JP3757726B2 - DC circuit breaker - Google Patents

DC circuit breaker Download PDF

Info

Publication number
JP3757726B2
JP3757726B2 JP37219899A JP37219899A JP3757726B2 JP 3757726 B2 JP3757726 B2 JP 3757726B2 JP 37219899 A JP37219899 A JP 37219899A JP 37219899 A JP37219899 A JP 37219899A JP 3757726 B2 JP3757726 B2 JP 3757726B2
Authority
JP
Japan
Prior art keywords
circuit
control device
current
output signal
interrupting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP37219899A
Other languages
Japanese (ja)
Other versions
JP2001185008A (en
Inventor
康二 昆野
一雄 粟飯原
健太郎 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP37219899A priority Critical patent/JP3757726B2/en
Publication of JP2001185008A publication Critical patent/JP2001185008A/en
Application granted granted Critical
Publication of JP3757726B2 publication Critical patent/JP3757726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電気鉄道などの地絡や短絡の保護に用いられている直流電流を遮断する転流式の直流遮断器に関し、特に、無負荷時に外部から開放指令があっても負荷側に過電圧を出さないような直流遮断器に関する。
【0002】
【従来の技術】
図3は、直流遮断器の構成を示す回路図である。直流遮断器5は、真空バルブからなる遮断部1と、互いに直列接続された転流リアクトル10および転流コンデンサ11および転流スイッチ12と、非線形素子3とが並列接続され、この並列回路にもう一つの真空バルブからなる断路部2が直列接続されている。この直流遮断器5が直流電源4と負荷6との間に介装されているが、直流遮断器5と負荷6との間には通常リアクトル7とコンデンサ8とが直列に接続されたLCフイルタ9が介装されている。直流遮断器5の主回路には事故電流検出用の直流変流器51が設けられるとともに、この直流変流器51の出力信号を受けて、検出された電流が遮断すべき事故電流である場合に事故遮断指令信号23を出力する事故判別部52が設けられている。また、この事故遮断指令信号23および直流遮断器5の外部からの開放指令信号24を受けて遮断部1およ断路部2への開極指令信号29と転流スイッチ12への投入指令信号30とを出力する制御部53が設けられている。
【0003】
図3において、転流コンデンサ11は図示されていない充電回路でもって常時充電されていて、直流遮断器5が遮断動作を行うときに転流スイッチ12が投入され、転流コンデンサ11から高周波電流が遮断部1に注入される。それによって遮断部1の極間を流れる電流に零点が形成され遮断部1が電流遮断するようになる。非線形素子3は遮断後の過電圧を抑制するためのものであるが、非線形素子3自体の絶縁抵抗が真空バルブのそれと比較すると低いので負荷6側との絶縁を確実にするために、遮断部1が遮断された後に断路部2も断路される。なお、LCフイルタ9は、負荷6側の電圧波形を平滑にするために介装される。
【0004】
図4は、従来の直流遮断器の遮断の動作タイミングを示すタイムチャートである。図4において、時間t0 で事故遮断指令が出されたとする。事故遮断指令の波形13は立ち上がったときに事故遮断指令が出されたものとし、開極指令の波形14は立ち上がったときに遮断部1および断路部2の双方に開極指令が出されたものとする。また、遮断部の波形15および断路部2の波形16の双方は立ち下がったときにそれぞれが開極したものとする。さらに、転流スイッチの波形17は立ち上がったときに投入されたものとする。すなわち、波形13のように時間t0 で事故遮断指令が出されると同時に、波形14のように遮断部1および断路部2の双方に開極指令が出される。遮断部1は、高速な動作が要求されるために通常電磁的な反発力などが加えられ、波形15のように時間t0 から1ms程度で開極するように構成されている。一方、断路部2は、ばね力だけで駆動され波形16のように20ms程度で開極する。転流スイッチ12は、波形17のように遮断部1の極間が遮断可能な距離まで開いた時点、すなわち、時間t0 から2ないし3ms後に投入され遮断部1に高周波電流が注入される。それによって、直流電流と高周波電流との合成電流が零になったときに遮断部1が電流遮断する。一方、断路部2は、遮断部1の遮断にともなって極間電流が微小になるので高周波電流を注入しなくても絶縁回復するようになる。
【0005】
【発明が解決しようとする課題】
しかしながら、前述したような従来の直流遮断器は、無負荷の状態で外部から開放指令が出されると負荷側の端子間に過電圧が発生するというという問題があった。
すなわち、従来の直流遮断器5の制御部53における信号処理は、図5の指令信号系統図に示されるような処理が行われるものであり、事故遮断指令信号23と、外部からの開放指令信号24との論理和を取るためのオア回路25に入力され、このオア回路25の出力信号29が遮断部1および断路部2の双方の開極指令信号となる。また、オア回路25の出力信号29は、制御装置54に入力され、制御装置54の内蔵のタイマでもって2〜3ms遅延された後に出力信号30が出力され、この出力信号30が転流スイッチ12の投入指令信号となる。このため、直流遮断器5の外部からの開放指令信号24を受けて無負荷状態の直流遮断器5を開放する場合でも、図4のタイムチャートにおいて事故遮断指令を外部から開放指令に置き換えただけの,事故電流遮断の場合と同じタイミングでもって遮断動作することになるが、無負荷の状態での開放の場合は、極間電流が微小なので遮断部1が開極すると同時に絶縁回復するようになる。その後に転流スイッチ12が投入されるので、断路部2が断路される時間まで電源電圧と転流コンデンサ11の充電電圧とが重畳した電圧が負荷6側の端子間に発生する。そのために、負荷6側にフイルタが接続されていると、このフイルタに過電圧がかかる。従来は、フイルタとしてその回路における定格電圧以上の責務に耐えるものが用いられ経済的な無駄が生じていた。
【0006】
この発明の目的は、負荷側に過電圧が発生しないようにすることにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、この発明によれば、直流電流を遮断する転流式の直流遮断器であって、直流電源と負荷との間に遮断部と非線形素子との並列回路が断路部を介して接続されてなり、前記遮断部は前記断路部より高速で開極するように構成され、事故電流を遮断する場合、前記遮断部の極間が遮断可能な距離だけ開いた後に前記極間に高周波電流が注入されて遮断部が遮断され、その後20ms程度で前記断路部が断路するようにさせてなるとともに、無負荷時に外部から開放指令があっても、断路部によって負荷側が既に絶縁され負荷側の端子間に過電圧が発生しないようにさせてなる直流遮断器であって、前記遮断部に高周波電流を注入するタイミングを調整して信号を出力する制御装置を、事故電流を遮断する場合と、無負荷の状態で開放する場合との2種類備え、前記事故電流を遮断する場合の遮断指令信号と、前記無負荷の状態で開放する場合の外部からの開放指令信号とが論理和を取るための第1のオア回路に入力され、この第1のオア回路の出力信号が前記遮断部および前記断路部の双方の開極指令信号となるとともに、前記事故遮断指令信号は、さらに、前記事故電流を遮断する制御装置にも入力され、内蔵のタイマでもって2ないし3ms遅延された後に前記制御装置の出力信号が出力され、また、前記外部からの開放指令信号も、無負荷の状態で開放するもう一つの制御装置に入力され、内蔵のタイマでもって22ms程度遅延された後に前記もう一つの制御装置の出力信号が出力され、さらに、前記制御装置及び前記もう一つの制御装置の出力信号を受ける第2のオア回路が前記事故電流を遮断する制御装置の出力信号と、無負荷の状態で開放する前記もう一つの制御装置の出力信号とを受け、前記第2のオア回路の出力信号が転流スイッチの投入指令信号となり、それによって、前記遮断部に高周波電流が注入されてなるようにするとよい。それによって、転流スイッチを投入し遮断部に高周波電流が注入されても、断路部によって負荷側とが既に絶縁されているために負荷側の端子間に過電圧が発生することはない。
【0008】
また、かかる構成において、前記遮断部に高周波電流を注入するタイミングを調整して信号を出力する制御装置を、事故電流を遮断する場合と、無負荷の状態で開放する場合との2種類備え、前記制御装置からの出力信号同士の論理和がとられ、前記論理和の出力信号でもって前記遮断部に高周波電流が注入されてなるようにしてもよい。それによって、事故電流を遮断する場合の直流遮断器の動作に何の影響も与えずに無負荷の状態で開放する場合に発生する過電圧を抑えることができる。
【0009】
【発明の実施の形態】
以下、この発明を実施例に基づいて説明する。図1は、この発明の実施例にかかる直流遮断器の無負荷における開放動作タイミングを示すタイムチャートである。図1において、時間t0 で直流遮断器5が外部からの開放指令信号24を受けたとする。開放指令の波形18は立ち上がったときに直流遮断器5が外部からの開放指令を受けたものとし、開極指令の波形19は立ち上がったときに遮断部1および断路部2の双方に開極指令が出されたものとする。また、遮断部1の波形20および断路部2の波形21の双方は立ち下がったときにそれぞれが開極したものとする。さらに、転流スイッチの波形22は立ち上がったときに投入されたものとする。すなわち、波形18のように直流遮断器5が時間t0 で外部からの開放指令を受けると同時に、波形19のように遮断部1および断路部2の双方に開極指令が出される。遮断部1は、高速な動作が要求されるために通常電磁的な反発力などが加えられ、波形20のように時間t0 から1ms程度で開極するように構成されている。一方、断路部2は、ばね力だけで駆動され波形21のように20ms程度で開極する。転流スイッチ12は、波形22のように断路部2が開極した後、すなわち、時間t0 から22ms程度で投入され、遮断部1に高周波電流が注入される。それによって、断路部2によって負荷6側とが既に絶縁されているために負荷6側の端子間に過電圧が発生することはない。そのために、負荷6側の端子間にLCフイルタ9のようなフイルタが接続されていても、このフイルタに過電圧がかかることがないのでフイルタとしてその回路電圧に合った定格のものを使用することができ経済的が向上する。なお、直流遮断器5に事故電流が流れている場合の遮断動作のタイミングは従来通りであり、図4のタイムチャートと同じとする。
【0010】
また、図2は、図1の実施例における指令信号系統図である。事故電流の遮断指令信号23と、外部からの開放指令信号24とが論理和を取るためのオア回路25に入力され、このオア回路25の出力信号29が遮断部1および断路部2の双方の開極指令信号となる。事故遮断指令信号23は、さらに制御装置26にも入力され、内蔵のタイマでもって2ないし3ms遅延された後に出力信号26Aが出力される。また、外部からの開放指令信号24も、もう一つの制御装置27に入力され、内蔵のタイマでもって22ms程度遅延された後に出力信号27Aが出力される。オア回路28が信号26Aと27Aとを受け、このオア回路28の出力信号30が転流スイッチ12の投入指令信号となる。それによって、事故電流を遮断する場合の直流遮断器5の動作に何の影響も与えずに無負荷の状態で直流遮断器5を開放する場合に発生する過電圧を抑えることができ、直流遮断器5自体が支障を来すことは全くない。
【0011】
なお、上述の実施例にかかる直流遮断器において、通常の負荷電流を遮断する場合は、無負荷の状態での開放の場合とは異なり、遮断部1の極間に負荷電流が流れているので、遮断部1が開極すると同時に絶縁回復することはないため、従来の図4のようなタイミングで遮断動作を行っても、無負荷の状態での開放の場合のような,負荷側で過電圧が発生することはないが、通常の負荷電流を遮断する場合には事故電流を遮断する場合のような高速の遮断は不要であるため、無負荷の状態での開放の場合と共通の,外部からの開放指令信号24を受けて図1のタイムチャートで遮断動作を行うようにすればよい。
【0012】
【発明の効果】
この発明は前述のように、無負荷の状態で開放する場合、前記断路部を断路させた後に前記遮断部に高周波電流が注入されてなるようにすることによって、負荷側に接続されるフイルタとしてその回路電圧にあった定格のものを使用することができ経済性が向上する。
【0013】
また、かかる構成において、前記遮断部に高周波電流を注入するタイミングを調整して信号を出力する制御装置を、事故電流を遮断する場合と、無負荷の状態で開放する場合との2種類備え、前記制御装置からの出力信号同士の論理和がとられ、前記論理和の出力信号でもって前記遮断部に高周波電流が注入されてなるようにすることによって、事故電流を遮断する場合の直流遮断器の動作に何の影響も与えずに無負荷の状態で開放する場合に発生する過電圧を抑えることができ、直流遮断器自体が支障を来すことは全くない。
【図面の簡単な説明】
【図1】この発明の実施例にかかる直流遮断器の無負荷における開放動作タイミングを示すタイムチャート
【図2】図1の実施例における指令信号系統図
【図3】直流遮断器の構成を示す回路図
【図4】従来の直流遮断器の遮断の動作タイミングを示すタイムチャート
【図5】図4の従来例における指令信号系統図
【符号の説明】
1:遮断部、2:断路部、3:非線形素子、4:直流電源、5:直流遮断器、6:負荷、7:リアクトル、8:コンデンサ、9:LCフイルタ、10:転流リアクトル、11:転流コンデンサ、12:転流スイッチ、25,28:オア回路、26,27:制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a commutation type DC circuit breaker that cuts off a direct current used for protection against ground faults and short circuits in electric railways, and more particularly, an overvoltage on the load side even if there is an open command from the outside during no load. The present invention relates to a DC circuit breaker that does not generate a fault.
[0002]
[Prior art]
FIG. 3 is a circuit diagram showing a configuration of the DC circuit breaker. The DC circuit breaker 5 includes a circuit breaker 1 including a vacuum valve, a commutation reactor 10 and a commutation capacitor 11 and a commutation switch 12 connected in series with each other, and a non-linear element 3 connected in parallel. The disconnection part 2 which consists of one vacuum valve is connected in series. The DC circuit breaker 5 is interposed between the DC power supply 4 and the load 6, but an LC filter in which a reactor 7 and a capacitor 8 are normally connected in series between the DC circuit breaker 5 and the load 6. 9 is interposed. The main circuit of the DC breaker 5 is provided with a DC current transformer 51 for detecting an accident current, and when the detected current is an accident current to be interrupted by receiving an output signal of the DC current transformer 51 An accident discriminating section 52 for outputting the accident cutoff command signal 23 is provided. Further, upon receiving the accident interruption command signal 23 and the open command signal 24 from the outside of the DC circuit breaker 5, the opening command signal 29 to the breaking unit 1 and the disconnecting unit 2 and the closing command signal 30 to the commutation switch 12. Is provided.
[0003]
In FIG. 3, the commutation capacitor 11 is always charged by a charging circuit (not shown), and the commutation switch 12 is turned on when the DC circuit breaker 5 performs the shut-off operation. It is injected into the blocking unit 1. As a result, a zero point is formed in the current flowing between the poles of the interrupting section 1, and the interrupting section 1 interrupts the current. The non-linear element 3 is for suppressing the overvoltage after being cut off. However, since the insulation resistance of the non-linear element 3 itself is lower than that of the vacuum valve, the cut-off part 1 is used to ensure insulation from the load 6 side. After disconnecting, the disconnecting portion 2 is also disconnected. The LC filter 9 is interposed in order to smooth the voltage waveform on the load 6 side.
[0004]
FIG. 4 is a time chart showing the operation timing of the interruption of the conventional DC circuit breaker. 4, an accident cutoff command is issued at time t 0. The waveform 13 of the accident cutoff command is that the accident cutoff command is issued when it rises, and the waveform 14 of the opening command is that that the opening command is issued to both the cutoff unit 1 and the disconnection unit 2 when it rises And Further, it is assumed that both the waveform 15 of the interrupting portion and the waveform 16 of the disconnecting portion 2 are opened when they fall. Further, it is assumed that the commutation switch waveform 17 is turned on when it rises. That is, an accident cutoff command is issued at time t 0 as shown in waveform 13, and simultaneously, an opening command is issued to both cutoff unit 1 and disconnecting unit 2 as shown in waveform 14. Since the interrupting unit 1 is required to operate at high speed, an electromagnetic repulsive force or the like is usually applied, and the circuit breaker 1 is configured to be opened from time t 0 to about 1 ms as shown by a waveform 15. On the other hand, the disconnecting portion 2 is driven only by the spring force and opens in about 20 ms as shown by the waveform 16. The commutation switch 12 is turned on when the distance between the poles of the interrupter 1 is opened as shown by the waveform 17, that is, after 2 to 3 ms from the time t 0, and a high-frequency current is injected into the interrupter 1. Thereby, when the combined current of the direct current and the high frequency current becomes zero, the interrupting unit 1 interrupts the current. On the other hand, the disconnecting portion 2 is recovered in insulation without injecting a high-frequency current because the inter-electrode current becomes minute as the interrupting portion 1 is interrupted.
[0005]
[Problems to be solved by the invention]
However, the conventional DC circuit breaker as described above has a problem that an overvoltage is generated between terminals on the load side when an open command is issued from the outside in a no-load state.
That is, the signal processing in the control unit 53 of the conventional DC circuit breaker 5 is such that the processing shown in the command signal system diagram of FIG. 5 is performed, and the accident cutoff command signal 23 and the open command signal from the outside. The output signal 29 of the OR circuit 25 is used as an opening command signal for both the blocking unit 1 and the disconnecting unit 2. Further, the output signal 29 of the OR circuit 25 is input to the control device 54, and after being delayed by 2 to 3 ms by a timer built in the control device 54, the output signal 30 is output. This output signal 30 is output from the commutation switch 12. Input command signal. For this reason, even when the open circuit signal 5 is opened in response to the open command signal 24 from the outside of the DC circuit breaker 5, the accident circuit break command is simply replaced with the open command from the outside in the time chart of FIG. However, when the circuit is opened in the no-load state, the current between the electrodes is so small that the circuit breaker 1 is opened and the insulation is recovered at the same time. Become. After that, since the commutation switch 12 is turned on, a voltage obtained by superimposing the power supply voltage and the charging voltage of the commutation capacitor 11 is generated between the terminals on the load 6 side until the disconnection unit 2 is disconnected. Therefore, when a filter is connected to the load 6 side, an overvoltage is applied to the filter. Conventionally, a filter that can withstand the duty exceeding the rated voltage in the circuit is used, resulting in an economical waste.
[0006]
An object of the present invention is to prevent an overvoltage from occurring on the load side.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, there is provided a commutation type DC circuit breaker for cutting off a direct current, wherein a parallel circuit of a cutoff unit and a nonlinear element is connected between a DC power source and a load. The interrupting portion is configured to open at a higher speed than the disconnection portion, and when interrupting an accident current, the poles of the interrupting portion are opened after a distance that can be interrupted to open the pole. A high-frequency current is injected in between, and the interrupting part is interrupted. After that , the disconnecting part is disconnected in about 20 ms , and the load side is already insulated by the disconnecting part even if there is an open command from outside when there is no load. A DC circuit breaker configured to prevent overvoltage from being generated between the terminals on the load side, the control device that outputs a signal by adjusting the timing of injecting the high-frequency current into the interrupting section, interrupts the accident current Case and no negative A first command for taking the logical sum of the shut-off command signal for shutting down the fault current and the external open command signal for opening in the no-load state. 1 and the output signal of the first OR circuit becomes an opening command signal for both the interrupting section and the disconnecting section, and the accident interrupting command signal further interrupts the accident current. The output signal of the control device is output after being delayed by 2 to 3 ms with a built-in timer, and the release command signal from the outside is also released in a no-load state. After being delayed by about 22 ms by a built-in timer, the output signal of the other control device is output, and the output signals of the control device and the other control device are output. The second OR circuit receiving the output signal of the control device that cuts off the fault current and the output signal of the other control device that opens in the no-load state, and the output signal of the second OR circuit Is a commutation switch input command signal, so that a high-frequency current is injected into the interrupting portion . As a result, even if the commutation switch is turned on and a high-frequency current is injected into the interrupting part, an overvoltage is not generated between the terminals on the load side because the disconnecting part is already insulated from the load side.
[0008]
Further, in such a configuration, the control device that adjusts the timing of injecting the high-frequency current into the interrupting unit and outputs a signal is provided with two types, that is, when the accident current is interrupted and when it is opened in a no-load state, The logical sum of the output signals from the control device may be taken, and a high-frequency current may be injected into the cutoff unit with the logical sum output signal. Thereby, it is possible to suppress an overvoltage that occurs when the circuit is opened in a no-load state without affecting the operation of the DC circuit breaker when interrupting an accident current.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on examples. FIG. 1 is a time chart showing the opening operation timing of the DC circuit breaker according to the embodiment of the present invention when there is no load. In FIG. 1, it is assumed that the DC circuit breaker 5 receives an open command signal 24 from the outside at time t 0 . It is assumed that the DC breaker 5 receives an open command from the outside when the open command waveform 18 rises, and the open command waveform 19 is supplied to both the breaking unit 1 and the disconnecting unit 2 when the open command waveform 19 rises. Shall be issued. Moreover, both the waveform 20 of the interruption | blocking part 1 and the waveform 21 of the disconnection part 2 shall each be opened when it fell. Further, it is assumed that the commutation switch waveform 22 is turned on when it rises. That is, the DC circuit breaker 5 receives an open command from the outside at time t 0 as shown in waveform 18, and at the same time, an opening command is issued to both the circuit breaker 1 and disconnecting unit 2 as shown in waveform 19. Since the interrupting unit 1 is required to operate at high speed, an electromagnetic repulsive force or the like is usually applied, and the blocking unit 1 is configured to be opened from time t 0 to about 1 ms as shown by a waveform 20. On the other hand, the disconnecting portion 2 is driven only by a spring force and opens in about 20 ms as shown by the waveform 21. The commutation switch 12 is turned on after the disconnecting portion 2 is opened as shown by the waveform 22, that is, about 22 ms from the time t 0, and a high-frequency current is injected into the breaking portion 1. Thereby, since the load 6 side is already insulated by the disconnecting portion 2, no overvoltage is generated between the terminals on the load 6 side. For this reason, even if a filter such as an LC filter 9 is connected between the terminals on the load 6 side, no overvoltage is applied to the filter. Therefore, a filter having a rating suitable for the circuit voltage can be used. Can be economical. Note that the timing of the breaking operation when the fault current is flowing in the DC breaker 5 is the same as the conventional one, and is the same as the time chart of FIG.
[0010]
FIG. 2 is a command signal system diagram in the embodiment of FIG. The fault current cutoff command signal 23 and the external release command signal 24 are input to an OR circuit 25 for taking a logical sum, and an output signal 29 of the OR circuit 25 is supplied to both the cutoff unit 1 and the disconnection unit 2. Opening command signal. The accident cut-off command signal 23 is further input to the control device 26, and an output signal 26A is output after being delayed by 2 to 3 ms with a built-in timer. An open command signal 24 from the outside is also input to another control device 27, and an output signal 27A is output after being delayed by about 22 ms by a built-in timer. The OR circuit 28 receives the signals 26A and 27A, and the output signal 30 of the OR circuit 28 becomes the input command signal for the commutation switch 12. As a result, the overvoltage generated when the DC circuit breaker 5 is opened in a no-load state without affecting the operation of the DC circuit breaker 5 when interrupting an accident current can be suppressed. 5 itself will not cause any trouble.
[0011]
In the DC circuit breaker according to the above-described embodiment, when the normal load current is interrupted, the load current flows between the poles of the interrupter 1 unlike the case of opening in the no-load state. Since the insulation portion does not recover at the same time as the breaking portion 1 opens, even if the breaking operation is performed at the timing shown in FIG. However, when the normal load current is cut off, it is not necessary to cut off at high speed as in the case of turning off the accident current. In response to the opening command signal 24, the blocking operation may be performed according to the time chart of FIG.
[0012]
【The invention's effect】
As described above, in the case of opening in a no-load state, the present invention provides a filter connected to the load side by disconnecting the disconnecting portion and then injecting a high-frequency current into the interrupting portion. The one rated according to the circuit voltage can be used, and the economy is improved.
[0013]
Further, in such a configuration, the control device that adjusts the timing of injecting the high-frequency current into the interrupting unit and outputs a signal is provided with two types, that is, when the accident current is interrupted and when it is opened in a no-load state, A DC circuit breaker for interrupting an accident current by taking a logical sum of output signals from the control device and injecting a high-frequency current into the interrupting unit with the output signal of the logical sum The overvoltage generated when the circuit is opened in a no-load state without affecting the operation of the circuit can be suppressed, and the DC circuit breaker itself does not cause any trouble.
[Brief description of the drawings]
FIG. 1 is a time chart showing the opening operation timing of a DC circuit breaker according to an embodiment of the present invention when there is no load. FIG. 2 is a command signal system diagram in the embodiment of FIG. Circuit diagram [FIG. 4] Time chart showing the operation timing of a conventional DC circuit breaker [FIG. 5] Command signal system diagram in the conventional example of FIG.
1: interrupting unit, 2: disconnecting unit, 3: nonlinear element, 4: DC power supply, 5: DC circuit breaker, 6: load, 7: reactor, 8: capacitor, 9: LC filter, 10: commutation reactor, 11 : Commutation capacitor, 12: Commutation switch, 25, 28: OR circuit, 26, 27: Control device

Claims (1)

直流電流を遮断する転流式の直流遮断器であって、直流電源と負荷との間に遮断部と非線形素子との並列回路が断路部を介して接続されてなり、前記遮断部は前記断路部より高速で開極するように構成され、事故電流を遮断する場合、前記遮断部の極間が遮断可能な距離だけ開いた後に前記極間に高周波電流が注入されて遮断部が遮断され、その後20ms程度で前記断路部が断路するようにさせてなるとともに、無負荷時に外部から開放指令があっても、断路部によって負荷側が既に絶縁され負荷側の端子間に過電圧が発生しないようにさせてなる直流遮断器であって、
前記遮断部に高周波電流を注入するタイミングを調整して信号を出力する制御装置を、事故電流を遮断する場合と、無負荷の状態で開放する場合との2種類備え、前記事故電流を遮断する場合の遮断指令信号と、前記無負荷の状態で開放する場合の外部からの開放指令信号とが論理和を取るための第1のオア回路に入力され、この第1のオア回路の出力信号が前記遮断部および前記断路部の双方の開極指令信号となるとともに、前記事故遮断指令信号は、さらに、前記事故電流を遮断する制御装置にも入力され、内蔵のタイマでもって2ないし3ms遅延された後に前記制御装置の出力信号が出力され、また、前記外部からの開放指令信号も、無負荷の状態で開放するもう一つの制御装置に入力され、内蔵のタイマでもって22ms程度遅延された後に前記もう一つの制御装置の出力信号が出力され、さらに、前記制御装置及び前記もう一つの制御装置の出力信号を受ける第2のオア回路が前記事故電流を遮断する制御装置の出力信号と、無負荷の状態で開放する前記もう一つの制御装置の出力信号とを受け、前記第2のオア回路の出力信号が転流スイッチの投入指令信号となり、それによって、前記遮断部に高周波電流が注入されてなるようにした、ことを特徴とする直流遮断器。
A commutation type DC circuit breaker for cutting off a direct current, wherein a parallel circuit of a breaking unit and a non-linear element is connected between a DC power source and a load via a disconnection unit, and the disconnection unit is connected to the disconnection unit When the accident current is cut off, the high frequency current is injected between the poles after the distance between the poles of the cut-off part is opened, and the cut-off part is cut off. After that , the disconnecting part is disconnected in about 20 ms, and even if there is an open command from the outside when there is no load, the disconnecting part already insulates the load side so that overvoltage does not occur between the terminals on the load side. A DC circuit breaker ,
The controller that adjusts the timing of injecting the high-frequency current into the interrupting section and outputs a signal is provided with two types of cases of interrupting the accident current and opening in a no-load state, and interrupts the accident current. And the open command signal from the outside in the case of opening in the no-load state are input to a first OR circuit for ORing, and the output signal of this first OR circuit is In addition to being an opening command signal for both the interrupting unit and the disconnecting unit, the accident interrupting command signal is also input to a control device that interrupts the accident current, and is delayed by 2 to 3 ms with a built-in timer. After that, the output signal of the control device is output, and the open command signal from the outside is also input to another control device that opens in a no-load state, and is delayed by about 22 ms with a built-in timer. The output signal of the other control device is output, and the second OR circuit receiving the output signal of the control device and the other control device outputs the output signal of the control device. And the output signal of the second control circuit that is opened in a no-load state, and the output signal of the second OR circuit becomes a commutation switch input command signal, whereby a high-frequency current is supplied to the interrupting unit. A direct current circuit breaker characterized in that is injected .
JP37219899A 1999-12-28 1999-12-28 DC circuit breaker Expired - Lifetime JP3757726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37219899A JP3757726B2 (en) 1999-12-28 1999-12-28 DC circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP37219899A JP3757726B2 (en) 1999-12-28 1999-12-28 DC circuit breaker

Publications (2)

Publication Number Publication Date
JP2001185008A JP2001185008A (en) 2001-07-06
JP3757726B2 true JP3757726B2 (en) 2006-03-22

Family

ID=18500028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37219899A Expired - Lifetime JP3757726B2 (en) 1999-12-28 1999-12-28 DC circuit breaker

Country Status (1)

Country Link
JP (1) JP3757726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480372B2 (en) * 2003-09-01 2010-06-16 三菱電機株式会社 Commutation type shut-off device
JP5144394B2 (en) * 2008-06-23 2013-02-13 株式会社東芝 DC vacuum interrupter

Also Published As

Publication number Publication date
JP2001185008A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
KR101521545B1 (en) Device and method to interrupt high voltage direct current
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
KR101483084B1 (en) Device and method to interrupt direct current
CA2178356C (en) A high voltage electric power line current limiter
US20080112097A1 (en) Arc suppression circuit using a semi-conductor switch
JP6456575B1 (en) DC circuit breaker
JP3114001B2 (en) Current limiter
JP2007110844A (en) Dc power supply shutdown device
JP3757726B2 (en) DC circuit breaker
JPWO2021084585A1 (en) DC circuit breaker
JP3085007B2 (en) Distribution electrode downsizing system and method thereof
JP2003007178A (en) Direct current breaker
JP3245716B2 (en) Current interrupter
CN207339250U (en) Transformer non-exciting regulation switch protecting circuit
CN206628821U (en) A kind of LC series resonances bus residual voltage keeps system
CN220964318U (en) Power converter protection device and power conversion system
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JPH0212367B2 (en)
JPH09231877A (en) Direct current circuit breaker
JP2002110006A (en) Direct current breaker
JP3443926B2 (en) Commutation type DC circuit breaker
JP3777926B2 (en) DC circuit breaker
JP2001178148A (en) Protector for self-excited converter
JP4229630B2 (en) DC circuit breaker
JP2003289625A (en) Voltage fluctuation compensating apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130113

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140113

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term