JP3757828B2 - Evaluation method of semiconductor heat treatment equipment - Google Patents

Evaluation method of semiconductor heat treatment equipment Download PDF

Info

Publication number
JP3757828B2
JP3757828B2 JP2001207569A JP2001207569A JP3757828B2 JP 3757828 B2 JP3757828 B2 JP 3757828B2 JP 2001207569 A JP2001207569 A JP 2001207569A JP 2001207569 A JP2001207569 A JP 2001207569A JP 3757828 B2 JP3757828 B2 JP 3757828B2
Authority
JP
Japan
Prior art keywords
heat treatment
oxide film
semiconductor
semiconductor wafer
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001207569A
Other languages
Japanese (ja)
Other versions
JP2003023054A (en
Inventor
征爾 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2001207569A priority Critical patent/JP3757828B2/en
Publication of JP2003023054A publication Critical patent/JP2003023054A/en
Application granted granted Critical
Publication of JP3757828B2 publication Critical patent/JP3757828B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウェハ上に酸化膜を形成するためのガス供給ラインを持たない半導体熱処理装置の評価方法に関するものである。
【0002】
【従来の技術】
半導体製造装置にて処理された熱酸化膜質を評価する手法としてC−V評価手法が知られている。このC−V評価は、MIS構造(Metal-Insulator-Semiconductor )のパターン成形後、電極−半導体ウェハ間に電圧を印加することにより、熱酸化膜の容量変化から膜内電荷量や界面準位、可動イオン取り込み量を測定する技術であり、主に汚染評価に用いられている。こうしたC−V評価技術により、熱酸化処理装置の汚染評価手法は既に確立されている。これに対し、減圧CVD装置や拡散熱処理炉など、半導体ウェハ上の酸化膜形成のためのガス供給ラインを持たない半導体熱処理装置については、汚染評価手法が未だ確立されていない。
【0003】
つまり、上記MIS構造のC−V評価時には、酸化膜上の電極成形が必要となる。しかしながら、酸化膜上に電極を形成した後、半導体ウェハを評価対象である半導体熱処理装置に投入すると、電極部によるメタル汚染が生じてしまい、半導体熱処理装置の汚染評価が不可能となる。図5を用いて説明すると、(a)に示すように、イニシャルの熱酸化処理後に電極形成、C−V測定を実施した場合、熱酸化処理とは異なる別の熱処理装置(評価対象設備)への再投入を行うことができない。
【0004】
また、電極形成前の酸化膜付き半導体ウェハを評価対象の半導体熱処理装置に投入して熱処理を行い、その後、酸化膜上に電極を形成してC−V評価を行うことも考えられる。図5を用いて説明すると、(b)に示すように、イニシャルの熱酸化処理後に評価対象設備に投入し、同設備にて非酸化熱処理を実施する。そして、半導体ウェハを払い出した後、C−V測定用の電極パターンを形成し、C−V測定を実施する。
【0005】
しかしながらこの場合は、仮にC−V測定結果から汚染発生であると評価されても、それが評価対象設備での汚染によるものか、或いは半導体ウェハの初期特性として当初から存在したものかが判別できない。また、電極形成の工程などで追加汚染が生じる等、別要因の汚染を受けることも考えられる。以上のことから、高精度なC−V評価が実施できないという問題が生じる。
【0006】
【発明が解決しようとする課題】
本発明は、上記問題に着目してなされたものであって、その目的とするところは、非接触型C−V測定器を用い、半導体ウェハ上の酸化膜形成のためのガス供給ラインを持たない半導体熱処理装置の汚染評価を高精度に実施することである。
【0007】
【課題を解決するための手段】
非接触型C−V測定器は、半導体ウェハの電気的特性であるC−V特性を非接触で測定するものであり、同C−V測定器を用いる場合、半導体ウェハの酸化膜上に形成される電極が不要となる。それ故、C−V測定済みの酸化膜付き半導体ウェハであっても、それ以後に熱処理を実施することが可能となる。本発明では、この非接触型C−V測定器を用い、半導体ウェハ上の酸化膜形成のためのガス供給ラインを持たない半導体熱処理装置の汚染評価を行う。
【0008】
その評価方法にあっては、酸化膜の特性が膜内電荷量で1E11[ions/cm2 ]以下である酸化膜付き半導体ウェハが準備され、その半導体ウェハが、評価対象の半導体熱処理装置にて熱処理される。その後、熱処理後の半導体ウェハについて酸化膜の特性が非接触型C−V測定器により測定され、該測定の結果から半導体熱処理装置の汚染評価が行われる。なお、[ions/cm2 ]は1センチ四方内におけるイオン数を示す単位である。
【0009】
この場合、酸化膜の初期特性が予め制限されることから、評価対象の半導体熱処理装置について酸化膜の特性変動量に基づく汚染評価が可能となる。つまり、酸化膜のC−V特性として測定される膜内電荷量は、図3に示す可動電荷Qm、酸化膜トラップ電荷Qot、固定酸化膜電荷Qf及び界面準位Qitを全て含む電荷量である。この場合、可動電荷Qmと酸化膜トラップ電荷Qotは汚染起因となるのに対し、固定酸化膜電荷Qfと界面準位Qitは汚染起因とならない。従って、固定酸化膜電荷Qfと界面準位Qitが、評価対象装置での熱処理以前に過剰に存在すると、汚染評価が正しく実施できない。本発明では、初期の膜内電荷量を制限することで上記の固定酸化膜電荷Qfや界面準位Qitを微小量に規制し、ひいては汚染評価の高精度化を図ることとしている。
【0010】
また特に、評価用ウェハとなる酸化膜付き半導体ウェハは、熱処理前の膜内電荷量が1E11[ions/cm2 ]以下に制限されるため、外乱要因を排除した適切な評価が可能となる。すなわち、図4は、膜内電荷量と酸化膜ばらつきとの関係について本願出願人より得られた実験データを示す。図4から分かるように、膜内電荷量が1E11[ions/cm2 ]よりも大きいと、酸化膜ばらつきが大きく、汚染評価の信頼性が低い。これに対し、膜内電荷量が1E11[ions/cm2 ]以下であれば、酸化膜ばらつきが微小となり、汚染評価の信頼性が向上する。
【0011】
なお、膜内電荷量の初期値が小さいほど電荷の変動量が好感度にモニタでき、該電荷量の初期値としてより望ましくは、8E10[ions/cm2 ]以下であると良い。
【0012】
また、請求項2に記載したように、酸化膜の膜内電荷量を1E11[ions/cm2 ]以下とした初期特性と、熱処理後に測定した膜内電荷量との差分から汚染評価を行うと良い。この場合、膜内電荷量の初期値にばらつきがあっても汚染状況が正しく判断できる。
【0013】
予め準備される酸化膜付き半導体ウェハの初期条件として、請求項3に記載したように、酸化膜厚は2.0nm以上であると良い。但しより望ましくは、酸化膜厚は3.0nm以上であると良い。更に、請求項4に記載したように、950℃以上の温度で熱酸化処理されたものであると良い。
【0014】
請求項5に記載の発明では、半導体ウェハを熱酸化処理装置で熱酸化処理した後、酸化膜の膜内電荷量を測定してイニシャル評価を実施する。そして、その測定値が1E11[ions/cm2 ]以下であることを条件に、熱酸化処理後の半導体ウェハを評価対象装置で熱処理し、該装置の評価を実施する。この場合、熱酸化処理装置にて使用した評価用ウェハをそのまま用い、評価対象の半導体熱処理装置の評価が実施できるため、評価用ウェハが共用でき、コスト低減を図ることができる。
【0015】
請求項6に記載の発明では、評価対象装置による熱処理前の半導体ウェハと熱処理後の半導体ウェハとについて、非接触型C−V測定器により同一点でC−V特性を測定する。これにより、測定点が異なることによる外乱要因が減り、評価精度がより一層向上する。
【0016】
【発明の実施の形態】
以下、この発明を具体化した一実施の形態を図面に従って説明する。本実施の形態では、非接触型C−V測定器を用い、半導体ウェハのC−V特性を非接触で測定することを前提としている。先ずはじめに、非接触C−V測定の概要について図1の概念図を用いて説明する。
【0017】
図1(a)に示すように、半導体ウェハ10は、半導体基板11とその表面に形成された酸化膜12とからなる。酸化膜12の上方には、微小なエアギャップGを隔てて測定用電極13が配置されている。そして、図示しない測定器により図のA,B間に電圧が印加され、半導体ウェハ10のC−V特性が測定されるようになっている。
【0018】
この場合、図1(b)に示すように、A−B間の静電容量は、半導体基板11の静電容量Cdと酸化膜12の静電容量CoxとエアギャップGの静電容量Cairとが直列接続された形で表される。ここで、エアギャップ長さが分かれば、エアギャップGの静電容量Cairが容易に求められる。従って、C−V測定結果より静電容量Cairを減算すれば、エアギャップ分を含まない半導体ウェハ10の容量が算出できる。これは、接触型C−V測定器を用いた場合のC−V測定結果と同等の値となる。特に本実施の形態では、C−V特性として酸化膜12の膜内電荷量を測定する。
