機能を有する。30〜32は階調選択回路であり、階調電位V1〜V64のうちの1つの電位を選択し階調電位VS1〜VSnとして出力する機能を有し、33〜35はバッファであり、階調電位VS1〜VSnを入力として低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして出力する機能を有する。
0016
次に、この構成による液晶駆動回路の階調電位選択動作について説明する。
0017
液晶パネルに印加する階調電位と液晶パネルの透過率との関係は、液晶パネルの種類毎(透過型パネル、反射型パネル、半透過型パネル、パネルメーカ毎等)に異なり、例えば、各種パネルの透過率特性が図3の透過率特性1〜8の間に入っている場合に、まず、階調電位V2を生成するために、透過率特性1に対応する階調基本電位V2(1)から透過率特性8に対応する階調基本電位V2(8)までの8つの階調基本電位V2(1)〜V2(8)を抵抗分割回路1で発生させ、この階調基本電位V2(1)〜V2(8)のうち、液晶パネルの透過率特性に対応した1つの電位を電位選択回路20で階調基本電位選択信号SEL2により選択し、階調電位V2として出力する。この場合、透過率特性1に対応する階調基本電位V2(1)と透過率特性8に対応する階調基本電位V2(8)との透過率は等しい関係にある。同様にして、階調電位V3〜V63も生成する。
0018
以上のようにすることにより、各種液晶パネルの透過率特性に対応することができ、また、途中で、電位選択回路20〜22で階調基本電位選択信号SEL2〜SEL63により、階調基本電位V2(1)〜V63(8)の選択電位を変更すれば、階調表示を変更することができ、液晶パネル表示の見栄えを変えることが出来る。
0019
次に、液晶駆動出力OUT1〜OUTnの出力動作について、タイミングチャートの図2を用いて説明する。
0020
まず、液晶パネルの透過率特性に合わせて、階調基本電位選択信号SEL2〜SEL63により、各電位選択回路20〜22が各階調基本電位V2(1)〜V63(8)の各8つの電位のうちの各1つの電位を選択し階調電位V2〜V63として出力している状態である。
0021
最初の期間T1では、制御信号SWON、RON1、RON2により、トランスファゲート13、14、16がオフしており、制御信号BUFONにより、バッファ15はオフしている。また、階調選択信号CTL1〜CTLnにより、階調選択回路30〜32は、階調電位V1〜V64のうちの1つの電位を選択し(選択状態1a〜na)、階調電位VS1〜VSnとしてバッファ33〜35に入力する。バッファ33〜35では、入力された階調電位VS1〜VSnを低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして液晶パネルへ出力している状態である。
0022
期間T2では、制御信号RON1、RON2により、トランスファゲート13、14がオンし、制御信号BUFONによりバッファ15がオンする。
0023
次に、期間T3では、制御信号SWONにより、トランスファゲート16がオンし、抵抗分割回路1内の電位VM部分にバッファ15の出力が供給される。
0024
続く期間T4では、階調選択信号CTL1〜CTLnの変化により、階調選択回路30〜32は、階調電位V1〜V64のうちの1つの電位を選択し直し(選択状態1b〜nb)、階調電位VS1〜VSnとしてバッファ33〜35に入力する。バッファ33〜35では、入力された階調電位VS1〜VSnを低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして液晶パネルへ出力する。この階調選択回路30〜32が切換わる時に、階調選択回路30〜32内の寄生容量及びバッファ33〜35の入力容量を充放電するための電流が電位選択回路20〜22を介して抵抗分割回路1から供給される。
0025
期間T5では、制御信号SWONにより、トランスファゲート16がオフし、抵抗分割回路1内の電位VM部分へのバッファ15の出力供給が無くなる。
0026
次の期間T1では、制御信号RON1、RON2により、トランスファゲート13、14がオフし、制御信号BUFONによりバッファ15がオフする。
0027
上記のように期間T1〜T5を繰り返すことにより、液晶駆動出力OUT1〜OUTnの出力動作を行う。
0028
以上の動作の通り、階調選択回路30〜32が切換わる時には、バッファ15により電位VMが抵抗分割回路1内へ低インピーダンスで供給されるので、従来に比べて抵抗分割回路1内の直列抵抗値を大きくすることが出来る。例えば、電位VMが階調基準電位入力VHとVLとの間の1/2電位の場合は、抵抗分割回路1内の直列抵抗値を従来に比べて2倍にすることができ、抵抗分割回路1内を流れる貫通電流I2を従来に比べて1/2にすることができ、低消費電力化が可能となる。また、階調選択回路30〜32の切換り後の階調電位V1〜V64の安定時には、バッファ15からの電位VMの供給を停止し、抵抗分割回路1内の電位VM部分が抵抗分割比でのみ決まる電位になるので、回路構成(オペアンプによるボルテージフォロア回路等)に起因する出力オフセット電圧(バッファ15の出力電位と入力電位との差)が大きいバッファでもバッファ15として使用することが可能となる。また、バッファ15を使用しない時に停止(制御信号BUFONで停止)させるとともに、抵抗分割回路10への階調基準電位入力VHとVLの供給を停止(トランスファゲート13、14をオフする)することにより抵抗分割回路10内の貫通電流I1が無くなるので、より低消費電力化が図れる。
0029
なお、本実施の形態では、液晶パネルの表示階調として64階調で、この64階調電位を基本電位の各8電位から選択する場合を説明したが、64階調以外の多階調表示の場合でも同様の動作で説明ができる。また、基本電位の各m個の電位から階調電位を選択する場合でも同様の動作で説明が出来る。この場合は、電位選択回路をm個の電位から1つの電位を選択する構成にすればよい。
0030
(第2の実施形態)
図4に発明の第2の施形態の液晶駆動回路の回路図を示す。本実施の形態では、液晶駆動出力数がn出力で、液晶パネルの表示階調として64階調で、この64階調電位を基本電位の各8電位から選択する場合を説明する。
0031
抵抗分割回路1、抵抗2〜7、電位選択回路20〜22、階調選択回路30〜32、バッファ33〜35の機能は第1の実施形態と同じである。
0032
40は抵抗分割回路であり、抵抗41〜43で構成され、階調基準電位入力VH、VLを入力として、電位VGNと電位VGPを発生する機能を有する。45はNチャネル型MOSトランジスタであり、ゲート入力に電位VGNが接続され、ソース又はドレイン入力の一方に電源VH0が接続され、他方に抵抗分割回路1内の電位VM部分が接続されている。46はPチャネル型MOSトランジスタであり、ゲート入力に電位VGPが接続され、ソース又はドレイン入力の一方に電源VL0が接続され、他方に抵抗分割回路1内の電位VM部分が接続されている。電位の大小関係は、Nチャネル型MOSトランジスタ45の閾値電圧をVTNとした場合に、電位VGNは、(VGN<VM+VTN)の関係にあり、電源VH0は、(VH0≧VM)の関係にある。また、Pチャネル型MOSトランジスタ46の閾値電圧の絶対値を|VTP|とした場合に、電位VGPは、(VGP>VM−|VTP|)の関係にあり、電源VL0は、(VL0≦VM)の関係にある。
0033
次に、この構成による液晶駆動回路の階調電位選択動作について説明する。
0034
液晶パネルに印加する階調電位と液晶パネルの透過率との関係は、液晶パネルの種類毎(透過型パネル、反射型パネル、半透過型パネル、パネルメーカ毎等)に異なり、例えば、各種パネルの透過率特性が図3の透過率特性1〜8の間に入っている場合に、まず、階調電位V2を生成するために、透過率特性1に対応する階調基本電位V2(1)から透過率特性8に対応する階調基本電位V2(8)までの8つの階調基本電位V2(1)〜V2(8)を抵抗分割回路1で発生させ、この階調基本電位V2(1)〜V2(8)のうち、液晶パネルの透過率特性に対応した1つの電位を電位選択回路20で階調基本電位選択信号SEL2により選択し、階調電位V2として出力する。この場合、透過率特性1に対応する階調基本電位V2(1)と透過率特性8に対応する階調基本電位V2(8)との透過率は等しい関係にある。同様にして、階調電位V3〜V63も生成する。
0035
以上のようにすることにより、各種液晶パネルの透過率特性に対応することができ、また、途中で、電位選択回路20〜22で階調基本電位選択信号SEL2〜SEL63により、階調基本電位V2(1)〜V63(8)の選択電位を変更すれば、階調表示を変更することができ、液晶パネル表示の見栄えを変えることが出来る。
0036
次に、液晶駆動出力OUT1〜OUTnの出力動作について、タイミングチャートの図5を用いて説明する。
0037
まず、液晶パネルの透過率特性に合わせて、階調基本電位選択信号SEL2〜SEL63により、各電位選択回路20〜22が各階調基本電位V2(1)〜V63(8)の各8つの電位のうちの各1つの電位を選択し階調電位V2〜V63として出力している状態である。
0038
最初の期間T1では、階調選択信号CTL1〜CTLnにより、階調選択回路30〜32は、階調電位V1〜V64のうちの1つの電位を選択し(選択状態1a〜na)、階調電位VS1〜VSnとしてバッファ33〜35に入力する。バッファ33〜35では、入力された階調電位VS1〜VSnを低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして液晶パネルへ出力している状態である。
0039
期間T2では、階調選択信号CTL1〜CTLnの変化により、階調選択回路30〜32は、階調電位V1〜V64のうちの1つの電位を選択し直し(選択状態1b〜nb)、階調電位VS1〜VSnとしてバッファ33〜35に入力する。バッファ33〜35では、入力された階調電位VS1〜VSnを低インピーダンス変換後、液晶駆動出力OUT1〜OUTnとして液晶パネルへ出力する。この階調選択回路30〜32が切換わる時に、階調選択回路30〜32内の寄生容量及びバッファ33〜35の入力容量を充放電するための電流が電位選択回路20〜22を介して抵抗分割回路1から供給され、この電流により、電位VM部分の電位が一時的に上下に振られるが、この時に、Nチャネル型MOSトランジスタ45またはPチャネル型MOSトランジスタ46がオンし、電位VM部分を抵抗2〜7による抵抗比で決まる本来の電位に戻す。例えば、電位VM部分が低電位側に振られた場合は、(電位VGN−電位VM)がNチャネル型MOSトランジスタ45の閾値電圧VTNより大きくなるため、Nチャネル型MOSトランジスタ45がオンし、(VM>VGN−VTN)になるまで電位VMを高電位側に持ち上げた後、Nチャネル型MOSトランジスタ45がオフする。この時、Pチャネル型MOSトランジスタ46はオフした状態である。また、電位VM部分が高電位側に振られた場合は、(電位VM−電位VGP)がPチャネル型MOSトランジスタ46の閾値電圧の絶対値|VTP|より大きくなるため、Pチャネル型MOSトランジスタ46がオンし、(VM<VGP+|VTP|)になるまで電位VMを低電位側に引き下げた後、Pチャネル型MOSトランジスタ46がオフする。この時、Nチャネル型MOSトランジスタ45はオフした状態である。
0040
以上の動作の通り、階調選択回路30〜32が切換わる時には、Nチャネル型MOSトランジスタ45またはPチャネル型MOSトランジスタ46がオンし、電位VM部分を低インピーダンスで本来の電位へ戻すため、従来に比べて新たな追加制御無しで抵抗分割回路1内の直列抵抗値を大きくすることが出来る。例えば、電位VMが階調基準電位入力VHとVLとの間の1/2電位の場合は、抵抗分割回路1内の直列抵抗値を従来に比べて2倍にすることができ、抵抗分割回路1内を流れる貫通電流I2を従来に比べて1/2にすることができ、低消費電力化が可能となる。また、第1の実施形態に比べて小規模の回路構成で実現できる。
0041
なお、本実施の形態では、液晶パネルの表示階調として64階調で、この64階調電位を基本電位の各8電位から選択する場合を説明したが、64階調以外の多階調表示の場合でも同様の動作で説明ができる。また、基本電位の各m個の電位から階調電位を選択する場合でも同様の動作で説明が出来る。この場合は、電位選択回路をm個の電位から1つの電位を選択する構成にすればよい。
0042
【発明の効果】
本発明に係る液晶駆動回路によれば、従来に比べて第一の抵抗分割回路の低消費電力化と、バッファの消費電力削減と、バッファとして、出力電位と入力電位との差であるオフセット電圧が大きいバッファを使用することが出来るとともに、第二の抵抗分割回路の消費電力削減も出来る。
0043
本発明に係る液晶駆動回路によれば、従来に比べて第一の抵抗分割回路の低消費電力化が出来るとともに、制御無しの小回路規模で実現することが出来る。
【図面の簡単な説明】
【図1】 請求項1〜4、6記載の本発明の一実施形態における構成を示す回路図
【図2】 請求項1〜4、6記載の本発明の一実施形態におけるタイミングチャート
【図3】 請求項1〜4、6記載の本発明の一実施形態における階調電位と液晶パネルの透過率との関係を示すグラフ
【図4】 請求項5、6記載の本発明の一実施形態における構成を示す回路図
【図5】 請求項5、6記載の本発明の一実施形態におけるタイミングチャート
【図6】 従来の液晶駆動回路の回路図
【図7】 従来の液晶駆動回路の階調電位と液晶パネルの透過率との関係を示すグラフ
【符号の説明】
1、10、40、50 抵抗分割回路
2〜7、11、12、41〜43、51〜53 抵抗
13、14、16 トランスファゲート 15、33〜35 バッファ
20〜22 電位選択回路
30〜32 階調選択回路
45 Nチャネル型MOSトランジスタ
46 Pチャネル型MOSトランジスタ
VH、VL 階調基準電位入力
RON1、RON2、SWON、BUFON 制御信号
SEL1〜SEL63 階調基本電位選択信号
CTL1〜CTLn 階調選択信号
V1〜V63、VS1〜VSn 階調電位
V2(2)〜V63(8) 階調基本電位
VM0、VM 電位
VGN、VGP ゲート電位
VH0、VL0 電源
I1、I2、I10 貫通電流
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal driving circuit for driving a liquid crystal panel.
[0002]
[Prior art]
In recent years, the use of liquid crystal panels in mobile terminals such as mobile phones has increased rapidly, and it has become indispensable to be driven by batteries for a long time. Therefore, it is important to reduce power consumption in a liquid crystal driving circuit for driving the liquid crystal panel.
[0003]
In the following, a case where the conventional liquid crystal drive circuit has 64 gradations as the display gradation of the liquid crystal panel and the number of liquid crystal drive outputs is n is described.
[0004]
FIG. 6 is a circuit diagram of a conventional liquid crystal driving circuit. A gradation potential generating circuit 50 for generating gradation potentials V1 to V64, resistors 51 to 53 constituting the gradation potential generating circuit 50, and a gradation potential V1. Are selected by gradation selection signals CTL1 to CTLn, and gradation potentials VS1 to VSn selected by the gradation selection circuits 30 to 32 are subjected to low impedance conversion. It comprises buffers 33 to 35 that output as liquid crystal drive outputs OUT1 to OUTn. FIG. 7 is a diagram showing the relationship between the gradation potential applied to the liquid crystal panel and the transmittance of the liquid crystal panel. In order to perform gradation display smoothly, resistors 51 to 51 for generating gradation potentials V1 to V64 are shown. The ratio between 53 is determined.
[0005]
Next, the output operation of the liquid crystal drive outputs OUT1 to OUTn will be described for the liquid crystal drive circuit configured as described above.
[0006]
First, the gradation potential generation circuit 50 generates gradation potentials V1 to V64 for gradation display of the liquid crystal panel, and the gradation selection circuit 30 generates one gradation potential among the gradation potentials V1 to V64. This is selected by the gradation selection signal CTL1 and input to the buffer 33 as the gradation potential VS1. In the buffer 33, the inputted gradation potential VS1 is subjected to low impedance conversion and then output to the liquid crystal panel as the liquid crystal drive output OUT1. Similarly, OUT2 to OUTn are also output.
[0007]
[Problems to be solved by the invention]
In this conventional liquid crystal driving circuit, when the gradation selection circuits 30 to 32 are switched, the gradation potential sufficient to charge / discharge the parasitic capacitance in the gradation selection circuits 30 to 32 and the input capacitance of the buffers 33 to 35 is achieved. In order to ensure the current capability of V1 to V64, it is necessary to reduce the resistance values of the resistors 51 to 53 to some extent. For this reason, the through current I10 flowing from the gradation reference potential input VH to the gradation reference potential input VL via the resistors 51 to 53 is large, and there is a first problem that power consumption cannot be reduced.
[0008]
In addition, since the relationship between the gradation potential applied to the liquid crystal panel and the transmittance of the liquid crystal panel is different for each type of liquid crystal panel (transmission type panel, reflection type panel, transflective type panel, each panel manufacturer, etc.), The second problem of not being able to handle various liquid crystal panels with the same circuit configuration and the change in the appearance of the liquid crystal panel display in the middle because the gradation display cannot be changed during the liquid crystal panel display. There was a third problem that could not be done.
[0009]
The present invention solves the above-described conventional problems, has low power consumption, can cope with transmittance characteristics of various liquid crystal panels, and can change the appearance of the liquid crystal panel display by changing the gradation display in the middle. An object is to provide a liquid crystal driving circuit.
[ 0010 ]
[Means for Solving the Problems]
In the liquid crystal driving circuit according to the present invention, a plurality of gradation potentials are generated by a first resistance dividing circuit from a plurality of gradation reference potential inputs, and one of the plurality of gradation potentials is selected as a plurality of gradations. In a liquid crystal driving circuit that supplies a liquid crystal panel as a plurality of liquid crystal driving outputs through a plurality of impedance reduction circuits after selection by the circuit, a second potential that generates the same potential as the predetermined potential in the first resistance dividing circuit A resistance divider circuit; a buffer that receives the predetermined potential generated by the second resistor divider circuit as an input; and outputs the reduced potential; an output of the buffer; and the predetermined potential portion in the first resistor divider circuit; And a plurality of second transfer gates for connecting the second resistance dividing circuit and the plurality of gradation reference potential inputs, and the first resistance component. Only when it is desired to lower the impedance of the circuit, the first transfer gate and the plurality of second transfer gates are turned on, and the output of the buffer and the predetermined potential portion in the first resistance divider circuit are connected. The second resistor divider circuit and the plurality of gradation reference potential inputs are connected, and the buffer is also turned off when the first transfer gate is turned off. Is.
[ 0011 ]
According to the present invention, the power consumption of the first resistance divider circuit is reduced, the power consumption of the buffer is reduced, and a buffer having a large offset voltage, which is the difference between the output potential and the input potential, is used as the buffer. In addition , the power consumption of the second resistor divider circuit can be reduced.
[ 0012 ]
In another liquid crystal driving circuit according to the present invention, a plurality of gradation potentials are generated from a plurality of gradation reference potential inputs by a first resistance dividing circuit, and one of the plurality of gradation potentials is plural. In a liquid crystal driving circuit that supplies a plurality of liquid crystal driving outputs to a liquid crystal panel through a plurality of impedance reduction circuits after selection by the gradation selection circuit, a source and a drain are connected to a predetermined potential portion in the first resistance dividing circuit. One of the N-channel MOS transistors connected to the other and a first power supply to the other, and one of the source and drain connected to the predetermined potential portion in the first resistor divider circuit, and the other A first potential that is lower than the sum of the threshold voltage of the N-channel MOS transistor and the predetermined potential, and a P-channel MOS transistor having a second power source connected to the P-channel MOS transistor; A second resistance dividing circuit for generating a second potential higher than the sum of the absolute value of the threshold voltage of the channel MOS transistor and the predetermined potential, and the gate of the N-channel MOS transistor has the second One potential is connected, and the second potential is connected to the gate of the P-channel MOS transistor.
[ 0013 ]
According to the present invention, the with the first power consumption of the resistance division circuit can, it can be realized in control without a small circuit scale.
[ 0014 ]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
Figure 1 shows a circuit diagram of the first liquid crystal driving circuit of the real 施形 condition of the present invention. In the present embodiment, a case will be described in which the number of liquid crystal drive outputs is n, and the display gradation of the liquid crystal panel is 64 gradations, and the 64 gradation potentials are selected from 8 basic potentials.
[ 0015 ]
Reference numeral 1 denotes a resistance dividing circuit having a function of generating gradation basic potentials V1, V2 (1) to V2 (8), V3 (1) to V63 (8), and V64 by resistors 2-7. Reference numeral 10 denotes a resistance divider circuit, which has a function of generating a potential VM0 equal to a predetermined potential VM in the resistor divider circuit 1 by means of the resistors 11 and 12. Reference numeral 13 denotes a transfer gate, which is a gradation reference potential input VH and a resistor. 11 is a transfer gate, and 14 is a transfer gate, and has a function of connecting the gradation reference potential input VL and the resistor 12. Reference numeral 15 denotes a buffer, which has a function of reducing and outputting the impedance with the potential VM0 as an input, and 16 is a transfer gate, which has a function of connecting the output of the buffer 15 to the potential VM in the resistance dividing circuit 1. Reference numerals 20 to 22 denote potential selection circuits, each of which is selected from eight potentials among the gradation basic potentials V2 (1) to V2 (8) and V3 (1) to V63 (8). And has a function of outputting as gradation potentials V2 to V63. Reference numerals 30 to 32 denote gradation selection circuits, which have a function of selecting one of the gradation potentials V1 to V64 and outputting it as gradation potentials VS1 to VSn, and 33 to 35 are buffers. It has a function of outputting as liquid crystal drive outputs OUT1 to OUTn after low impedance conversion using the potentials VS1 to VSn as inputs.
[ 0016 ]
Next, the gradation potential selection operation of the liquid crystal driving circuit having this configuration will be described.
[ 0017 ]
The relationship between the gradation potential applied to the liquid crystal panel and the transmittance of the liquid crystal panel differs depending on the type of liquid crystal panel (transmission type panel, reflection type panel, transflective type panel, each panel manufacturer, etc.). In order to generate the gradation potential V2, first, the gradation basic potential V2 (1) corresponding to the transmittance characteristic 1 is obtained when the transmittance characteristic of the pixel is between the transmittance characteristics 1 to 8 in FIG. 8 to the gray scale basic potential V2 (8) corresponding to the transmittance characteristic 8 are generated by the resistance dividing circuit 1, and the gray scale basic potential V2 (1) is generated. ) To V2 (8), one potential corresponding to the transmittance characteristic of the liquid crystal panel is selected by the potential selection circuit 20 using the gradation basic potential selection signal SEL2, and is output as the gradation potential V2. In this case, the transmittance of the gradation basic potential V2 (1) corresponding to the transmittance characteristic 1 and the gradation basic potential V2 (8) corresponding to the transmittance characteristic 8 are equal. Similarly, gradation potentials V3 to V63 are also generated.
[ 0018 ]
By doing so, it is possible to cope with the transmittance characteristics of various liquid crystal panels, and in the middle, the gradation basic potential V2 by the gradation basic potential selection signals SEL2 to SEL63 by the potential selection circuits 20-22. If the selection potential of (1) to V63 (8) is changed, the gradation display can be changed and the appearance of the liquid crystal panel display can be changed.
[ 0019 ]
Next, the output operation of the liquid crystal drive outputs OUT1 to OUTn will be described with reference to FIG. 2 of the timing chart.
[ 0020 ]
First, in accordance with the transmittance characteristics of the liquid crystal panel, the potential selection circuits 20 to 22 use the gradation basic potential selection signals SEL2 to SEL63 to adjust the eight potentials of the gradation basic potentials V2 (1) to V63 (8). One of these potentials is selected and output as gradation potentials V2 to V63.
[ 0021 ]
In the first period T1, the transfer gates 13, 14, and 16 are turned off by the control signals SWON, RON1, and RON2, and the buffer 15 is turned off by the control signal BUFON. Further, the gradation selection circuits 30 to 32 select one of the gradation potentials V1 to V64 (selection states 1a to na) based on the gradation selection signals CTL1 to CTLn, and the gradation potentials VS1 to VSn are selected. Input to buffers 33-35. The buffers 33 to 35 are in a state where the input gradation potentials VS1 to VSn are converted to low impedance and then output to the liquid crystal panel as liquid crystal drive outputs OUT1 to OUTn.
[ 0022 ]
In the period T2, the transfer gates 13 and 14 are turned on by the control signals RON1 and RON2, and the buffer 15 is turned on by the control signal BUFON.
[ 0023 ]
Next, in the period T3, the transfer gate 16 is turned on by the control signal SWON, and the output of the buffer 15 is supplied to the potential VM portion in the resistance dividing circuit 1.
[ 0024 ]
In the subsequent period T4, due to the change in the gradation selection signals CTL1 to CTLn, the gradation selection circuits 30 to 32 reselect one of the gradation potentials V1 to V64 (selection states 1b to nb). The adjusted potentials VS1 to VSn are input to the buffers 33 to 35. In the buffers 33 to 35, the inputted gradation potentials VS1 to VSn are subjected to low impedance conversion, and then output to the liquid crystal panel as liquid crystal drive outputs OUT1 to OUTn. When the gradation selection circuits 30 to 32 are switched, a current for charging / discharging the parasitic capacitance in the gradation selection circuits 30 to 32 and the input capacitance of the buffers 33 to 35 is resistance through the potential selection circuits 20 to 22. Supplied from the dividing circuit 1.
[ 0025 ]
In the period T5, the transfer gate 16 is turned off by the control signal SWON, and the output of the buffer 15 to the potential VM portion in the resistance dividing circuit 1 is lost.
[ 0026 ]
In the next period T1, the transfer gates 13 and 14 are turned off by the control signals RON1 and RON2, and the buffer 15 is turned off by the control signal BUFON.
[ 0027 ]
By repeating the periods T1 to T5 as described above, the output operation of the liquid crystal drive outputs OUT1 to OUTn is performed.
[ 0028 ]
As described above, when the gradation selection circuits 30 to 32 are switched, the potential VM is supplied to the resistance dividing circuit 1 by the buffer 15 with a low impedance, so that the series resistance in the resistance dividing circuit 1 is compared with the conventional case. The value can be increased. For example, when the potential VM is a half potential between the gradation reference potential inputs VH and VL, the series resistance value in the resistance dividing circuit 1 can be doubled compared to the conventional case. The through current I2 flowing through 1 can be halved compared to the conventional case, and the power consumption can be reduced. Further, when the gradation potentials V1 to V64 after switching of the gradation selection circuits 30 to 32 are stable, the supply of the potential VM from the buffer 15 is stopped, and the potential VM portion in the resistance dividing circuit 1 has a resistance division ratio. Therefore, even a buffer having a large output offset voltage (difference between the output potential of the buffer 15 and the input potential) due to the circuit configuration (such as a voltage follower circuit using an operational amplifier) can be used as the buffer 15. . Further, when the buffer 15 is not used, it is stopped (stopped by the control signal BUFON) and the supply of the gradation reference potential inputs VH and VL to the resistance dividing circuit 10 is stopped (the transfer gates 13 and 14 are turned off). Since the through current I1 in the resistance dividing circuit 10 is eliminated, the power consumption can be further reduced.
[ 0029 ]
Note that in this embodiment, the display gradation of the liquid crystal panel is 64 gradations, and the case where the 64 gradation potential is selected from the eight potentials of the basic potential has been described. However, multi-gradation display other than 64 gradations is described. In this case, the same operation can be explained. Further, the same operation can be explained even when the gradation potential is selected from the m potentials of the basic potential. In this case, the potential selection circuit may be configured to select one potential from m potentials.
[ 0030 ]
(Second Embodiment)
Figure 4 shows a circuit diagram of a second liquid crystal driving circuit of the real 施形 condition of the present invention. In the present embodiment, a case will be described in which the number of liquid crystal drive outputs is n, and the display gradation of the liquid crystal panel is 64 gradations, and the 64 gradation potentials are selected from 8 basic potentials.
[ 0031 ]
The functions of the resistance dividing circuit 1, resistors 2 to 7, potential selection circuits 20 to 22, gradation selection circuits 30 to 32, and buffers 33 to 35 are the same as those in the first embodiment.
[ 0032 ]
Reference numeral 40 denotes a resistor divider circuit, which is composed of resistors 41 to 43, and has a function of generating the potential VGN and the potential VGP with the gradation reference potential inputs VH and VL as inputs. Reference numeral 45 denotes an N-channel MOS transistor having a potential VGN connected to the gate input, a power supply VH0 connected to one of the source and drain inputs, and a potential VM portion in the resistance dividing circuit 1 connected to the other. A P-channel MOS transistor 46 has a potential VGP connected to the gate input, a power source VL0 connected to one of the source and drain inputs, and a potential VM portion in the resistance dividing circuit 1 connected to the other. When the threshold voltage of the N-channel MOS transistor 45 is VTN, the potential VGN has a relationship of (VGN <VM + VTN), and the power supply VH0 has a relationship of (VH0 ≧ VM). When the absolute value of the threshold voltage of the P-channel MOS transistor 46 is | VTP |, the potential VGP has a relationship of (VGP> VM− | VTP |), and the power supply VL0 is (VL0 ≦ VM). Are in a relationship.
[ 0033 ]
Next, the gradation potential selection operation of the liquid crystal driving circuit having this configuration will be described.
[ 0034 ]
The relationship between the gradation potential applied to the liquid crystal panel and the transmittance of the liquid crystal panel differs depending on the type of liquid crystal panel (transmission type panel, reflection type panel, transflective type panel, each panel manufacturer, etc.). In order to generate the gradation potential V2, first, the gradation basic potential V2 (1) corresponding to the transmittance characteristic 1 is obtained when the transmittance characteristic of the pixel is between the transmittance characteristics 1 to 8 in FIG. 8 to the gray scale basic potential V2 (8) corresponding to the transmittance characteristic 8 are generated by the resistance dividing circuit 1, and the gray scale basic potential V2 (1) is generated. ) To V2 (8), one potential corresponding to the transmittance characteristic of the liquid crystal panel is selected by the potential selection circuit 20 using the gradation basic potential selection signal SEL2, and is output as the gradation potential V2. In this case, the transmittance of the gradation basic potential V2 (1) corresponding to the transmittance characteristic 1 and the gradation basic potential V2 (8) corresponding to the transmittance characteristic 8 are equal. Similarly, gradation potentials V3 to V63 are also generated.
[ 0035 ]
By doing so, it is possible to cope with the transmittance characteristics of various liquid crystal panels, and in the middle, the gradation basic potential V2 by the gradation basic potential selection signals SEL2 to SEL63 by the potential selection circuits 20-22. If the selection potential of (1) to V63 (8) is changed, the gradation display can be changed and the appearance of the liquid crystal panel display can be changed.
[ 0036 ]
Next, the output operation of the liquid crystal drive outputs OUT1 to OUTn will be described with reference to FIG. 5 of the timing chart.
[ 0037 ]
First, in accordance with the transmittance characteristics of the liquid crystal panel, the potential selection circuits 20 to 22 use the gradation basic potential selection signals SEL2 to SEL63 to adjust the eight potentials of the gradation basic potentials V2 (1) to V63 (8). One of these potentials is selected and output as gradation potentials V2 to V63.
[ 0038 ]
In the first period T1, the gradation selection circuits 30 to 32 select one of the gradation potentials V1 to V64 (selection states 1a to na) by the gradation selection signals CTL1 to CTLn, and the gradation potentials. VS1 to VSn are input to the buffers 33 to 35. The buffers 33 to 35 are in a state where the input gradation potentials VS1 to VSn are converted to low impedance and then output to the liquid crystal panel as liquid crystal drive outputs OUT1 to OUTn.
[ 0039 ]
In the period T2, the gradation selection circuits 30 to 32 reselect one of the gradation potentials V1 to V64 (selection states 1b to nb) due to the change in the gradation selection signals CTL1 to CTLn. The potentials VS1 to VSn are input to the buffers 33 to 35. In the buffers 33 to 35, the inputted gradation potentials VS1 to VSn are subjected to low impedance conversion, and then output to the liquid crystal panel as liquid crystal drive outputs OUT1 to OUTn. When the gradation selection circuits 30 to 32 are switched, a current for charging / discharging the parasitic capacitance in the gradation selection circuits 30 to 32 and the input capacitance of the buffers 33 to 35 is resistance through the potential selection circuits 20 to 22. The potential of the potential VM portion is temporarily raised and lowered by this current supplied from the dividing circuit 1. At this time, the N-channel MOS transistor 45 or the P-channel MOS transistor 46 is turned on, and the potential VM portion is changed. Return to the original potential determined by the resistance ratio of resistors 2-7. For example, when the potential VM portion is shifted to the low potential side, (potential VGN−potential VM) becomes larger than the threshold voltage VTN of the N-channel MOS transistor 45, and therefore the N-channel MOS transistor 45 is turned on, After the potential VM is raised to the high potential side until VM> VGN−VTN), the N-channel MOS transistor 45 is turned off. At this time, the P-channel MOS transistor 46 is in an off state. Further, when the potential VM portion is swung to the high potential side, (potential VM−potential VGP) becomes larger than the absolute value | VTP | of the threshold voltage of the P-channel MOS transistor 46. Therefore, the P-channel MOS transistor 46 Is turned on and the potential VM is lowered to the low potential side until (VM <VGP + | VTP |), and then the P-channel MOS transistor 46 is turned off. At this time, the N-channel MOS transistor 45 is in an off state.
[ 0040 ]
As described above, when the gradation selection circuits 30 to 32 are switched, the N-channel MOS transistor 45 or the P-channel MOS transistor 46 is turned on to return the potential VM portion to the original potential with low impedance. Compared to the above, the series resistance value in the resistance dividing circuit 1 can be increased without additional control. For example, when the potential VM is a half potential between the gradation reference potential inputs VH and VL, the series resistance value in the resistance dividing circuit 1 can be doubled compared to the conventional case. The through current I2 flowing through 1 can be halved compared to the conventional case, and the power consumption can be reduced. Further, it can be realized with a smaller circuit configuration than that of the first embodiment.
[ 0041 ]
Note that in this embodiment, the display gradation of the liquid crystal panel is 64 gradations, and the case where the 64 gradation potential is selected from the eight potentials of the basic potential has been described. However, multi-gradation display other than 64 gradations is described. In this case, the same operation can be explained. Further, the same operation can be explained even when the gradation potential is selected from the m potentials of the basic potential. In this case, the potential selection circuit may be configured to select one potential from m potentials.
[ 0042 ]
【The invention's effect】
According to the liquid crystal driving circuit of the present invention, the first resistor divider circuit can be reduced in power consumption, the buffer power consumption can be reduced, and the offset voltage which is the difference between the output potential and the input potential can be used as a buffer. A large buffer can be used , and the power consumption of the second resistor divider circuit can be reduced.
[ 0043 ]
According to the liquid crystal driving circuit according to the present invention, low power consumption along with possible of the first resistive divider circuit as compared with the conventional, can be realized in control without a small circuit scale.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a configuration of an embodiment of the present invention according to claims 1 to 4 and 6; FIG. 2 is a timing chart according to an embodiment of the present invention according to claims 1 to 4; A graph showing the relationship between the gradation potential and the transmissivity of the liquid crystal panel in an embodiment of the present invention as set forth in claims 1 to 4 and 6. FIG. 4 in an embodiment of the present invention as set forth in claims 5 and 6. FIG. 5 is a timing diagram in one embodiment of the present invention according to claim 5. FIG. 6 is a circuit diagram of a conventional liquid crystal driving circuit. FIG. 7 is a gradation potential of a conventional liquid crystal driving circuit. Graph showing the relationship between the liquid crystal panel and the transmittance of the liquid crystal panel
1, 10, 40, 50 Resistance dividing circuit 2-7, 11, 12, 41-43, 51-53 Resistance 13, 14, 16 Transfer gate 15, 33-35 Buffer 20-22 Potential selection circuit 30-32 gradation Selection circuit 45 N channel type MOS transistor 46 P channel type MOS transistor VH, VL Gradation reference potential input RON1, RON2, SWON, BUFON Control signal SEL1 to SEL63 Gradation basic potential selection signal CTL1 to CTLn Gradation selection signal V1 to V63 , VS1 to VSn Gradation potential V2 (2) to V63 (8) Gradation basic potential VM0, VM potential VGN, VGP Gate potential VH0, VL0 Power supply I1, I2, I10 Through current

Claims (2)

複数の階調基準電位から第一の抵抗分割回路により生成した複数の階調電位を複数の液晶駆動出力として液晶パネルに供給する液晶駆動回路において、前記第一の抵抗分割回路内の所定電位と同じ電位を発生する第二の抵抗分割回路と、前記第二の抵抗分割回路により発生した前記所定電位を入力とし、低インピーダンス化して出力するバッファと、前記バッファの出力と前記第一の抵抗分割回路内の前記所定電位部分とを接続する第一のトランスファゲートと、前記第二の抵抗分割回路と前記複数の階調基準電位入力とを接続する複数の第二のトランスファゲートとを有し、前記液晶駆動出力となる前記階調電位が切り替わる際、前記複数の第二のトランスファゲートをオンすることにより前記第二の抵抗分割回路と前記複数の階調基準電位入力とを接続した後に、前記第一のトランスファゲートをオンすることにより前記バッファの出力と前記第一の抵抗分割回路内の前記所定電位部分とを接続し、前記第一のトランスファゲートをオフした後に、前記第二のトランスファゲートをオフすることを特徴とする液晶駆動回路。In a liquid crystal driving circuit that supplies a plurality of gradation potentials generated by a first resistance dividing circuit from a plurality of gradation reference potentials to a liquid crystal panel as a plurality of liquid crystal driving outputs, the predetermined potential in the first resistance dividing circuit is A second resistor dividing circuit that generates the same potential; a buffer that receives the predetermined potential generated by the second resistor dividing circuit as an input; and outputs the reduced potential; and an output of the buffer and the first resistor divider A first transfer gate that connects the predetermined potential portion in the circuit, and a plurality of second transfer gates that connect the second resistance dividing circuit and the plurality of gradation reference potential inputs, wherein when the gradation potentials to be the liquid crystal drive output is switched, the plurality of gradation reference potential and said second resistor divider circuit by turning on said plurality of second transfer gate After connecting the input, the first by turning on the transfer gate is connected with said predetermined potential areas of the output and the first resistor divider circuit of the buffer, turns off the first transfer gate liquid crystal drive circuit after, characterized by turning off the second transfer gate. 複数の階調基準電位から第一の抵抗分割回路により生成した複数の階調電位を複数の液晶駆動出力として液晶パネルに供給する液晶駆動回路において、前記第一の抵抗分割回路内の所定電位部分にソースとドレインのどちらか一方を接続し、他方に第一の電源を接続したNチャネル型MOSトランジスタと、前記第一の抵抗分割回路内の前記所定電位部分にソースとドレインのどちらか一方を接続し、他方に第二の電源を接続したPチャネル型MOSトランジスタとを有し、前記Nチャネル型MOSトランジスタの閾値電圧と前記所定電位との和よりも低電位の第一の電位を発生し、前記Pチャネル型MOSトランジスタの閾値電圧の絶対値と前記所定電位との和よりも高電位の第二の電位を発生する第二の抵抗分割回路を有し、前記Nチャネル型MOSトランジスタのゲートに前記第一の電位を接続し、前記Pチャネル型MOSトランジスタのゲートに前記第二の電位を接続することを特徴とする液晶駆動回路。  In a liquid crystal driving circuit that supplies a plurality of gradation potentials generated by a first resistance dividing circuit from a plurality of gradation reference potentials to a liquid crystal panel as a plurality of liquid crystal driving outputs, a predetermined potential portion in the first resistance dividing circuit One of the source and the drain is connected to the N-channel MOS transistor having the first power supply connected to the other, and either the source or the drain is connected to the predetermined potential portion in the first resistor divider circuit. And a P-channel MOS transistor connected to the other power source, and generates a first potential lower than the sum of the threshold voltage of the N-channel MOS transistor and the predetermined potential. A second resistance divider circuit for generating a second potential that is higher than the sum of the absolute value of the threshold voltage of the P-channel MOS transistor and the predetermined potential, Le type the first potential is connected to the gate of the MOS transistor, a liquid crystal drive circuit, characterized in that for connecting the second potential to the gate of the P-channel type MOS transistor.
JP2002023052A 2002-01-31 2002-01-31 LCD drive circuit Expired - Fee Related JP3758580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002023052A JP3758580B2 (en) 2002-01-31 2002-01-31 LCD drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002023052A JP3758580B2 (en) 2002-01-31 2002-01-31 LCD drive circuit

Publications (2)

Publication Number Publication Date
JP2003223153A JP2003223153A (en) 2003-08-08
JP3758580B2 true JP3758580B2 (en) 2006-03-22

Family

ID=27745871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002023052A Expired - Fee Related JP3758580B2 (en) 2002-01-31 2002-01-31 LCD drive circuit

Country Status (1)

Country Link
JP (1) JP3758580B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006227272A (en) * 2005-02-17 2006-08-31 Seiko Epson Corp Reference voltage generation circuit, display driver, electrooptical apparatus and electronic equipment
JP2006243233A (en) * 2005-03-02 2006-09-14 Seiko Epson Corp Reference voltage generation circuit, display driver, electro-optic device and electronic device
KR100696693B1 (en) * 2005-04-13 2007-03-20 삼성에스디아이 주식회사 Organic light emitting diode display
KR100696691B1 (en) * 2005-04-13 2007-03-20 삼성에스디아이 주식회사 Organic light emitting diode display
US20080303767A1 (en) * 2007-06-01 2008-12-11 National Semiconductor Corporation Video display driver with gamma control
JP4498400B2 (en) 2007-09-14 2010-07-07 Okiセミコンダクタ株式会社 Trimming circuit
JP6058289B2 (en) 2012-06-05 2017-01-11 サターン ライセンシング エルエルシーSaturn Licensing LLC Display device, imaging device, and gradation voltage generation circuit
CN105261336B (en) * 2014-05-30 2018-01-30 奇景光电股份有限公司 Gamma voltage producing circuit
US11356062B2 (en) 2017-02-08 2022-06-07 Sony Semiconductor Solutions Corporation Electric circuit and electronic apparatus

Also Published As

Publication number Publication date
JP2003223153A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
US9892703B2 (en) Output circuit, data driver, and display device
EP1274068B1 (en) Driver circuit and liquid crystal display device
KR100438205B1 (en) Driving circuit, charge/discharge circuit and liquid crystal display device
US6509895B2 (en) Voltage generating circuit, and common electrode drive circuit, signal line drive circuit and gray-scale voltage generating circuit for display devices
US7190342B2 (en) Shift register and display apparatus using same
US7362300B2 (en) Output circuit, liquid crystal driving circuit, and liquid crystal driving method
US6028598A (en) Liquid crystal driving power supply circuit
US8237697B2 (en) Amplifier circuits in which compensation capacitors can be cross-connected so that the voltage level at an output node can be reset to about one-half a difference between a power voltage level and a common reference voltage level and methods of operating the same
KR100795687B1 (en) Output circuit and method of source driver
EP1274067B1 (en) Driver Circuit
JP3233580B2 (en) Level conversion circuit
WO1998048318A1 (en) Drive circuit for active matrix liquid crystal display
KR20020028787A (en) Liquid crystal driver and liquid crystal display incorporating the same
JP2005099170A (en) Driving circuit
JP2004032603A (en) Differential circuit, amplifier circuit and display using the amplifier circuit
KR20030065699A (en) Source driver output circuit of thin film transistor liquid crystal displayer
JP2003347926A (en) Level shift circuit, display apparatus, and mobile terminal
JP3758580B2 (en) LCD drive circuit
JP3405333B2 (en) Voltage supply device, semiconductor device, electro-optical device, and electronic apparatus using the same
US6236256B1 (en) Voltage level converters
US20060164368A1 (en) Display apparatus with reduced power consumption in charging/discharging of data line
JP2001255857A (en) Driving circuit
KR100754975B1 (en) High speed driving circuit
US20100321360A1 (en) Differential signal receiving circuit and display apparatus
JPH09230829A (en) Output circuit for source driver

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees