JPH09231877A - Direct current circuit breaker - Google Patents

Direct current circuit breaker

Info

Publication number
JPH09231877A
JPH09231877A JP5698396A JP5698396A JPH09231877A JP H09231877 A JPH09231877 A JP H09231877A JP 5698396 A JP5698396 A JP 5698396A JP 5698396 A JP5698396 A JP 5698396A JP H09231877 A JPH09231877 A JP H09231877A
Authority
JP
Japan
Prior art keywords
circuit
current
commutation
capacitor
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5698396A
Other languages
Japanese (ja)
Other versions
JP3719456B2 (en
Inventor
Koji Konno
康二 昆野
Kazuo Aihara
一雄 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP05698396A priority Critical patent/JP3719456B2/en
Publication of JPH09231877A publication Critical patent/JPH09231877A/en
Application granted granted Critical
Publication of JP3719456B2 publication Critical patent/JP3719456B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shut off a small current in a short time without influencing the breaking operation of a large current to be required in the event of short- circuiting, etc., of a track by forming the second circuit consisting of a capacitor and reactor in series connection, and connecting this second circuit parallel with a vacuum valve. SOLUTION: The second circuit 5a consisting of a series connection of a capacitor 2a and reactor 3a is connected parallel with a vacuum valve 1 and a commutator circuit 5. When a turn-on comand S2 is given from a control circuit 11, a commutation switch 4 is closed, and a current starts flowing from a commutation capacitor 2. The combined impedance of the capacitor 2a and reactor 3a has a significant value, and the current from the capacitor 2 flows to the valve 1, wherein the current to the valve 1 will be such as directed oppositely to the load current on which a high-frequency discharge current is superposed. Accordingly a small current can be shut off in a short time without influencing the breaking operation of a large current if the impedance of the second circuit 5a is made over several tens of times greater than the commutator circuit 5 while the capacitance of the circuit 5a is made below several percent of the circuit 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、真空バルブの開
極時に、この真空バルブに並列接続された転流回路から
高周波の放電電流を前記真空バルブに流れる電流に重畳
して直流電流を遮断する直流遮断器の構成に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention, when a vacuum valve is opened, superimposes a high-frequency discharge current from a commutation circuit connected in parallel with the vacuum valve on the current flowing through the vacuum valve to cut off a direct current. The present invention relates to the structure of a DC circuit breaker.

【0002】[0002]

【従来の技術】図3〜図5は、従来の直流遮断器であ
り、図3は直流遮断器の回路構成例、図4は図3の直流
遮断器の大電流遮断時の遮断器各部の電流,電圧波形
図、図5は小電流の遮断時の波形図である。電気鉄道給
電線路における地絡,短絡事故の保護用に用いられてい
る直流遮断器は、真空バルブと並列にコンデンサを設け
て、このコンデンサから放電電流を供給することによ
り、遮断時の真空バルブを流れる事故電流に電流零点を
生じさせ、遮断する構造からなっている。
2. Description of the Related Art FIGS. 3 to 5 show a conventional DC circuit breaker, FIG. 3 shows a circuit configuration example of the DC circuit breaker, and FIG. 5 is a waveform diagram of current and voltage, and FIG. 5 is a waveform diagram when a small current is cut off. A DC circuit breaker used to protect against ground faults and short-circuit accidents in electric railway power supply lines is provided with a capacitor in parallel with the vacuum valve, and by supplying discharge current from this capacitor, the vacuum valve at the time of interruption can be It has a structure that cuts off by causing a current zero point in the flowing fault current.

【0003】従来、この種の直流遮断器は、図3に示す
ように、真空バルブ1と、この真空バルブ1に並列接続
された、コンデンサ(転流コンデンサ)2とリアクトル
(転流リアクトル)3とスイッチ(転流スイッチ)4と
の直列接続からなる転流回路5と、遮断後の真空バルブ
1の接点間に発生する過電圧を抑制するための非線形抵
抗7とからなり、前記転流コンデンサ2に接続された充
電回路6と、線路の直流電源8から出て前記真空バルブ
1を通り負荷9に流れる主回路の線路電流を検出する電
流検出器10と、この電流検出器10が検出した線路電
流が線路の短絡事故等により所定の大きさに到達したと
きに真空バルブ1を遮断動作させるための開極指令S1
と、真空バルブ1の通過電流に零点を作るために前記し
た転流回路5を真空バルブ1に並列化するための投入指
令S2 とを出す制御回路11とから構成されている。
Conventionally, a DC circuit breaker of this type has a vacuum valve 1 and a capacitor (commutation capacitor) 2 and a reactor (commutation reactor) 3 connected in parallel to the vacuum valve 1 as shown in FIG. And a switch (commutation switch) 4 connected in series, and a non-linear resistance 7 for suppressing an overvoltage generated between the contacts of the vacuum valve 1 after being cut off. A charging circuit 6 connected to the line, a current detector 10 for detecting the line current of the main circuit which flows out of the DC power source 8 of the line and passes through the vacuum valve 1 to the load 9, and the line detected by the current detector 10. An opening command S 1 for shutting off the vacuum valve 1 when the current reaches a predetermined magnitude due to a short circuit of the line or the like.
And a control circuit 11 for issuing a closing command S 2 for parallelizing the commutation circuit 5 with the vacuum valve 1 in order to make a zero point in the passing current of the vacuum valve 1.

【0004】前記した構成の直流遮断器による事故電流
遮断時の動作を、図4に示す直流遮断器構成部における
時系列にみた電流,電圧の波形特性に基づいて説明す
る。 (a)は、事故が発生した時点で、線路に事故電流が流
れて、電流検出器10により検出した値が設定値以上に
なると真空バルブ1に制御回路11より開極指令S1
与える。 (b)真空バルブ1が開極した時点であり、真空バルブ
1の電極間にはアークが発生する。 (c)制御回路11からの投入指令S2 により、転流ス
イッチ4が閉路して充電回路6により充電されている転
流コンデンサ2からの電流が流れ始めた時点であり、真
空バルブ1には事故電流と逆方向の前記した放電電流が
転流コンデンサ2から転流リアクトル3を介して流れて
重畳された電流が流れる。 (d)真空バルブ1が消弧した時点であり、その後事故
電流は直流電源8から転流回路5を通して流れ、この電
流によって転流コンデンサ2が充電され、転流コンデン
サ2の電圧,即ち開極した真空バルブ1の極間電圧が上
昇する。 (e)真空バルブ1の極間電圧が非線形抵抗7の動作電
圧に達して、電流が非線形抵抗7の方に転流し流れ始め
た時点である。 (f)転流スイッチ4は、一般にサイリスタ又は放電ギ
ャップ等にて構成されており、転流回路5の電流が零と
なった時点で開路する。 (g)非線形抵抗7によって、回路のインダクタンスに
蓄えられたエネルギーが消費されていくために、電流は
減少して行き、主回路の電流が零となって遮断が完了す
る。
The operation at the time of fault current interruption by the DC circuit breaker having the above configuration will be described based on the time-series current and voltage waveform characteristics in the DC circuit breaker configuration section shown in FIG. In (a), when an accident occurs, a fault current flows through the line, and when the value detected by the current detector 10 becomes equal to or greater than the set value, the control circuit 11 gives an opening command S 1 to the vacuum valve 1. (B) At the time when the vacuum valve 1 is opened, an arc is generated between the electrodes of the vacuum valve 1. (C) At the time when the commutation switch 4 is closed by the closing command S 2 from the control circuit 11 and the current from the commutation capacitor 2 charged by the charging circuit 6 starts to flow. The discharge current, which is in the opposite direction to the fault current, flows from the commutation capacitor 2 through the commutation reactor 3 and a superimposed current flows. (D) It is the time when the vacuum valve 1 is extinguished, and then the fault current flows from the DC power supply 8 through the commutation circuit 5, the commutation capacitor 2 is charged by this current, and the voltage of the commutation capacitor 2, that is, the contact opening. The inter-electrode voltage of the vacuum valve 1 is increased. (E) It is the time when the inter-electrode voltage of the vacuum valve 1 reaches the operating voltage of the non-linear resistance 7 and the current commutates to the non-linear resistance 7 and begins to flow. (F) The commutation switch 4 is generally composed of a thyristor, a discharge gap or the like, and opens when the current of the commutation circuit 5 becomes zero. (G) Since the energy stored in the inductance of the circuit is consumed by the non-linear resistor 7, the current decreases and the current in the main circuit becomes zero, thus completing the interruption.

【0005】[0005]

【発明が解決しようとする課題】前記は真空バルブによ
り線路の短絡事故等のような大電流の事故電流を遮断す
る場合の直流遮断器の動作について説明したが、負荷電
流、特に数A〜数10A程度の線路電流を遮断しようと
すると、前記の事故電流の遮断時のような転流回路5か
ら非線形抵抗7への転流が起こらず、負荷9の条件によ
っては転流コンデンサ2へ転流した電流が数秒〜数10
秒以上流れ続ける場合がある。この様子を、前記と同様
に、図5に示す遮断器構成部における電流及び電圧波形
特性に基づいて説明する。(b′) は、真空バルブ1が
開極した時点であり、(C′) の時点で、転流回路5の
転流スイッチ4を閉路して転流コンデンサ2から真空バ
ルブ1に電流を転流する。そして、(d′) の時点で真
空バルブ1の電流が零となり真空バルブ1は消弧して遮
断する。図5には非線形抵抗7の電流波形図を省略して
あるが、小電流遮断時は真空バルブ1の極間電圧が非線
形抵抗7の動作電圧まで上昇しないので、前記の
(d′) の以降は、転流コンデンサ2の電流は非線形抵
抗7の方に転流せず直流電源8から転流コンデンサ2を
充電する電流が重畳して流れる。この電流は転流コンデ
ンサ2の電圧が直流電源8の電圧に達するまで流れ続け
る。
The operation of the DC circuit breaker in the case of interrupting a high-current fault current such as a line short-circuit fault by the vacuum valve has been described above. However, the load current, especially several A to several When attempting to interrupt the line current of about 10 A, the commutation from the commutation circuit 5 to the non-linear resistance 7 as in the case of interruption of the fault current does not occur, and depending on the condition of the load 9, the commutation to the commutation capacitor 2 is performed. The applied current is several seconds to several tens.
It may continue to flow for more than a second. This state will be described based on the current and voltage waveform characteristics in the circuit breaker component shown in FIG. 5, as in the above. (B ') is the time when the vacuum valve 1 is opened, and at the time (C'), the commutation switch 4 of the commutation circuit 5 is closed to transfer the current from the commutation capacitor 2 to the vacuum valve 1. Shed. Then, at the time of (d '), the current of the vacuum valve 1 becomes zero and the vacuum valve 1 is extinguished and cut off. Although the current waveform diagram of the non-linear resistor 7 is omitted in FIG. 5, since the inter-electrode voltage of the vacuum valve 1 does not rise to the operating voltage of the non-linear resistor 7 when the small current is cut off, the above (d ') The current of the commutation capacitor 2 does not commutate to the non-linear resistance 7, but a current for charging the commutation capacitor 2 flows from the DC power supply 8 in a superposed manner. This current continues to flow until the voltage of the commutation capacitor 2 reaches the voltage of the DC power supply 8.

【0006】通常、転流コンデンサ2は、事故電流以上
の電流を真空バルブ1に供給する必要があることから数
千μF程度の非常に容量の大きなものが使用される。従
って、前記した図5の(d′) 時点以降、転流コンデン
サ2の電圧が主回路の直流電源8の電圧に達するまで長
時間小さな充電電流が流れ続けることになり、負荷9が
非常に軽負荷の場合には数秒〜数十秒にも達する。前記
したように、転流スイッチ4は、一般にサイリスタ又は
放電ギャップ等にて構成されているために、消弧手段を
持っていないことから、前記した転流コンデンサ2の電
流が零となる点がなければ閉路しない。このような電流
が継続して流れている状態で、負荷9側で点検作業のた
めに保安上から設けられている断路器12を開路したり
すると、断路器12からアークが発生するために、作業
者が危険な状態となり、またこのアークによって地絡事
故を起こす恐れがあるという問題がある。
Usually, the commutation capacitor 2 has a very large capacity of about several thousand μF because it is necessary to supply a current equal to or higher than the fault current to the vacuum valve 1. Therefore, after the time point (d ') in FIG. 5, a small charging current continues to flow for a long time until the voltage of the commutation capacitor 2 reaches the voltage of the DC power supply 8 of the main circuit, and the load 9 is very light. In the case of load, it reaches several seconds to several tens of seconds. As described above, since the commutation switch 4 is generally composed of a thyristor, a discharge gap, or the like, and has no arc extinguishing means, the point where the current of the commutation capacitor 2 becomes zero is described above. If not, it will not close. In a state where such a current is continuously flowing, if the disconnector 12 provided for safety purposes on the load 9 side is opened for safety, an arc is generated from the disconnector 12, There is a problem that the worker is in a dangerous state and there is a risk that a ground fault may occur due to this arc.

【0007】また、上記した真空バルブ1の遮断後に負
荷9側での点検作業時での安全を確保するために、特開
平5−234471号公報に記載の図6に示すような、
転流回路5から負荷9側への転流電流の流れを阻止する
阻止手段13を設けて、この阻止手段13を、制御回路
11の開極指令S1 により主接点である真空バルブ1の
開路とほぼ同時か、または投入指令S2 による転流スイ
ッチ4が閉路するまでに開路するようにすることによ
り、負荷9側への転流電流の流入を阻止するようにした
構成が提案されている。しかしながら、このような構成
の直流遮断器においては、真空バルブのような阻止手段
13を用いたとしても、転流コンデンサ2からの電流を
前記した阻止手段13にて裁断するので、過電圧が発生
して他の機器に影響を与える可能性があるという問題が
ある。
Further, in order to ensure safety during inspection work on the load 9 side after the vacuum valve 1 is shut off, as shown in FIG. 6 of Japanese Patent Laid-Open No. 5-234471,
The blocking means 13 for blocking the flow of the commutation current from the commutation circuit 5 to the load 9 side is provided, and the blocking means 13 is opened by the opening command S 1 of the control circuit 11 to open the vacuum valve 1 which is the main contact. A configuration has been proposed in which the commutation current is prevented from flowing into the load 9 side by opening the commutation switch 4 almost at the same time as or until the commutation switch 4 is closed by the closing command S 2 . . However, in the DC circuit breaker having such a configuration, even if the blocking means 13 such as a vacuum valve is used, the current from the commutation capacitor 2 is cut by the blocking means 13 described above, so that an overvoltage is generated. There is a problem that it may affect other devices.

【0008】この発明の課題は、前記の問題を解決し線
路の短絡事故時の事故電流のような大電流の遮断動作に
影響を与えることなく、かつ小電流をも短時間で遮断で
きる直流遮断器を提供することにある。
An object of the present invention is to solve the above problems, and to cut off a small current in a short time without affecting a breaking operation of a large current such as a fault current at the time of a line short circuit accident. To provide a container.

【0009】[0009]

【課題を解決するための手段】上記した課題を解決する
ために、この発明は、転流コンデンサと転流リアクトル
と転流スイッチとの直列接続からなる転流回路を設けた
直流遮断器の真空バルブに、直列接続されたコンデンサ
とリアクトルとからなる第2の回路を並列接続するよう
にした。これにより、負荷電流,特に数A〜数10A程
度の小電流の線路電流の遮断時においても、転流回路か
らの放電電流により真空バルブが消弧し開極した後に、
直流電源から流れる転流回路の転流コンデンサを充電す
る電流を、前記の真空バルブに並列接続された第2の回
路へ転流させることにより、転流回路に流れる電流に零
点を形成させ転流スイッチを開路することが可能となる
ので負荷側へ流れる電流を前記した第2の回路で減衰さ
せることができる。そして、上記したように負荷側への
転流電流の流れを阻止する阻止手段を設ける構成ではな
いので、電流裁断による過電圧が発生するようなことの
ない直流遮断器を得ることができる。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention relates to a vacuum for a DC circuit breaker provided with a commutation circuit consisting of a commutation capacitor, a commutation reactor and a commutation switch connected in series. A second circuit composed of a capacitor and a reactor connected in series was connected in parallel to the valve. As a result, even when the load current, especially the line current of a small current of about several A to several tens of A is cut off, after the vacuum valve is extinguished and opened by the discharge current from the commutation circuit,
By commutating the current that charges the commutation capacitor of the commutation circuit that flows from the DC power source to the second circuit that is connected in parallel to the vacuum valve, a zero point is formed in the current that flows in the commutation circuit. Since the switch can be opened, the current flowing to the load side can be attenuated by the second circuit. Since the blocking means for blocking the flow of the commutation current to the load side is not provided as described above, it is possible to obtain a DC circuit breaker that does not cause overvoltage due to current cutting.

【0010】また、前記した真空バルブに並列接続され
たコンデンサとリアクトルとからなる第2の回路のイン
ピーダンスの値が、転流コンデンサと転流リアクタンス
とからなる転流回路のインピーダンスの値の数十倍以上
として、更に第2の回路のコンデンサのキャパシタンス
の値を、転流回路の転流コンデンサのキャパシタンスの
値の数十分の一以下とするものとする。これにより、線
路の短絡事故等の大電流の事故電流の遮断動作に影響を
与えることなく、小電流を短時間で遮断することができ
る。
Further, the impedance value of the second circuit composed of the condenser and the reactor connected in parallel to the vacuum valve is several tens of the impedance value of the commutation circuit composed of the commutation capacitor and the commutation reactance. It is assumed that the value of the capacitance of the capacitor of the second circuit is more than a factor of 2 and is less than several tenths of the value of the capacitance of the commutation capacitor of the commutation circuit. As a result, a small current can be interrupted in a short time without affecting the interrupting operation of a high-current accident current such as a line short-circuit accident.

【0011】[0011]

【発明の実施の形態】以下この発明の実施の形態を図に
基づいて説明する。図1及び図2は、この発明の実施の
形態からなる直流遮断器であり、図1は直流遮断器の回
路構成図、図2は遮断時の遮断器各部の電流,電圧波形
図である。図1に示すように、この発明は、真空バルブ
1及び転流回路5にコンデンサ2aとリアクトル3aと
を直列接続した第2の回路5aを並列に接続して構成し
てある。以下、図1の回路構成からなる直流遮断器によ
る小電流の負荷電流の遮断時での動作を、図2に示す直
流遮断器構成部における電流,電圧の波形に基づいて説
明する。(b1)は、制御回路11の開極指令S1 によ
り、真空バルブ1を開極した時点である。 (c1)制御回路11からの投入指令S2 により、転流ス
イッチ4が閉路し、転流コンデンサ2から電流が流れ始
めた時点である。この場合、第2の回路5aのコンデン
サ2aとリアクトル3aとの合成インピーダンスは、あ
る程度の大きさを持っているので、前記した転流コンデ
ンサ2からの電流は真空バルブ1に流れ、真空バルブ1
には負荷電流と逆向の高周波の放電電流が重畳された電
流が流れる。 (d1)真空バルブ1の電流が零となった時点であり、こ
の時真空バルブ1は消弧する。従って、この時点まで
は、この発明の実施の形態の第2の回路5aを設けない
従来の前記した図3に示した構成によるものとその動作
は変わりない。真空バルブ1が消弧した後に転流回路5
と第2の回路5a間で振動電流が流れる。即ち、転流コ
ンデンサ2の残り電圧を電源として、前記の転流回路5
と第2の回路5aの閉ループを電流零点を形成する振動
電流が流れる。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a DC circuit breaker according to an embodiment of the present invention. FIG. 1 is a circuit configuration diagram of the DC circuit breaker, and FIG. 2 is a current and voltage waveform diagram of each part of the circuit breaker at the time of circuit break. As shown in FIG. 1, the present invention is configured by connecting a vacuum valve 1 and a commutation circuit 5 in parallel with a second circuit 5a in which a capacitor 2a and a reactor 3a are connected in series. Hereinafter, the operation of the DC circuit breaker having the circuit configuration shown in FIG. 1 when a small load current is interrupted will be described based on the current and voltage waveforms in the DC circuit breaker configuration section shown in FIG. (B 1 ) is the time when the vacuum valve 1 is opened by the opening instruction S 1 of the control circuit 11. (C 1 ) It is the time when the commutation switch 4 is closed by the closing command S 2 from the control circuit 11 and the current starts to flow from the commutation capacitor 2. In this case, since the combined impedance of the capacitor 2a and the reactor 3a of the second circuit 5a has a certain magnitude, the current from the commutation capacitor 2 flows to the vacuum valve 1 and the vacuum valve 1
A current in which a high-frequency discharge current in the opposite direction to the load current is superimposed flows through this. (D 1 ) It is the time when the current of the vacuum valve 1 becomes zero, and the vacuum valve 1 is extinguished at this time. Therefore, up to this point, the operation is the same as that of the conventional configuration shown in FIG. 3 in which the second circuit 5a of the embodiment of the present invention is not provided. Commutation circuit 5 after the vacuum valve 1 is extinguished
An oscillating current flows between the second circuit 5a and the second circuit 5a. That is, the remaining voltage of the commutation capacitor 2 is used as a power source, and the commutation circuit 5 described above is used.
And an oscillating current forming a current zero flows through the closed loop of the second circuit 5a.

【0012】なお、この発明の実施の形態で、第2の回
路5aのインピーダンスを、転流回路5のインピーダン
スより数十倍以上大きな値とするようにすると、即ち、
転流回路5の転流コンデンサ2と転流リアクタンス3
と、第2の回路5aのコンデンサ2aとリアクタンス3
aとのそれぞれのキャパシタンスとインダクタンスと
を、C1 及びL1 と、C2 及びL2 とした場合に、(L
2 /C2 1/2 ≫(L1 /C1 1/2 とすることによ
り、直流電源8から負荷9に流れる電流は、殆ど転流コ
ンデンサ2と転流リアクトル3の転流回路5を通して流
れるので、コンデンサ2と転流リアクトル3の転流回路
5を流れる電流は、直流電源8から負荷9に流れる電流
と図2に示すような振動電流との合成した波形となる。 (f1)上記したように、転流回路5に流れる振動電流に
より零点を形成するので、転流スイッチ4にサイリスタ
を使用していた場合には、適当なタイミングでゲートパ
ルスの供給を停止すると、この停止した以降の電流零点
でサイリスタは消弧する。これは、ギャップレススイッ
チでも同様である。
In the embodiment of the present invention, if the impedance of the second circuit 5a is set to be several tens of times greater than the impedance of the commutation circuit 5, that is,
Commutation capacitor 2 and commutation reactance 3 of commutation circuit 5
And the capacitor 2a and the reactance 3 of the second circuit 5a.
When the respective capacitance and inductance of a are C 1 and L 1 and C 2 and L 2 , (L
By setting 2 / C 2 ) 1/2 >> (L 1 / C 1 ) 1/2 , almost all the current flowing from the DC power supply 8 to the load 9 is the commutation circuit 5 of the commutation capacitor 2 and the commutation reactor 3. The current flowing through the commutation circuit 5 of the capacitor 2 and the commutation reactor 3 has a waveform obtained by combining the current flowing from the DC power source 8 to the load 9 and the oscillating current as shown in FIG. (F 1 ) As described above, the zero point is formed by the oscillating current flowing in the commutation circuit 5. Therefore, when the thyristor is used as the commutation switch 4, if the gate pulse supply is stopped at an appropriate timing. , The thyristor extinguishes at the current zero point after this stop. The same applies to the gapless switch.

【0013】そして、上記した図2の(f1)の時点で転
流スイッチ4が消弧したことにより、直流電源8から負
荷9を通して第2の回路5aのコンデンサ2aを充電す
る電流が流れるが、この充電電流は、コンデンサ2aの
キャパシタンス(C2 )を転流コンデンサ2のキャパシ
タンス(C1 )に比べて数十分の一以下(C1 ≫C2
とすることにより振動電流となりやすくなり、また、減
衰時定数も小さくすることができ、上記したコンデンサ
2aは短時間に電源電圧に達して、充電電流を零とする
ことができる。例えば、この第2の回路5aのコンデン
サ2aの転流コンデンサ2に対する比(C2 /C1
を、1/100と非常に小さい値となるように設定する
と、従来の図3に示す第2の回路5aを設けていない回
路構成の直流遮断器で数秒程度転流電流が継続して流れ
ている場合でも、上記した第2の回路5aを設けること
により数十ミリ秒程度と大幅に短縮することができる。
Then, because the commutation switch 4 is extinguished at the time point (f 1 ) in FIG. 2 described above, a current for charging the capacitor 2a of the second circuit 5a flows from the DC power source 8 through the load 9. , This charging current is less than several tenths of the capacitance (C 2 ) of the capacitor 2a compared to the capacitance (C 1 ) of the commutation capacitor 2 (C 1 >> C 2 ).
As a result, the oscillating current is likely to be generated, and the decay time constant can be reduced, so that the capacitor 2a can reach the power supply voltage in a short time and the charging current can be reduced to zero. For example, the ratio commutation capacitor 2 capacitor 2a of the second circuit 5a (C 2 / C 1)
Is set to a very small value of 1/100, a commutation current continuously flows for about several seconds in the conventional DC circuit breaker having a circuit configuration not including the second circuit 5a shown in FIG. Even if it is present, by providing the above-mentioned second circuit 5a, it can be significantly shortened to about several tens of milliseconds.

【0014】そして、この実施の形態の第2の回路5a
を備えた直流遮断器においても、線路の短絡事故等のよ
うな大電流の事故電流を遮断する場合には、前記したよ
うに転流回路5からの放電電流により真空バルブ1が消
弧し遮断した後に、直流電源8から転流回路5の転流コ
ンデンサ2に流れる電流は零点はできず、非線形抵抗7
の方に転流し流れる。従って、従来の図3の直流遮断器
での図4の動作と同様となり、第2の回路5aを設けた
ことによる大電流遮断動作に与える影響はない。
Then, the second circuit 5a of this embodiment is used.
Even in the case of a DC circuit breaker equipped with, in the case of interrupting a high-current fault current such as a line short-circuit accident, the vacuum valve 1 extinguishes and shuts off by the discharge current from the commutation circuit 5 as described above. After that, the current flowing from the DC power source 8 to the commutation capacitor 2 of the commutation circuit 5 does not have a zero point, and the nonlinear resistance 7
Commute to flow. Therefore, the operation is the same as that of the conventional DC circuit breaker of FIG. 3 shown in FIG. 4, and there is no influence on the large current interruption operation due to the provision of the second circuit 5a.

【0015】[0015]

【発明の効果】以上のように、この発明においては、転
流回路を設けた直流遮断器の真空バルブに、直列接続さ
れたコンデンサとリアクトルとからなる第2の回路を並
列接続する構成とすることにより、数A〜数10A程度
の小電流の線路電流の遮断時に、転流回路に流れる電流
を遮断することがないので、点検時の断路器の開路時に
過電圧が発生することなく、遮断後の作業者の安全を確
保できるとともに、過電圧による地絡事故の発生を防止
することができる。しかも、前記したようにコンデンサ
とリアクトルとの直列接続の回路からなる構造が簡単な
直流遮断器とすることができる。
As described above, in the present invention, the second circuit composed of the capacitor and the reactor connected in series is connected in parallel to the vacuum valve of the DC circuit breaker provided with the commutation circuit. As a result, the current flowing in the commutation circuit is not interrupted when the small-current line current of several A to several tens of amperes is interrupted. Therefore, overvoltage does not occur when the disconnector is opened during inspection, and It is possible to ensure the safety of workers and prevent the occurrence of a ground fault accident due to overvoltage. Moreover, as described above, it is possible to provide a DC breaker having a simple structure including a circuit in which a capacitor and a reactor are connected in series.

【0016】また、この発明において、前記した真空バ
ルブに並列接続されたコンデンサとリアクトルとからな
る第2の回路のインピーダンスの値を、転流コンデンサ
と転流リアクタンスとからなる転流回路のインピーダン
スの値の数十倍以上として、更に、第2の回路のコンデ
ンサのキャパシタンスの値を、転流回路の転流コンデン
サのキャパシタンスの値の数十分の一以下とすることに
より、大電流の事故電流の遮断動作に影響を与えること
なく、小電流を短時間で遮断することができる。
Further, in the present invention, the impedance value of the second circuit composed of the condenser and the reactor connected in parallel to the vacuum valve described above is determined by the impedance value of the commutation circuit composed of the commutation capacitor and the commutation reactance. By setting the value of the capacitance of the second circuit capacitor to be several tens of times or more and the value of the capacitance of the commutation capacitor of the commutation circuit to several tenths or less, the large fault current It is possible to interrupt a small current in a short time without affecting the interruption operation of.

【0017】なお、以上のように、転流回路を設けた直
流遮断器の真空バルブに、直列接続されたコンデンサと
リアクトルからなる第2の回路を並列接続することとも
に、第2の回路のインピーダンスの値が転流回路のイン
ピーダンスの値の数十倍以上であり、かつ、第2の回路
のコンデンサのキャパシタンスの値が転流回路の転流コ
ンデンサのキャパシタンスの値の数十分の一以下である
という構成とすることにより、線路の短絡事故の事故電
流のような大電流の遮断動作に影響を与えることなく、
かつ小電流をも短時間で遮断できる直流遮断器を提供す
ることができるが、実際の製品への適用の際には、前記
直流遮断器の負荷側に断路器を設けることにより、保安
上の安全性をより高めることができる。
As described above, the second circuit consisting of the capacitor and the reactor connected in series is connected in parallel to the vacuum valve of the DC circuit breaker provided with the commutation circuit, and the impedance of the second circuit is connected. Is more than tens of times the value of the impedance of the commutation circuit, and the value of the capacitance of the capacitor of the second circuit is less than a few tenths of the value of the capacitance of the commutation capacitor of the commutation circuit. By having a configuration that does not affect the interrupting operation of a large current such as a fault current of a line short circuit accident,
Moreover, it is possible to provide a DC circuit breaker capable of interrupting a small current in a short time. However, when applied to an actual product, by providing a disconnector on the load side of the DC circuit breaker, it is possible to improve safety. The safety can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態からなる直流遮断器の回
路構成図である。
FIG. 1 is a circuit configuration diagram of a DC circuit breaker according to an embodiment of the present invention.

【図2】図1の直流遮断器の遮断時の各構成部における
電流,電圧の波形図である。
FIG. 2 is a waveform diagram of current and voltage in each component when the DC circuit breaker of FIG. 1 is disconnected.

【図3】従来の直流遮断器の回路構成図である。FIG. 3 is a circuit configuration diagram of a conventional DC circuit breaker.

【図4】図3の直流遮断器で線路事故時の大電流遮断時
の各構成部における電流,電圧の波形図である。
4 is a waveform diagram of current and voltage in each component when a large current is interrupted at the time of a line fault in the DC circuit breaker of FIG.

【図5】図3の直流遮断器で小電流遮断時の各構成部に
おける電流,電圧の波形図である。
5 is a waveform diagram of current and voltage in each component when a small current is interrupted by the DC circuit breaker of FIG.

【符号の説明】[Explanation of symbols]

1 真空バルブ 2 転流コンデンサ 2a コンデンサ 3 転流リアクトル 3a リアクトル 4 転流スイッチ 5 転流回路 5a 第2の回路 1 Vacuum Valve 2 Commutation Capacitor 2a Capacitor 3 Commutation Reactor 3a Reactor 4 Commutation Switch 5 Commutation Circuit 5a Second Circuit

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年6月25日[Submission date] June 25, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施の形態からなる直流遮断器の回
路構成図である。
FIG. 1 is a circuit configuration diagram of a DC circuit breaker according to an embodiment of the present invention.

【図2】図1の直流遮断器の遮断時の各構成部における
電流,電圧の波形図である。
FIG. 2 is a waveform diagram of current and voltage in each component when the DC circuit breaker of FIG. 1 is disconnected.

【図3】従来の直流遮断器の回路構成図である。FIG. 3 is a circuit configuration diagram of a conventional DC circuit breaker.

【図4】図3の直流遮断器で線路事故時の大電流遮断時
の各構成部における電流,電圧の波形図である。
4 is a waveform diagram of current and voltage in each component when a large current is interrupted at the time of a line fault in the DC circuit breaker of FIG.

【図5】図3の直流遮断器で小電流遮断時の各構成部に
おける電流,電圧の波形図である。
5 is a waveform diagram of current and voltage in each component when a small current is interrupted by the DC circuit breaker of FIG.

【図6】図3とは異なる従来の直流遮断器の回路構成図
である。
FIG. 6 is a circuit configuration diagram of a conventional DC circuit breaker different from that of FIG.

【符号の説明】 1 真空バルブ 2 転流コンデンサ 2a コンデンサ 3 転流リアクトル 3a リアクトル 4 転流スイッチ 5 転流回路 5a 第2の回路[Explanation of Codes] 1 vacuum valve 2 commutation condenser 2a condenser 3 commutation reactor 3a reactor 4 commutation switch 5 commutation circuit 5a second circuit

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直流電源および負荷を結ぶ主回路に直列に
挿入された真空バルブと、この真空バルブと並列に接続
された転流コンデンサと転流リアクトルと転流スイッチ
との直列接続からなる転流回路とからなり、前記真空バ
ルブの開極時に、前記転流回路の転流スイッチの閉路に
より予め充電しておいた転流コンデンサから、転流リア
クトルを介して放電電流を真空バルブを流れる電流に重
畳して電流零値をもたらして遮断する直流遮断器におい
て、直列接続されたコンデンサとリアクトルとからなる
第2の回路を真空バルブに並列接続したことを特徴とす
る直流遮断器。
1. A vacuum valve inserted in series in a main circuit connecting a DC power source and a load, a commutation capacitor connected in parallel with the vacuum valve, a commutation reactor and a commutation switch connected in series. Current flowing through the vacuum valve from a commutation capacitor that has been charged in advance by closing the commutation switch of the commutation circuit when the vacuum valve is opened. A DC circuit breaker which is superposed on and causes a zero current value to be cut off, wherein a second circuit consisting of a capacitor and a reactor connected in series is connected in parallel to a vacuum valve.
【請求項2】請求項2に記載の直流遮断器において、真
空バルブに並列接続された第2の回路のインピーダンス
の値が、転流回路のインピーダンスの値の数十倍以上で
あることを特徴とする直流遮断器。
2. The DC circuit breaker according to claim 2, wherein the impedance value of the second circuit connected in parallel with the vacuum valve is several tens of times or more the impedance value of the commutation circuit. DC breaker.
【請求項3】請求項2に記載の直流遮断器において、第
2の回路のコンデンサのキャパシタンスの値は、転流回
路の転流コンデンサのキャパシタンスの値の数十分の一
以下であることを特徴とする直流遮断器。
3. The DC circuit breaker according to claim 2, wherein the value of the capacitance of the capacitor of the second circuit is less than a few tenths of the value of the capacitance of the commutation capacitor of the commutation circuit. A characteristic DC circuit breaker.
JP05698396A 1996-02-20 1996-02-20 DC circuit breaker Expired - Lifetime JP3719456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05698396A JP3719456B2 (en) 1996-02-20 1996-02-20 DC circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05698396A JP3719456B2 (en) 1996-02-20 1996-02-20 DC circuit breaker

Publications (2)

Publication Number Publication Date
JPH09231877A true JPH09231877A (en) 1997-09-05
JP3719456B2 JP3719456B2 (en) 2005-11-24

Family

ID=13042747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05698396A Expired - Lifetime JP3719456B2 (en) 1996-02-20 1996-02-20 DC circuit breaker

Country Status (1)

Country Link
JP (1) JP3719456B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5265063B1 (en) * 2012-09-05 2013-08-14 三菱電機株式会社 DC circuit breaker
US9413157B2 (en) 2012-05-01 2016-08-09 Mitsubishi Electric Corporation Direct-current circuit breaker
CN107769195A (en) * 2017-10-25 2018-03-06 清华大学 Based on LC vibration forced commutation types mechanical switch, device and control method
WO2022161217A1 (en) * 2021-01-27 2022-08-04 Anhui Onesky Electric Tech.Co.Ltd A system for limiting a peak current of short-circuit current

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9413157B2 (en) 2012-05-01 2016-08-09 Mitsubishi Electric Corporation Direct-current circuit breaker
JP5265063B1 (en) * 2012-09-05 2013-08-14 三菱電機株式会社 DC circuit breaker
WO2014038008A1 (en) * 2012-09-05 2014-03-13 三菱電機株式会社 Dc breaker
CN107769195A (en) * 2017-10-25 2018-03-06 清华大学 Based on LC vibration forced commutation types mechanical switch, device and control method
CN107769195B (en) * 2017-10-25 2020-07-03 清华大学 Forced flow conversion type mechanical switch based on LC oscillation, device and control method
WO2022161217A1 (en) * 2021-01-27 2022-08-04 Anhui Onesky Electric Tech.Co.Ltd A system for limiting a peak current of short-circuit current
US11600460B2 (en) 2021-01-27 2023-03-07 Anhui Onesky Electric Tech. Co. Ltd System for limiting a peak current of short-circuit current

Also Published As

Publication number Publication date
JP3719456B2 (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US5883774A (en) Current limiter
JP3965037B2 (en) DC vacuum interrupter
US3786337A (en) Thyristors for effecting tap changing on transformers and including current limiting resistors and standby trigger system
JPH09231877A (en) Direct current circuit breaker
JP2000215772A (en) Interlock circuit
JP2003007178A (en) Direct current breaker
JP3245716B2 (en) Current interrupter
JP3443926B2 (en) Commutation type DC circuit breaker
JP2002110006A (en) Direct current breaker
JPH06284562A (en) Protection device for electric power transmission system
JP3757726B2 (en) DC circuit breaker
JP3777926B2 (en) DC circuit breaker
JP3041449U (en) Power switch
JP7147071B2 (en) Commutation type DC circuit breaker and its method
US4780622A (en) Apparatus for reducing stresses that initiate restrike of breakers in disconnecting capacitor banks
JP2001178148A (en) Protector for self-excited converter
JP2597694B2 (en) Power switchgear
JPH0574892B2 (en)
US3275886A (en) Interrupted arc responsive protective equipment for series capacitors
KR910001591B1 (en) A electric-shock checking device for ac arc welding m/c
JPH0628481B2 (en) Electric vehicle power converter protection device
JPH06168820A (en) Power supply for nuclear fusion device
JPH11120871A (en) Communication type direct current circuit breaker
JPH0973845A (en) Communication type dc breaker
JP2002051468A (en) Controller/protector for power apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050831

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080916

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090916

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100916

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110916

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120916

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130916

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term