【0019】
ところで本実施の形態では、上記の非接触型C−V測定器を用い、半導体ウェハ上に酸化膜を形成するためのガス供給ライン(例えば酸素供給ライン)を持たない半導体熱処理装置について汚染評価を行うこととしており、その手順を図2を参照しながら説明する。因みに、非接触型C−V測定器を用いることで、酸化膜上の電極形成が不要となり、イニシャルのC−V測定を実施した後であっても、同一の半導体ウェハ(評価用ウェハ)を評価対象の半導体熱処理装置に投入することが可能となっている。
【0020】
先ず、半導体ウェハに対してイニシャルの熱酸化処理を行い、評価用ウェハである酸化膜付き半導体ウェハを作成する(S1)。このとき、評価用ウェハは950℃以上の温度で熱酸化処理されたものであり、その酸化膜厚は2.0nm以上(より望ましくは3.0nm以上)であると良い。つまり、熱酸化処理の温度が950℃以上であれば、酸化膜の粘性流動による界面ストレスが緩和される。また、酸化膜厚が2.0nm以上であれば、酸化膜の歪みが防止され、ひいてはそれに起因する電荷増加による擬似汚染が防止される。
【0021】
次に、熱酸化処理後の半導体ウェハについて、非接触型C−V測定器によるイニシャルC−V測定を実施し、汚染及び擬似汚染がないレベルの判定を実施する(S2)。このとき、膜内電荷量が1E11[ions/cm2 ]以下であることを判定基準とし、この判定基準を満たさなければその半導体ウェハを廃棄処分とする。これは、膜内電荷量が判定基準よりも大きいと、後述する熱処理後における電荷変動量がイニシャルC−V特性内に隠れてしまい、C−V特性の差分評価ができなくなるおそれがあるためである。
【0022】
膜内電荷量が1E11[ions/cm2 ]以下であるという判定基準を満たせば、その半導体ウェハを、酸化膜形成用のガス供給ラインを持たない半導体熱処理装置である評価対象設備に投入し(S3)、不活性ガス雰囲気で非酸化熱処理を実施する(S4)。この作業により、半導体ウェハの酸化膜中に不純物が取り込まれる。熱処理後、半導体ウェハを評価対象設備から取り出す(S5)。
【0023】
その後、非接触型C−V測定器によるアフターC−V測定を実施する(S6)。このとき、イニシャルC−V測定時と同一点でC−V特性を測定する。最後に、アフターC−V測定の結果と、前述のイニシャルC−V測定の結果との差分解析により、評価対象設備の汚染評価を実施する(S7)。
【0024】
以上詳述した本実施の形態によれば、以下に示す効果が得られる。
酸化膜の初期特性が予め制限されることから、評価対象の半導体熱処理装置について酸化膜の特性変動量に基づく汚染評価が可能となる。つまり、初期の膜内電荷量を制限することで図3の固定酸化膜電荷Qfや界面準位Qitが微小量に規制され、ひいては汚染評価の高精度化が図られる。特に、評価用ウェハとなる酸化膜付き半導体ウェハは、初期の膜内電荷量が1E11[ions/cm2 ]以下に制限されるため、酸化膜ばらつきが微小となり(図4参照)、外乱要因を排除した適切な評価が可能となる。
【0025】
熱酸化処理装置にて使用した評価用ウェハをそのまま用い、評価対象である半導体熱処理装置の評価を実施するため、評価用ウェハが共用でき、コスト低減を図ることができる。
【0026】
なお本発明は、上記以外に次の形態にて具体化できる。
上記実施の形態では、半導体ウェハのイニシャルC−V測定結果と、アフターC−V測定結果との差分解析により汚染評価を実施したが、アフターC−V測定結果だけから汚染評価を実施しても良い。つまり、本発明の評価手法では、イニシャルのC−V測定結果が所定の判定基準内で規制されることとなっているため、汚染による電荷変動量が大きければアフターC−V測定結果に反映され、適切な汚染評価が実施できる。
【0027】
膜内電荷量の初期特性として、8E10[ions/cm2 ]以下であることを判定基準とするなど、1E11[ions/cm2 ]以下の範囲内でその判定基準を変更しても良い。この場合、膜内電荷量の初期値が小さいほど電荷の変動量が高感度にモニタできる。
【図面の簡単な説明】
【図1】非接触C−V測定の概要を説明するための図。
【図2】半導体熱処理装置の評価手順を示すフローチャート。
【図3】SiO2 −Si構造における酸化膜及び界面の電荷を示す図。
【図4】膜内電荷量と酸化膜ばらつきとの関係を示す図。
【図5】従来技術においてC−V評価手順を示すフローチャート。
【符号の説明】
10…半導体ウェハ、11…半導体基板、12…酸化膜、13…測定用電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for evaluating a semiconductor heat treatment apparatus that does not have a gas supply line for forming an oxide film on a semiconductor wafer.
[0002]
[Prior art]
A CV evaluation method is known as a method for evaluating the quality of a thermal oxide film processed in a semiconductor manufacturing apparatus. In this CV evaluation, after pattern formation of the MIS structure (Metal-Insulator-Semiconductor), by applying a voltage between the electrode and the semiconductor wafer, the amount of charge in the film, the interface state, It is a technique for measuring mobile ion uptake, and is mainly used for contamination assessment. By such a CV evaluation technique, a contamination evaluation method for a thermal oxidation treatment apparatus has already been established. On the other hand, no contamination evaluation method has been established for semiconductor heat treatment apparatuses that do not have a gas supply line for forming an oxide film on a semiconductor wafer, such as a low pressure CVD apparatus or a diffusion heat treatment furnace.
[0003]
That is, at the time of CV evaluation of the MIS structure, it is necessary to form an electrode on the oxide film. However, when an electrode is formed on the oxide film and then the semiconductor wafer is put into the semiconductor heat treatment apparatus to be evaluated, metal contamination is caused by the electrode portion, making it impossible to evaluate the contamination of the semiconductor heat treatment apparatus. Referring to FIG. 5, as shown in FIG. 5A, when electrode formation and CV measurement are performed after the initial thermal oxidation treatment, the heat treatment apparatus (equipment to be evaluated) is different from the thermal oxidation treatment. Cannot be re-introduced.
[0004]
It is also conceivable that a semiconductor wafer with an oxide film before electrode formation is put into a semiconductor heat treatment apparatus to be evaluated for heat treatment, and then an electrode is formed on the oxide film and CV evaluation is performed. If it demonstrates using FIG. 5, as shown in (b), after initial thermal oxidation treatment, it will be thrown into evaluation object equipment, and non-oxidation heat processing will be implemented in the equipment. And after paying out a semiconductor wafer, the electrode pattern for CV measurement is formed, and CV measurement is carried out.
[0005]
However, in this case, even if it is evaluated that contamination is generated from the CV measurement result, it cannot be determined whether it is due to contamination in the facility to be evaluated or whether it has existed as the initial characteristics of the semiconductor wafer from the beginning. . In addition, it is conceivable that another factor causes contamination, such as additional contamination in the electrode forming process. From the above, there arises a problem that highly accurate CV evaluation cannot be performed.
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above problems, and the object thereof is to have a gas supply line for forming an oxide film on a semiconductor wafer using a non-contact type CV measuring device. It is to carry out highly accurate contamination assessment of semiconductor heat treatment equipment.
[0007]
[Means for Solving the Problems]
The non-contact type CV measuring instrument measures CV characteristics, which are electrical characteristics of a semiconductor wafer, in a non-contact manner. When the CV measuring instrument is used, it is formed on an oxide film of a semiconductor wafer. The electrode to be used becomes unnecessary. Therefore, even for a semiconductor wafer with an oxide film that has been subjected to CV measurement, heat treatment can be performed thereafter. In the present invention, this non-contact type CV measuring device is used to evaluate contamination of a semiconductor heat treatment apparatus that does not have a gas supply line for forming an oxide film on a semiconductor wafer.
[0008]
In the evaluation method, a semiconductor wafer with an oxide film having an oxide film characteristic of 1E11 [ions / cm @ 2] or less in terms of the amount of charge in the film is prepared, and the semiconductor wafer is heat-treated in a semiconductor heat treatment apparatus to be evaluated. Is done. Thereafter, the characteristics of the oxide film of the semiconductor wafer after the heat treatment are measured by a non-contact type CV measuring device, and contamination of the semiconductor heat treatment apparatus is evaluated from the result of the measurement. [Ions / cm @ 2] is a unit indicating the number of ions in one centimeter square.
[0009]
In this case, since the initial characteristics of the oxide film are limited in advance, it is possible to evaluate the contamination of the semiconductor heat treatment apparatus to be evaluated based on the fluctuation amount of the characteristics of the oxide film. That is, the in-film charge amount measured as the CV characteristic of the oxide film is a charge amount including all of the movable charge Qm, the oxide film trap charge Qot, the fixed oxide film charge Qf, and the interface state Qit shown in FIG. . In this case, the movable charge Qm and the oxide trap charge Qot are caused by contamination, whereas the fixed oxide film charge Qf and the interface state Qit are not caused by contamination. Therefore, if the fixed oxide film charge Qf and the interface state Qit exist excessively before the heat treatment in the evaluation target apparatus, the contamination evaluation cannot be performed correctly. In the present invention, the above-described fixed oxide film charge Qf and interface state Qit are restricted to a very small amount by limiting the initial amount of charge in the film, and as a result, the accuracy of contamination evaluation is improved.
[0010]
In particular, a semiconductor wafer with an oxide film serving as an evaluation wafer has an in-film charge amount before heat treatment limited to 1E11 [ions / cm <2>] or less, so that it is possible to perform an appropriate evaluation excluding disturbance factors. That is, FIG. 4 shows experimental data obtained by the applicant of the present application regarding the relationship between the charge amount in the film and the oxide film variation. As can be seen from FIG. 4, when the charge amount in the film is larger than 1E11 [ions / cm 2], the variation in the oxide film is large and the reliability of the contamination evaluation is low. On the other hand, if the charge amount in the film is 1E11 [ions / cm 2] or less, the variation in the oxide film becomes minute and the reliability of the contamination evaluation is improved.
[0011]
Note that the smaller the initial value of the in-film charge amount, the better the amount of charge fluctuation can be monitored, and the more desirable initial value of the charge amount is 8E10 [ions / cm 2] or less.
[0012]
Further, as described in claim 2, it is preferable to perform the contamination evaluation from the difference between the initial characteristic in which the in-film charge amount of the oxide film is 1E11 [ions / cm 2] or less and the in-film charge amount measured after the heat treatment. . In this case, the contamination status can be correctly determined even if the initial value of the in-film charge amount varies.
[0013]
As an initial condition of the semiconductor wafer with an oxide film prepared in advance, as described in claim 3, the oxide film thickness is preferably 2.0 nm or more. However, more desirably, the oxide film thickness is 3.0 nm or more. Furthermore, as described in claim 4, it is preferable that the material is thermally oxidized at a temperature of 950 ° C. or higher.
[0014]
In the fifth aspect of the present invention, after the semiconductor wafer is thermally oxidized by the thermal oxidation processing apparatus, the charge in the oxide film is measured and the initial evaluation is performed. Then, on the condition that the measured value is 1E11 [ions / cm 2] or less, the semiconductor wafer after the thermal oxidation treatment is heat-treated in the evaluation target apparatus, and the apparatus is evaluated. In this case, the evaluation wafer used in the thermal oxidation processing apparatus can be used as it is, and the evaluation of the semiconductor heat treatment apparatus to be evaluated can be carried out. Therefore, the evaluation wafer can be shared and the cost can be reduced.
[0015]
In the invention described in claim 6, the CV characteristics are measured at the same point for the semiconductor wafer before the heat treatment by the evaluation object apparatus and the semiconductor wafer after the heat treatment by a non-contact type CV measuring device. Thereby, disturbance factors due to different measurement points are reduced, and the evaluation accuracy is further improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In this embodiment, it is assumed that a CV characteristic of a semiconductor wafer is measured in a non-contact manner using a non-contact type CV measuring instrument. First, an outline of non-contact CV measurement will be described with reference to the conceptual diagram of FIG.
[0017]
As shown in FIG. 1A, a semiconductor wafer 10 includes a semiconductor substrate 11 and an oxide film 12 formed on the surface thereof. Above the oxide film 12, a measurement electrode 13 is arranged with a minute air gap G therebetween. A voltage is applied between A and B in the figure by a measuring instrument (not shown), and the CV characteristic of the semiconductor wafer 10 is measured.
[0018]
In this case, as shown in FIG. 1B, the capacitance between A and B is the capacitance Cd of the semiconductor substrate 11, the capacitance Cox of the oxide film 12, and the capacitance Cair of the air gap G. Are connected in series. Here, if the air gap length is known, the capacitance Cair of the air gap G can be easily obtained. Therefore, the capacitance of the semiconductor wafer 10 not including the air gap can be calculated by subtracting the capacitance Cair from the CV measurement result. This is a value equivalent to the CV measurement result when the contact type CV measuring device is used. In particular, in this embodiment, the charge amount in the oxide film 12 is measured as the CV characteristic.
[0019]
By the way, in the present embodiment, the above non-contact type CV measuring instrument is used to evaluate the contamination of a semiconductor heat treatment apparatus that does not have a gas supply line (for example, oxygen supply line) for forming an oxide film on a semiconductor wafer. The procedure will be described with reference to FIG. Incidentally, by using a non-contact type CV measuring device, it is not necessary to form an electrode on the oxide film, and the same semiconductor wafer (evaluation wafer) can be obtained even after initial CV measurement. It can be put into a semiconductor heat treatment apparatus to be evaluated.
[0020]
First, an initial thermal oxidation process is performed on a semiconductor wafer to produce a semiconductor wafer with an oxide film as an evaluation wafer (S1). At this time, the evaluation wafer is thermally oxidized at a temperature of 950 ° C. or higher, and its oxide film thickness is preferably 2.0 nm or more (more preferably 3.0 nm or more). That is, when the temperature of the thermal oxidation treatment is 950 ° C. or higher, the interface stress due to the viscous flow of the oxide film is relieved. In addition, when the oxide film thickness is 2.0 nm or more, distortion of the oxide film is prevented, and as a result, pseudo contamination due to an increase in charge due to the distortion is prevented.
[0021]
Next, the initial CV measurement by the non-contact type CV measuring device is performed on the semiconductor wafer after the thermal oxidation treatment, and the determination of the level free from contamination and pseudo contamination is performed (S2). At this time, it is determined that the charge amount in the film is 1E11 [ions / cm 2] or less, and if this criterion is not satisfied, the semiconductor wafer is disposed of. This is because if the in-film charge amount is larger than the criterion, the charge fluctuation amount after the heat treatment described later may be hidden in the initial CV characteristic and the difference evaluation of the CV characteristic may not be possible. is there.
[0022]
If the determination criterion that the in-film charge amount is 1E11 [ions / cm 2] or less is satisfied, the semiconductor wafer is put into an evaluation object facility which is a semiconductor heat treatment apparatus having no gas supply line for forming an oxide film (S3). ), Non-oxidizing heat treatment is performed in an inert gas atmosphere (S4). By this operation, impurities are taken into the oxide film of the semiconductor wafer. After the heat treatment, the semiconductor wafer is taken out from the equipment to be evaluated (S5).
[0023]
Thereafter, after CV measurement is performed by a non-contact type CV measuring device (S6). At this time, the CV characteristic is measured at the same point as the initial CV measurement. Finally, the contamination evaluation of the evaluation target facility is performed by differential analysis between the result of the after CV measurement and the result of the above-mentioned initial CV measurement (S7).
[0024]
According to the embodiment described in detail above, the following effects can be obtained.
Since the initial characteristics of the oxide film are limited in advance, it is possible to evaluate the contamination of the semiconductor heat treatment apparatus to be evaluated based on the characteristic fluctuation amount of the oxide film. In other words, by limiting the initial amount of charge in the film, the fixed oxide film charge Qf and the interface state Qit in FIG. 3 are regulated to a minute amount, and as a result, the accuracy of contamination evaluation is improved. In particular, a semiconductor wafer with an oxide film used as an evaluation wafer is limited to an initial in-film charge amount of 1E11 [ions / cm 2] or less, so that variations in the oxide film become minute (see FIG. 4), eliminating disturbance factors. Appropriate evaluation is possible.
[0025]
Since the evaluation wafer used in the thermal oxidation processing apparatus is used as it is and the evaluation of the semiconductor heat treatment apparatus that is the evaluation target is performed, the evaluation wafer can be shared, and the cost can be reduced.
[0026]
In addition to the above, the present invention can be embodied in the following forms.
In the above embodiment, the contamination evaluation is performed by the difference analysis between the initial CV measurement result of the semiconductor wafer and the after CV measurement result. However, even if the contamination evaluation is performed only from the after CV measurement result. good. In other words, in the evaluation method of the present invention, the initial CV measurement result is regulated within a predetermined criterion. Therefore, if the amount of charge fluctuation due to contamination is large, it is reflected in the after CV measurement result. Appropriate contamination assessment can be conducted.
[0027]
As an initial characteristic of the in-film charge amount, the determination criterion may be changed within a range of 1E11 [ions / cm 2] or less, such as 8E10 [ions / cm 2] or less. In this case, as the initial value of the in-film charge amount is smaller, the charge fluctuation amount can be monitored with higher sensitivity.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining an outline of non-contact CV measurement.
FIG. 2 is a flowchart showing a procedure for evaluating a semiconductor heat treatment apparatus.
FIG. 3 is a diagram showing charges on an oxide film and an interface in a SiO 2 —Si structure.
FIG. 4 is a diagram showing the relationship between the charge amount in the film and the oxide film variation.
FIG. 5 is a flowchart showing a CV evaluation procedure in the prior art.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Semiconductor wafer, 11 ... Semiconductor substrate, 12 ... Oxide film, 13 ... Electrode for measurement.

Claims (6)

半導体ウェハのC−V特性を非接触で測定する非接触型C−V測定器を用い、半導体ウェハ上に酸化膜を形成するためのガス供給ラインを持たない半導体熱処理装置の汚染評価を行う半導体熱処理装置の評価方法であって、
酸化膜の特性が膜内電荷量で1E11[ions/cm2 ]以下である酸化膜付き半導体ウェハを準備する工程と、
その半導体ウェハを評価対象の半導体熱処理装置にて熱処理する工程と、
熱処理後の半導体ウェハについて酸化膜の特性を前記非接触型C−V測定器により測定する工程と、
該測定の結果から半導体熱処理装置の汚染評価を行う工程と、
を有することを特徴とする半導体熱処理装置の評価方法。
Semiconductor that performs contamination assessment of a semiconductor heat treatment apparatus that does not have a gas supply line for forming an oxide film on a semiconductor wafer using a non-contact type CV measuring device that measures CV characteristics of a semiconductor wafer in a non-contact manner An evaluation method for a heat treatment apparatus,
A step of preparing a semiconductor wafer with an oxide film in which the characteristic of the oxide film is 1E11 [ions / cm 2] or less in terms of in-film charge;
Heat treating the semiconductor wafer with a semiconductor heat treatment apparatus to be evaluated;
Measuring the characteristics of the oxide film on the semiconductor wafer after the heat treatment with the non-contact CV measuring device;
A step of evaluating contamination of the semiconductor heat treatment apparatus from the result of the measurement;
A method for evaluating a semiconductor heat treatment apparatus, comprising:
酸化膜の膜内電荷量を1E11[ions/cm2 ]以下とした初期特性と、熱処理後に測定した膜内電荷量との差分から汚染評価を行う請求項1に記載の半導体熱処理装置の評価方法。2. The evaluation method for a semiconductor heat treatment apparatus according to claim 1, wherein contamination evaluation is performed from a difference between an initial characteristic in which an in-film charge amount of the oxide film is 1E11 [ions / cm <2>] or less and an in-film charge amount measured after the heat treatment. 予め準備される酸化膜付き半導体ウェハの酸化膜厚は、2.0nm以上である請求項1又は2に記載の半導体熱処理装置の評価方法。The evaluation method for a semiconductor heat treatment apparatus according to claim 1, wherein the oxide film thickness of the semiconductor wafer with an oxide film prepared in advance is 2.0 nm or more. 予め準備される酸化膜付き半導体ウェハは、950℃以上の温度で熱酸化処理されたものである請求項1〜3の何れかに記載の半導体熱処理装置の評価方法。The evaluation method of a semiconductor heat treatment apparatus according to claim 1, wherein the semiconductor wafer with an oxide film prepared in advance is subjected to thermal oxidation at a temperature of 950 ° C. or higher. 半導体ウェハを熱酸化処理装置で熱酸化処理した後、酸化膜の膜内電荷量を測定してイニシャル評価を実施し、その測定値が1E11[ions/cm2 ]以下であることを条件に、熱酸化処理後の半導体ウェハを評価対象装置で熱処理し、該装置の評価を実施する請求項1〜4の何れかに記載の半導体熱処理装置の評価方法。After the semiconductor wafer is thermally oxidized by a thermal oxidation processing apparatus, the amount of charge in the oxide film is measured and initial evaluation is performed. On the condition that the measured value is 1E11 [ions / cm 2] or less, The semiconductor heat treatment apparatus evaluation method according to claim 1, wherein the semiconductor wafer after the oxidation treatment is heat-treated with an evaluation target apparatus, and the apparatus is evaluated. 評価対象装置による熱処理前の半導体ウェハと熱処理後の半導体ウェハとについて、非接触型C−V測定器により同一点でC−V特性を測定する請求項1〜5の何れかに記載の半導体熱処理装置の評価方法。6. The semiconductor heat treatment according to claim 1, wherein the CV characteristics are measured at the same point by a non-contact type CV measuring device for the semiconductor wafer before the heat treatment and the semiconductor wafer after the heat treatment by the apparatus to be evaluated. Device evaluation method.
JP2001207569A 2001-07-09 2001-07-09 Evaluation method of semiconductor heat treatment equipment Expired - Fee Related JP3757828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001207569A JP3757828B2 (en) 2001-07-09 2001-07-09 Evaluation method of semiconductor heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001207569A JP3757828B2 (en) 2001-07-09 2001-07-09 Evaluation method of semiconductor heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2003023054A JP2003023054A (en) 2003-01-24
JP3757828B2 true JP3757828B2 (en) 2006-03-22

Family

ID=19043531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001207569A Expired - Fee Related JP3757828B2 (en) 2001-07-09 2001-07-09 Evaluation method of semiconductor heat treatment equipment

Country Status (1)

Country Link
JP (1) JP3757828B2 (en)

Also Published As

Publication number Publication date
JP2003023054A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
US7572052B2 (en) Method for monitoring and calibrating temperature in semiconductor processing chambers
EP1696229B1 (en) Oxidizing gas sensor and production method thereof
JP3789220B2 (en) Insulating film evaluation method and apparatus, and process evaluation method
JP3757828B2 (en) Evaluation method of semiconductor heat treatment equipment
JP2011100909A (en) Method for evaluating semiconductor substrate and method for manufacturing semiconductor device
JPH08102481A (en) Estimation method of mis semiconductor device
US6303397B1 (en) Method for benchmarking thin film measurement tools
JPH0855145A (en) Method and device for semiconductor process simulation
EP1568990B1 (en) Oxidizing gas sensor
JP5487579B2 (en) Silicon wafer evaluation method and manufacturing method
JP5018053B2 (en) Semiconductor wafer evaluation method
JPH09292285A (en) Measuring method of substrate temperature
JP2007150007A (en) Method of evaluating semiconductor device and method of manufacturing same
CN109540969A (en) SiC-SiO in SiC oxidation2Method for measuring interface carbon impurity type and position distribution
JP6717218B2 (en) Semiconductor wafer evaluation method
JPH05206051A (en) Ion implantation monitor method
JPH10123190A (en) Method for measuring sheet resistance of semiconductor substrate
JP3441355B2 (en) Manufacturing method of oxide film thickness standard sample of semiconductor device
JPH03211854A (en) Method for measuring thickness of metallic film
JP4812918B2 (en) Thin film resistor manufacturing method and thin film resistor resistance value temperature characteristic detection method
JP2007073727A (en) Quantitation method of nitrogen and manufacturing method of semiconductor device
JP4207427B2 (en) Strain gauge and method for manufacturing strain gauge
JPH09159633A (en) Gas sensor
JP2004507878A (en) Device and method for monitoring and calibrating an oxide charge measurement device
CN118824885A (en) Thermal annealing process stability monitoring method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees