JP3757216B2 - Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection - Google Patents

Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection Download PDF

Info

Publication number
JP3757216B2
JP3757216B2 JP2003120929A JP2003120929A JP3757216B2 JP 3757216 B2 JP3757216 B2 JP 3757216B2 JP 2003120929 A JP2003120929 A JP 2003120929A JP 2003120929 A JP2003120929 A JP 2003120929A JP 3757216 B2 JP3757216 B2 JP 3757216B2
Authority
JP
Japan
Prior art keywords
ground
liquefaction
compressed gas
injection
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003120929A
Other languages
Japanese (ja)
Other versions
JP2004124692A (en
Inventor
誠 西垣
正敏 大内
敬二 河島
俊多 白石
Original Assignee
株式会社白石
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社白石 filed Critical 株式会社白石
Priority to JP2003120929A priority Critical patent/JP3757216B2/en
Publication of JP2004124692A publication Critical patent/JP2004124692A/en
Application granted granted Critical
Publication of JP3757216B2 publication Critical patent/JP3757216B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、地震時に液状化する地盤の液状化防止方法に関する。
【0002】
【従来の技術】
地盤の液状化とは、含水率の高い地盤が地震により衝撃、振動を受けて変形した場合、土粒子間に飽和状態で存在している間隙水の水圧が急激に上昇して土粒子間の摩擦抵抗が消失してしまい、その結果、地盤があたかも液体のように挙動して支持耐力を失ってしまう現象をいう。
【0003】
地盤を液状化しないように改良する工法としては、従来、強力な振動等により地盤を締め固め地盤の密度を増大する工法、薬液注入等により地盤を固結する工法、良質の土と地盤土を置き換える工法、地盤の飽和度(地層の粒子間空隙内における水の容積と空隙の全容積との比を百分率で表した値。)を低下する工法が実施されてきた。
【0004】
【特許文献1】
特開平8−3975号公報
【特許文献2】
特開2001−123438号公報
【0005】
【発明が解決しようとする課題】
従来工法としての、前記地盤密度を増大する工法、地盤を固結する工法、地盤置換工法は、局部的な液状化防止工法としては採用可能であるけれども、都市部の広範囲に液状化防止工法として適用した場合、莫大な費用と時間を必要とし、現実的な液状化防止工法とはいえない。
【0006】
地盤の飽和度を低下する従来工法としては、地下水位を低下させ復水する工法(特開平8−3975号公報)と、地盤に圧縮空気または空気溶存水を井戸から注入し、併行して一方の井戸から地下水を汲み上げて気泡を水平方向へ浸透させる工法(特開2001−123438号公報)があるが、地下水位を低下させ復水する工法においては、地下水位の低下によって地盤内有効応力が変化するため、液状化防止工法の対象地盤の上部あるいは下部に難透水気層が存在すると、この層の圧密により地盤沈下が生じる可能性がある。また、地下水位低下の影響が工事区域外に生じることを防ぐため、工事区域との境界に止水壁を設ける必要がある。
圧縮空気または空気溶存水を注入する工法においては、注入口の井戸周辺で空気溜りが形成され、気泡を分散・注入することが困難になる。また、地盤中に第二酸化鉄が存在すると注入される空気と反応し地盤中に酸欠空気が発生する。
【0007】
本発明は、従来の液状化防止工法の問題点を解決するため、圧密沈下による地盤沈下を抑制した施工コストの安い液状化防止工法を提供することを目的とする。
【0008】
【問題を解決するための手段】
本願発明は、上記課題を解決するために下記のように構成される。
本第1発明は、圧縮気体注入による飽和地盤の地震時液状化防止方法において、液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する注入井戸と水抜き井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく水抜き井戸から地下水を排除し、その後、注入井戸からの圧縮気体の注入を止め、水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させることにより地盤の飽和度を低下するようにしたことを特徴とする。
【0009】
本第2発明は、本第1発明の圧縮気体注入による飽和地盤の地震時液状化防止方法において、前記水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させる際に、前記排除された地下水に適量の界面活性剤を混入することを特徴とする。
【0010】
本第3発明は、本第1又は第2発明の圧縮気体注入による飽和地盤の地震時液状化防止方法において、前記注入井戸からの圧縮気体の注入は、工事区域外への圧縮気体の拡散を防止するために指向性を持たせた注入井戸より行うことを特徴とする。
【0011】
本第4発明は、本第1〜第3発明のいずれか1つの発明の圧縮気体注入による飽和地盤の地震時液状化防止方法において、前記水抜き井戸は下端部のみが開口していることを特徴とする。
【0012】
本第5発明は、本第1〜第4発明のいずれか1つの発明の圧縮気体注入による飽和地盤の地震時液状化防止方法において、前記注入井戸および水抜き井戸を地表部から液状化防止対象地盤下方に曲線状に延びる曲線状井戸としたことを特徴とする。
【0013】
本第6発明は、本第1〜第5発明にいずれか1つの発明の圧縮気体注入による飽和地盤の液状化防止方法において、前記液状化防止工事区域の周囲に、液状化防止対象地盤の下部層に達する止水壁を構築することを特徴とする。
【0014】
本第7発明は、圧縮気体注入による飽和地盤の地震時液状化防止方法において、液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する曲線状の注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下するようにしたことを特徴とする。
【0015】
本第8発明は、圧縮気体注入による飽和地盤の地震時液状化防止方法において、液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する立坑を掘削し、立坑下部から液状化防止対象地盤に向けて放射状に水平方向に延びる注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下するようにしたことを特徴とする。
【0016】
本第9発明は、本第1〜第8発明のいずれか1つの発明の圧縮気体注入による飽和地盤の液状化防止方法において、前記液状化対象地盤に水圧計、飽和度計を設置し、各計器のデータに基づいて注入井戸からの圧縮気体の注入圧力及び注入量が制御されることを特徴とする。
【0017】
【作用】
上述したように、本発明においては、液状化防止工法として、液状化防止対象地盤の飽和度を低下する工法を採用し、液状化防止対象地盤の上部に天然または人工的に難透水気層を存在させた状態で、注入井戸から液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を液状化防止対象地盤に注入し、地下水位を低下することなく液状化防止対象地盤に位置する水抜き井戸の下部開口から地下水を排除し、液状化防止対象地盤下部まで飽和度を低下させた後、圧縮気体の注入を止め、水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤に復帰させることにより液状化防止対象地盤の飽和度を低下させる工法を採用しているので、注入された圧縮気体が液状化防止対象地盤の上部から脱気することがなく、液状化防止対象地盤内の地下水圧に相当する圧力の圧縮気体を注入することで、周囲の地下水位を低下させることがなく地盤内の有効応力を変化させないため、液状化防止対象地盤の上下部の粘性土層の圧密沈下が抑制され、安全で施工コストの安い液状化防止工法を可能とする。
水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させる際に、前記排除された地下水に適量の界面活性剤を混入する構成により、界面活性剤を構成する親油基が空気と、親水基が水と結びついて、独立して壊れにくい安定な微小気泡を形成し、不飽和土を効率よく地盤に生成する。
また、注入井戸からの圧縮気体の注入が工事区域外に拡散するのを防止するために指向性を持たせて実施されるので、工事区域外への地盤沈下等の影響を抑制することができる。
注入井戸および水抜き井戸を曲線状井戸とすることにより、注入井戸と水抜き井戸の地表部分での間隔が長い場合でも効率よく液状化防止方法を施工することができ、液状化防止工事区域の地表部に大きな構造物等が存在するような場合には有効である。
液状化防止工事区域の周囲に、液状化防止対象地盤の下部層に達する止水壁を構築することにより、工事区域周辺への圧縮空気の漏出や地下水位の影響をより確実に抑制することができる。
また、液状化防止工事区域の周囲に、工事により影響を受ける構造物等が存在しない場合には、水抜き井戸を設けることなく、地表より液状化防止対象地盤に達する曲線状の注入井戸を形成するか、地表より液状化防止対象地盤に達する立坑を掘削し、立坑下部から液状化対象地盤に向けて放射状に水平方向に延びる注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下することができるので、より施工コストの低減化を図ることができる。
さらに、圧縮気体の注入等の作業が液状化防止対象地盤に設置した水圧計、飽和度計等の計器からのデータにより制御されるので、信頼性の高い液状化防止工法とすることができる。
【0018】
【発明の実施の形態】
本発明の実施形態を図により説明する。図1〜10は、本発明の飽和度低下による液状化防止方法の一実施例を示すものである。粘着力が微弱な砂質地盤等からなる液状化防止対象地盤1の上部に、天然あるいは人工的な難透水気性(水と気体の透過性が小さい)の地盤2を存在させる。人工的に難透水気性の地盤を存在させるとは、液状化防止対象地盤の上部に天然の難透水気性の地盤が存在しない場合、上部地盤を薬液注入による地盤固結或いは機械による締め固めによる地盤密度の増大等の地盤改良をして人工的に難透水気性の地盤を形成するということである。液状化防止対象地盤1の下部には、難透水気性の地盤3が存在する。液状化防止対象地盤1の上部に難透水気性の地盤を存在させる技術的意義は、液状化防止対象地盤1に注入される圧縮気体が、上部地盤を通して漏気するのを防止するためである。
【0019】
本発明の液状化防止方法を一定幅の帯状区域に沿って実施する形態において、帯状区域の両側の工事区域の境界近傍に一定間隔で地表より液状化防止対象地盤1の下部に達する注入井戸4を掘削する。注入井戸4は、液状化防止対象地盤1に対応する部分に複数の注入孔5を形成した注入管6を直接井戸掘削機により設置して形成しても、井戸を井戸掘削機により掘削した後、液状化防止対象地盤1に対応する部分に複数の注入孔5を形成した注入管6を設置し、井戸と注入管6との間隙に砕石7等を充填して注入井戸4を形成しても良い。注入管6は、地表に設置したコンプレッサ等の圧縮気体供給手段8と送気管9を介して連結される。圧縮気体としては通常圧縮空気が使用される。注入井戸4の液状化防止対象地盤1に対応する部分に形成される注入孔5は、工事区域である帯状区域外への圧縮気体の漏気を防止するため、例えば、注入井戸4の帯状区域外側をカバー板10等で塞ぎ、圧縮気体の注入方向に指向性を持たせている。また、帯状区域のほぼ中央部に一定間隔で地表より液状化防止対象地盤1の下部に達する水抜き井戸11を掘削する。水抜き井戸11の下端には開口部12が形成される。水抜き井戸11の上部には、排水管13が連結され、排水管13には必要に応じてポンプのような排水手段を設置する。
図4に示されるように地震時液状化防止工事区域の周囲に、鋼矢板等を液状化対象地盤1の下部の下部難透水気地盤3に達するように打設して止水壁18を構築し、地震時液状化防止工事区域外への圧縮気体の漏出や、地下水位の変動等の影響をより確実に抑制してもよい。
図5に示されるように、注入井戸4からの地下水圧に相当する圧力の圧縮気体の注入により、液状化対象地盤中の地下水の一部が圧縮気体により置き換えされ、液状化対象地盤上部から下部方向に向かって飽和地盤が不飽和地盤に移行する。
【0020】
図6、図7は、本発明の他の実施形態を示す。
この実施形態においては、液状化防止工事区域の地表部に大きな構造物等が存在する場合、注入井戸4と水抜き井戸11の地表部での設置位置の間隔が長くなり、液状化防止工事の施工性が低下する。そのような場合、注入井戸4と水抜き井戸11を曲線ボーリング機で形成される曲線状注入井戸19、曲線状水抜き井戸20とすることにより施工性のよい圧縮気体注入による飽和地盤の地震時液状化防止方法とすることが可能となる。
【0021】
図8は、本発明の他の実施形態を示すものである。
この実施形態においては、液状化防止工事区域の周辺に、工事により影響を受ける構造物等が存在しない場合には、水抜き井戸を設けることなく、地表より液状化防止対象地盤1の下部に達する曲線状注入井戸19のみを形成し、曲線状注入井戸19から液状化防止対象地盤1内の地下水圧に相当する圧縮気体を注入し、液状化防止対象地盤1の飽和度を低下させるものである。
図9、図10は、本発明の他の実施形態を示すものである。
この実施形態においては、液状化防止工事区域の周辺に、工事により影響を受ける構造物等が存在しない場合に、地表から液状化防止対象地盤1の下部に達する立坑21を掘削し、立坑21の下部から液状化防止対象地盤1に複数の水平注入井戸22を放射状に形成し、水平注入井戸22から液状化防止対象地盤1内の地下水圧に相当する圧縮気体を注入し、液状化防止対象地盤1の飽和度を低下させるものである。
【0022】
注入井戸4近傍の液状化防止対象地盤1内には、液状化防止対象地盤1の地下水圧および液状化防止対象地盤1の飽和度を測定する圧力センサ14および飽和度計15が深さ方向に沿って複数設置され、各センサ14、15はライン16により地表の圧縮気体注入手段7の制御装置17と連結される。
【0023】
本発明の圧縮気体注入による液状化防止方法の手順を説明する。
(1)注入井戸4に設置した液状化防止対象地盤1の地下水圧を測定する圧力センサ14のデータが制御装置17に送られ、地表に設置した圧縮気体供給手段8から供給される圧縮気体の圧力を地下水圧と同じ圧力に圧力調節して注入井戸4に供給する。
(2)注入井戸4から液状化防止対象地盤1に注入された圧縮気体は、液状化防止対象地盤1の上部に難透水気性地盤2が存在するため、上部に排気されることなく、液状化防止対象地盤1内の地下水を排除する圧力として作用する。圧縮空気の注入により排除される地下水は、水抜き井戸11の下端開口12から水抜き井戸内に入り、水抜き井戸11、排水管13を通して排水される。
(3)水抜井戸11からの地下水の排除により飽和状態から不飽和状態に移行する。不飽和状態への移行は、液状化防止対象地盤1の上部から下部に徐徐に進行する。
(4)液状化防止対象地盤1の地下水位と飽和度の変化は、注入井戸4の近傍の液状化防止対象地盤1内に深さ方向に複数配置された水圧計14と飽和度計15からなる各センサにより計測され、各センサ14、15からのデータが制御装置17に送られ、制御装置17が圧縮気体供給手段7を制御し、圧縮気体の注入圧力及び注入量を調節する。
(5)各センサ14,15からのデータが、不飽和状態が液状化防止対象地盤1の最下部まで達したことを検知すると、圧縮気体供給手段8からの圧縮気体の供給を止める。
(6)圧縮気体の供給を止め、水抜き井戸11から排水された地下水を、注入井戸4を通して液状化防止対象地盤1内に復帰させる。液状化防止対象地盤1内に注入された圧縮空気の一部は水抜き井戸11を通して排気される。
水抜き井戸11から排水された地下水を、注入井戸4を通して液状化防止対象地盤1内に復帰させる際、地下水に適量の界面活性剤を混入する。界面活性剤分子は、油となじみ易い親油基(疎水基)と水になじみ易い親水基の2つの相反する性質の部分から成っており、親油基は空気と、親水基は水とそれぞれ結びついて、独立した壊れにくい安定な微小気泡を形成する。
(7)液状化防止対象地盤1内の地下水は元の状態に復帰するが、液状化対象地盤の土壌内には安定した微小気泡が無数に存在することにより、地下水が元の状態に復帰しても液状化対象地盤全体の不飽和状態が継続する。
【0024】
【発明の効果】
本発明においては、液状化防止工法として、液状化防止対象地盤の飽和度を低下する工法を採用し、液状化防止対象地盤の上部に天然または人工的に難透水気層を存在させた状態で、注入井戸から液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を液状化防止対象地盤に注入し、周囲の地下水位を低下することなく液状化防止対象地盤に位置する水抜き井戸の下部開口から地下水を排除し、液状化防止対象地盤下部まで飽和度を低下させた後、圧縮気体の注入を止めて、水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤に復帰させることにより液状化防止対象地盤の飽和度を低下させる工法を採用しているので、注入された圧縮気体が液状化防止対象地盤の上部から脱気することがなく、液状化防止対象地盤内の地下水圧に相当する圧力の圧縮気体を注入することで、地下水位を低下させることがなく地盤内の有効応力を変化させないため、液状化防止対象地盤の上下部の粘性土層の圧密沈下が抑制され、安全で施工コストの安い液状化防止工法を可能とする。
水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させる際に、前記排除された地下水に適量の界面活性剤を混入する構成により、界面活性剤を構成する親油基が空気と、親水基が水と結びついて、独立して壊れにくい安定な微小気泡を形成し、不飽和土を効率よく地盤に生成する。
また、注入井戸からの圧縮気体の注入が工事区域外に拡散するのを防止するために指向性を持たせて実施されるので、工事区域外への地盤沈下等の影響を抑制することができる。
注入井戸および水抜き井戸を曲線状井戸とすることにより、注入井戸と水抜き井戸の地表部分での間隔が長い場合でも効率よく液状化防止方法を施工することができ、液状化防止工事区域の地表部に大きな構造物等が存在するような場合には有効である。
液状化防止工事区域の周囲に、液状化防止対象地盤の下部層に達する止水壁を構築することにより、工事区域周辺への圧縮空気の漏出や地下水位の影響をより確実に抑制することができる。
また、液状化防止工事区域の周囲に、工事により影響を受ける構造物等が存在しない場合には、水抜き井戸を設けることなく、地表より液状化防止対象地盤に達する曲線状の注入井戸を形成するか、地表より液状化防止対象地盤に達する立坑を掘削し、立坑下部から液状化対象地盤に向けて放射状に水平方向に延びる注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下することができるので、より施工コストの低減化を図ることができる。
さらに、圧縮気体の注入等の作業が液状化防止対象地盤に設置した水圧計、飽和度計等の計器からのデータにより制御されるので、信頼性の高い液状化防止工法とすることができる。
【図面の簡単な説明】
【図1】本発明の液状化防止方法の一実施例を示す断面図
【図2】本発明の液状化防止方法の一実施例を示す平面図
【図3】本発明の液状化防止方法の一実施例の注入井戸の拡大断面図
【図4】本発明の液状化防止方法の一実施例を示す断面図
【図5】本発明の液状化防止方法の一実施例の概略図
【図6】本発明の液状化防止方法の一実施例を示す断面図
【図7】本発明の液状化防止方法の一実施例を示す平面図
【図8】本発明の液状化防止方法の一実施例を示す断面図
【図9】本発明の液状化防止方法の一実施例を示す断面図
【図10】本発明の液状化防止方法の一実施例を示す平面図
【符号の説明】
1:液状化防止対象地盤
2:上部難透水気地盤
3:下部難透水気地盤
4:注入井戸
5:注入孔
6:注入管
7:砕石
8:圧縮気体供給手段
9:送気管
10:カバー板
11:水抜き井戸
12:下端開口
13:排水管
14:圧力センサ
15:飽和度計
16:ライン
17:制御装置
18:止水壁
19:曲線状注入井戸
20:曲線状水抜き井戸
21:立坑
22:水平注入井戸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for preventing liquefaction of ground that liquefies during an earthquake.
[0002]
[Prior art]
The liquefaction of the ground means that when the ground with high water content is deformed by an impact or vibration due to an earthquake, the water pressure of the pore water that exists in a saturated state between the soil particles suddenly increases and the soil particles This is a phenomenon in which the frictional resistance disappears, and as a result, the ground behaves like a liquid and loses its bearing strength.
[0003]
Conventional methods to improve the ground so that it does not liquefy include methods of compacting the ground by strong vibrations to increase the density of the ground, methods of solidifying the ground by injecting chemicals, etc., and high quality soil and ground soil. Methods of replacing and methods of lowering the ground saturation (the ratio of the volume of water in the interparticle voids of the formation to the total volume of the voids as a percentage) have been implemented.
[0004]
[Patent Document 1]
JP-A-8-3975 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-123438
[Problems to be solved by the invention]
The conventional methods of increasing the density of the ground, the method of consolidating the ground, and the ground replacement method can be adopted as a local liquefaction prevention method, but as a liquefaction prevention method over a wide area in urban areas. When applied, it requires enormous costs and time, and is not a realistic liquefaction prevention method.
[0006]
As a conventional method for reducing the saturation of the ground, there is a method of reducing the groundwater level and condensing water (Japanese Patent Laid-Open No. 8-3975), and injecting compressed air or dissolved air into the ground from a well, There is a construction method (Japanese Patent Laid-Open No. 2001-123438) that draws groundwater from the wells of the well and infiltrates the bubbles in the horizontal direction. Therefore, if a poorly permeable air layer exists above or below the target ground for the liquefaction prevention method, ground subsidence may occur due to consolidation of this layer. In addition, in order to prevent the effects of lowering the groundwater level from occurring outside the construction area, it is necessary to provide a water barrier at the boundary with the construction area.
In the method of injecting compressed air or air-dissolved water, an air pool is formed around the well of the injection port, making it difficult to disperse and inject bubbles. In addition, when ferric dioxide is present in the ground, it reacts with the injected air and oxygen-deficient air is generated in the ground.
[0007]
In order to solve the problems of the conventional liquefaction prevention method, an object of the present invention is to provide a liquefaction prevention method with a low construction cost that suppresses ground settlement due to consolidation settlement.
[0008]
[Means for solving problems]
The present invention is configured as follows to solve the above-described problems.
The first aspect of the present invention is a method for preventing liquefaction of a saturated ground due to compressed gas injection during an earthquake, wherein a non-permeable air layer is naturally or artificially present above the liquefaction-prevented ground, and the ground is subject to liquefaction-prevented ground. An injection well and a drain well are formed, and compressed gas with a pressure corresponding to the groundwater pressure of the liquefaction prevention target ground is injected from the injection well to the liquefaction prevention target ground, and water is drained without lowering the surrounding groundwater level. Groundwater is removed from the well, then the injection of compressed gas from the injection well is stopped, and the groundwater removed from the drainage well is returned to the liquefaction-prevented ground through the injection well. It is characterized by doing so.
[0009]
The second aspect of the present invention is the method for preventing liquefaction of a saturated ground due to compressed gas injection according to the first aspect of the invention when returning groundwater removed from the drain well to the liquefaction prevention target ground through the injection well. In addition, an appropriate amount of a surfactant is mixed into the excluded groundwater.
[0010]
The third aspect of the present invention is the method of preventing liquefaction of a saturated ground due to compressed gas injection according to the first or second aspect of the invention, wherein the injection of the compressed gas from the injection well is performed by diffusing the compressed gas outside the construction area. In order to prevent this, it is characterized by performing from an injection well having directivity.
[0011]
The fourth aspect of the present invention is the method for preventing liquefaction of a saturated ground during an earthquake by compressed gas injection according to any one of the first to third aspects of the invention, wherein the drainage well is open only at the lower end. Features.
[0012]
The fifth aspect of the present invention is the method for preventing liquefaction of a saturated ground caused by compressed gas injection according to any one of the first to fourth aspects of the present invention during earthquakes. The injection well and drain well are subject to liquefaction prevention from the surface. It is characterized by being a curved well extending in a curved shape below the ground.
[0013]
The sixth aspect of the present invention is the liquefaction prevention method for saturated ground by compressed gas injection according to any one of the first to fifth aspects of the present invention, wherein the lower part of the liquefaction prevention target ground is disposed around the liquefaction prevention construction area. It is characterized by constructing a water barrier that reaches the layer.
[0014]
In the seventh aspect of the present invention, in the method for preventing liquefaction of a saturated ground due to compressed gas injection, a hardly permeable air layer exists naturally or artificially above the liquefaction-prevented ground, and the liquefaction-prevented ground from the ground surface. A curved injection well is formed, and a compressed gas with a pressure corresponding to the groundwater pressure of the liquefaction prevention target ground is injected from the injection well to the liquefaction prevention target ground, and the ground is saturated without lowering the surrounding groundwater level. It is characterized in that the degree is lowered.
[0015]
In the eighth aspect of the present invention, there is provided a method for preventing liquefaction of a saturated ground caused by compressed gas injection during an earthquake. Drilling a shaft that reaches it, forming an injection well that extends radially from the bottom of the shaft toward the liquefaction-prevented ground, and that corresponds to the groundwater pressure of the liquefaction-prevented ground from the injection well to the liquefaction-prevented ground It is characterized by injecting a compressed gas of 2 to reduce the saturation of the ground without lowering the surrounding groundwater level.
[0016]
The ninth aspect of the present invention is the liquefaction prevention method for saturated ground by compressed gas injection according to any one of the first to eighth aspects of the present invention, wherein a water pressure gauge and a saturation meter are installed on the ground to be liquefied, It is characterized in that the injection pressure and the injection amount of the compressed gas from the injection well are controlled based on the meter data.
[0017]
[Action]
As described above, in the present invention, as a liquefaction prevention method, a method of reducing the degree of saturation of the liquefaction prevention target ground is adopted, and a naturally or artificially impermeable layer is formed on the upper part of the liquefaction prevention target ground. In the state where it is present, a compressed gas having a pressure corresponding to the groundwater pressure of the ground to be liquefied is injected into the ground to be liquefied from the injection well, and the water located in the ground to be liquefied without lowering the groundwater level. After removing the groundwater from the lower opening of the drain well and lowering the saturation to the bottom of the liquefaction-prevented ground, stop the injection of compressed gas and the groundwater excluded from the drain well through the well to prevent liquefaction Since the method of reducing the degree of saturation of the ground subject to liquefaction prevention by returning to the ground, the injected compressed gas will not be degassed from the upper part of the ground subject to liquefaction prevention, preventing liquefaction. By injecting compressed gas at a pressure equivalent to the groundwater pressure in the elephant ground, the effective ground stress is not changed without lowering the surrounding groundwater level. Consolidation settlement of the layer is suppressed, enabling a liquefaction prevention method that is safe and low in construction cost.
When the groundwater removed from the drainage well is returned to the liquefaction-prevented ground through the injection well, an appropriate amount of surfactant is mixed into the removed groundwater, thereby forming a lipophilic group constituting the surfactant. The air and the hydrophilic group are combined with water to form stable microbubbles that are difficult to break independently, and efficiently generate unsaturated soil on the ground.
In addition, since the injection of compressed gas from the injection well is performed with directivity in order to prevent diffusion outside the construction area, the influence of land subsidence outside the construction area can be suppressed. .
By making the injection well and drain well into a curved well, the liquefaction prevention method can be implemented efficiently even when the distance between the surface of the injection well and the drain well is long, This is effective when a large structure exists on the ground surface.
By constructing a water blocking wall that reaches the lower layer of the liquefaction-prevented ground around the liquefaction prevention construction area, it is possible to more reliably suppress the leakage of compressed air and the influence of the groundwater level around the construction area. it can.
In addition, when there are no structures affected by the construction around the liquefaction prevention construction area, a curved injection well reaching the liquefaction prevention ground from the ground surface is formed without providing a drain well. Or, a shaft that reaches the liquefaction-prevented ground from the surface is excavated to form an injection well that extends radially from the bottom of the shaft toward the liquefaction-targeted ground, and liquefies from the injection well to the liquefaction-prevented ground. Since a compressed gas having a pressure corresponding to the groundwater pressure of the ground to be prevented can be injected and the saturation of the ground can be lowered without lowering the surrounding groundwater level, the construction cost can be further reduced.
Furthermore, since operations such as injection of compressed gas are controlled by data from instruments such as a hydrometer and a saturation meter installed on the ground to be prevented from liquefaction, a highly reliable liquefaction prevention method can be achieved.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described with reference to the drawings. FIGS. 1-10 shows one Example of the liquefaction prevention method by the saturation fall of this invention. A natural or artificial non-water-permeable ground (low water and gas permeability) 2 is present on the upper part of the liquefaction-prevented ground 1 made of sandy ground or the like having a weak adhesive strength. The artificially impervious ground means that if there is no natural impervious ground above the liquefaction-prevented ground, the upper ground is ground by chemical injection or by compaction with a machine. It means to improve the ground such as increasing the density to artificially form a poorly permeable ground. Under the liquefaction prevention target ground 1, a hardly water-permeable ground 3 exists. The technical significance of causing the poorly permeable ground to exist above the liquefaction prevention target ground 1 is to prevent the compressed gas injected into the liquefaction prevention target ground 1 from leaking through the upper ground.
[0019]
In an embodiment in which the liquefaction prevention method of the present invention is carried out along a belt-like zone having a certain width, an injection well 4 that reaches the lower part of the ground 1 to be prevented from liquefaction from the ground surface at regular intervals in the vicinity of the boundary of the construction zone on both sides of the belt-like zone Drilling. Even if the injection well 4 is formed by directly installing the injection pipe 6 having a plurality of injection holes 5 in the portion corresponding to the liquefaction prevention target ground 1 with a well excavator, the well is excavated with the well excavator. An injection pipe 6 having a plurality of injection holes 5 formed in a portion corresponding to the ground 1 to be prevented from liquefaction is installed, and a gap 7 between the well and the injection pipe 6 is filled with crushed stone 7 or the like to form the injection well 4. Also good. The injection pipe 6 is connected to a compressed gas supply means 8 such as a compressor installed on the ground surface via an air supply pipe 9. Compressed air is usually used as the compressed gas. The injection hole 5 formed in the portion corresponding to the liquefaction prevention target ground 1 of the injection well 4 is, for example, a belt-like area of the injection well 4 in order to prevent leakage of compressed gas outside the belt-like area that is a construction area. The outer side is closed with a cover plate 10 or the like, and directivity is given in the injection direction of the compressed gas. Further, a drainage well 11 that reaches the lower part of the liquefaction prevention target ground 1 from the ground surface is excavated at a constant interval in a substantially central part of the belt-like area. An opening 12 is formed at the lower end of the drain well 11. A drain pipe 13 is connected to the upper part of the drain well 11, and a drain means such as a pump is installed in the drain pipe 13 as necessary.
As shown in FIG. 4, a water blocking wall 18 is constructed by placing a steel sheet pile or the like around the liquefaction prevention construction area at the time of the earthquake so as to reach the lower impervious ground 3 below the liquefaction target ground 1. In addition, the influence of leakage of compressed gas outside the liquefaction prevention construction area during earthquakes and fluctuations in groundwater level may be more reliably suppressed.
As shown in FIG. 5, by injection of compressed gas having a pressure corresponding to the groundwater pressure from the injection well 4, a part of the groundwater in the ground to be liquefied is replaced by the compressed gas, and the upper part from the upper part to the lower part of the ground to be liquefied. Saturated ground moves to unsaturated ground in the direction.
[0020]
6 and 7 show another embodiment of the present invention.
In this embodiment, when there is a large structure or the like on the surface of the liquefaction prevention construction area, the interval between the installation positions of the injection well 4 and the drain well 11 is increased, and the liquefaction prevention work is performed. Workability is reduced. In such a case, when the injection well 4 and the drainage well 11 are formed into a curved injection well 19 and a curved drainage well 20 formed by a curved boring machine, an earthquake in a saturated ground caused by compressed gas injection with good workability. It becomes possible to set it as the liquefaction prevention method.
[0021]
FIG. 8 shows another embodiment of the present invention.
In this embodiment, when there is no structure affected by the construction around the liquefaction prevention construction area, the bottom of the liquefaction prevention target ground 1 is reached from the ground without providing a drain well. Only the curved injection well 19 is formed, and compressed gas corresponding to the groundwater pressure in the liquefaction prevention target ground 1 is injected from the curved injection well 19 to reduce the saturation of the liquefaction prevention target ground 1. .
9 and 10 show another embodiment of the present invention.
In this embodiment, when there is no structure or the like affected by the construction around the liquefaction prevention construction area, the shaft 21 reaching the lower part of the ground 1 to be liquefied prevention from the ground surface is excavated. A plurality of horizontal injection wells 22 are radially formed in the liquefaction prevention target ground 1 from the lower part, and a compressed gas corresponding to the groundwater pressure in the liquefaction prevention target ground 1 is injected from the horizontal injection wells 22 to liquefaction prevention target ground. The degree of saturation of 1 is reduced.
[0022]
In the liquefaction prevention target ground 1 in the vicinity of the injection well 4, a pressure sensor 14 and a saturation meter 15 for measuring the groundwater pressure of the liquefaction prevention target ground 1 and the saturation of the liquefaction prevention target ground 1 and a saturometer 15 are arranged in the depth direction. A plurality of sensors 14 and 15 are connected along the line 16 to the control device 17 of the compressed gas injection means 7 on the ground surface.
[0023]
The procedure of the liquefaction prevention method by compressed gas injection of the present invention will be described.
(1) Data of the pressure sensor 14 for measuring the groundwater pressure of the liquefaction prevention target ground 1 installed in the injection well 4 is sent to the control device 17, and the compressed gas supplied from the compressed gas supply means 8 installed on the ground surface The pressure is adjusted to the same pressure as the groundwater pressure and supplied to the injection well 4.
(2) The compressed gas injected into the liquefaction prevention target ground 1 from the injection well 4 is liquefied without being exhausted to the upper part because the hardly permeable ground 2 exists above the liquefaction prevention target ground 1. It acts as a pressure to exclude groundwater in the ground 1 to be prevented. Groundwater removed by injection of compressed air enters the drainage well from the lower end opening 12 of the drainage well 11 and is drained through the drainage well 11 and the drain pipe 13.
(3) Transition from the saturated state to the unsaturated state by the removal of groundwater from the drainage well 11. The transition to the unsaturated state gradually proceeds from the upper part to the lower part of the liquefaction prevention target ground 1.
(4) Changes in the groundwater level and the degree of saturation of the liquefaction prevention target ground 1 are obtained from a plurality of hydrometers 14 and saturation meters 15 arranged in the depth direction in the liquefaction prevention target ground 1 near the injection well 4. The data from each sensor 14, 15 is sent to the control device 17, and the control device 17 controls the compressed gas supply means 7 to adjust the injection pressure and the injection amount of the compressed gas.
(5) When the data from the sensors 14 and 15 detect that the unsaturated state has reached the lowest part of the liquefaction prevention target ground 1, the supply of the compressed gas from the compressed gas supply means 8 is stopped.
(6) The supply of compressed gas is stopped, and the groundwater drained from the drain well 11 is returned to the liquefaction prevention target ground 1 through the injection well 4. Part of the compressed air injected into the liquefaction prevention target ground 1 is exhausted through the drainage well 11.
When returning the groundwater drained from the drain well 11 into the liquefaction prevention target ground 1 through the injection well 4, an appropriate amount of surfactant is mixed into the groundwater. Surfactant molecules consist of two parts with opposite properties: a lipophilic group (hydrophobic group) that is familiar with oil and a hydrophilic group that is compatible with water. The lipophilic group is air and the hydrophilic group is water. Together, they form an independent, fragile, stable microbubble.
(7) Although the groundwater in the liquefaction prevention target ground 1 returns to its original state, the groundwater returns to its original state due to the countless number of stable microbubbles in the soil of the liquefaction target ground. Even then, the unsaturated state of the entire ground to be liquefied continues.
[0024]
【The invention's effect】
In the present invention, as a liquefaction prevention method, a method of reducing the degree of saturation of the liquefaction prevention target ground is adopted, and in a state where a poorly permeable air layer exists naturally or artificially on the upper part of the liquefaction prevention target ground. A compressed gas with a pressure equivalent to the groundwater pressure of the ground to be prevented from liquefaction is injected from the injection well into the ground to be liquefied, and the drainage well located on the ground to be liquefied is prevented without lowering the surrounding groundwater level. After removing the groundwater from the lower opening and lowering the saturation to the bottom of the ground targeted for liquefaction prevention, the injection of compressed gas is stopped and the groundwater removed from the drain well is returned to the ground targeted for liquefaction prevention through the well. Because the construction method that lowers the saturation of the ground subject to liquefaction prevention is adopted, the injected compressed gas does not degas from the upper part of the ground subject to liquefaction prevention, and the ground subject to liquefaction prevention By injecting compressed gas at a pressure equivalent to the groundwater pressure of the ground, the effective stress in the ground is not changed without lowering the groundwater level. A liquefaction prevention method that is suppressed, safe and low in construction cost is possible.
When the groundwater removed from the drainage well is returned to the liquefaction-prevented ground through the injection well, an appropriate amount of surfactant is mixed into the removed groundwater, thereby forming a lipophilic group constituting the surfactant. The air and the hydrophilic group are combined with water to form stable microbubbles that are difficult to break independently, and efficiently generate unsaturated soil on the ground.
In addition, since the injection of compressed gas from the injection well is performed with directivity in order to prevent diffusion outside the construction area, the influence of land subsidence outside the construction area can be suppressed. .
By making the injection well and drain well into a curved well, the liquefaction prevention method can be implemented efficiently even when the distance between the surface of the injection well and the drain well is long, This is effective when a large structure exists on the ground surface.
By constructing a water blocking wall that reaches the lower layer of the liquefaction-prevented ground around the liquefaction prevention construction area, it is possible to more reliably suppress the leakage of compressed air and the influence of the groundwater level around the construction area. it can.
In addition, when there are no structures affected by the construction around the liquefaction prevention construction area, a curved injection well reaching the liquefaction prevention ground from the ground surface is formed without providing a drain well. Or, a shaft that reaches the liquefaction-prevented ground from the surface is excavated to form an injection well that extends radially from the bottom of the shaft toward the liquefaction-targeted ground, and liquefies from the injection well to the liquefaction-prevented ground. Since a compressed gas having a pressure corresponding to the groundwater pressure of the ground to be prevented can be injected and the saturation of the ground can be lowered without lowering the surrounding groundwater level, the construction cost can be further reduced.
Furthermore, since operations such as injection of compressed gas are controlled by data from instruments such as a hydrometer and a saturation meter installed on the ground to be prevented from liquefaction, a highly reliable liquefaction prevention method can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of the liquefaction prevention method of the present invention. FIG. 2 is a plan view showing an embodiment of the liquefaction prevention method of the present invention. FIG. 4 is a sectional view showing an embodiment of the liquefaction prevention method of the present invention. FIG. 5 is a schematic view of one embodiment of the liquefaction prevention method of the present invention. FIG. 7 is a plan view showing an embodiment of the liquefaction prevention method according to the present invention. FIG. 8 is a plan view showing an embodiment of the liquefaction prevention method according to the present invention. FIG. 9 is a sectional view showing an embodiment of the liquefaction prevention method of the present invention. FIG. 10 is a plan view showing an embodiment of the liquefaction prevention method of the invention.
1: Liquefaction-prevented ground 2: Upper difficult-permeability air ground 3: Lower-lower permeation air ground 4: Injection well 5: Injection hole 6: Injection pipe 7: Crushed stone 8: Compressed gas supply means 9: Air supply pipe 10: Cover plate 11: Drain well 12: Lower end opening 13: Drain pipe 14: Pressure sensor 15: Saturation meter 16: Line 17: Control device 18: Water blocking wall 19: Curved injection well 20: Curved drain well 21: Standing shaft 22: Horizontal injection well

Claims (9)

液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する注入井戸と水抜き井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく水抜き井戸から地下水を排除し、その後、注入井戸からの圧縮気体の注入を止め、水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させることにより地盤の飽和度を低下するようにしたことを特徴とする圧縮気体注入による飽和地盤の地震時液状化防止方法。A poorly permeable air layer exists naturally or artificially above the ground targeted for liquefaction prevention, and an injection well and a drainage well reaching the ground targeted for liquefaction prevention are formed from the ground surface. Inject compressed gas at a pressure equivalent to the groundwater pressure of the ground to prevent irrigation, remove groundwater from the drainage well without lowering the surrounding groundwater level, and then stop the injection of compressed gas from the injection well. A method for preventing liquefaction of saturated ground during earthquakes by injecting compressed gas, wherein the saturation of the ground is lowered by returning groundwater removed from the drained well through the injection well into the liquefaction-prevented ground. . 前記水抜き井戸から排除された地下水を注入井戸を通して液状化防止対象地盤内に復帰させる際に、前記排除された地下水に適量の界面活性剤を混入することを特徴とする請求項1に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。The groundwater excluded from the drainage well is returned to the liquefaction-prevented ground through the injection well, and an appropriate amount of a surfactant is mixed into the excluded groundwater. A method for preventing liquefaction of saturated ground during earthquakes by injecting compressed gas. 前記注入井戸からの圧縮気体の注入は、液状化防止工事区域外への圧縮気体の拡散を防止するために指向性を持たせた注入井戸により行うことを特徴とする請求項1又は2に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。The injection of compressed gas from the injection well is performed by an injection well having directivity in order to prevent diffusion of the compressed gas outside the liquefaction prevention work area. To prevent liquefaction of saturated ground during earthquakes by injecting compressed gas. 前記水抜き井戸は下端部のみが開口していることを特徴とする請求項1〜3のいずれか1項に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。The method for preventing liquefaction of a saturated ground during an earthquake according to any one of claims 1 to 3, wherein only the lower end of the drain well is open. 前記注入井戸および水抜き井戸を地表部から液状化防止対象地盤下方に曲線状に延びる曲線状井戸としたことを特徴とする請求項1〜4のいずれか1項に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。Saturation by compressed gas injection according to any one of claims 1 to 4, wherein the injection well and the drain well are curved wells extending in a curved shape from the ground surface to the bottom of the liquefaction prevention target ground. How to prevent ground liquefaction during earthquakes. 前記液状化防止工事区域の周囲に、液状化防止対象地盤の下部層に達する止水壁を構築することを特徴とする請求項1〜5のいずれか1項に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。The saturated ground by compressed gas injection according to any one of claims 1 to 5, wherein a water blocking wall that reaches a lower layer of the liquefaction prevention target ground is constructed around the liquefaction prevention construction area. How to prevent liquefaction during earthquakes. 液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する曲線状の注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下するようにしたことを特徴とする圧縮気体注入による飽和地盤の地震時液状化防止方法。A low-permeability air layer exists naturally or artificially above the liquefaction-prevented ground, forming a curved injection well that reaches the liquefaction-preventive ground from the ground surface, and liquefaction from the injection well to the liquefaction-prevented ground During the earthquake of saturated ground due to compressed gas injection, compressed gas injection with a pressure equivalent to the groundwater pressure of the ground to be prevented is performed to reduce the saturation of the ground without lowering the surrounding groundwater level Method for preventing liquefaction. 液状化防止対象地盤の上部に天然あるいは人工的に難透水気層を存在させ、地表より液状化防止対象地盤に達する立坑を掘削し、立坑下部から液状化防止対象地盤に向けて放射状に水平方向に延びる注入井戸を形成し、注入井戸から液状化防止対象地盤に液状化防止対象地盤の地下水圧に相当する圧力の圧縮気体を注入し、周囲の地下水位を低下することなく地盤の飽和度を低下するようにしたことを特徴とする圧縮気体注入による飽和地盤の地震時液状化防止方法。Naturally or artificially impervious air layer is present above the liquefaction-prevented ground, excavating a shaft that reaches the liquefaction-prevented ground from the ground surface, and radiating horizontally from the bottom of the shaft toward the liquefaction-prevented ground An injection well extending to the ground is formed, and a compressed gas having a pressure corresponding to the groundwater pressure of the liquefaction-prevented ground is injected from the injection well to the liquefaction-prevented ground, so that the saturation level of the ground is reduced without lowering the surrounding groundwater level. A method for preventing liquefaction of a saturated ground during an earthquake by injecting compressed gas, characterized in that it decreases. 前記液状化防止対象地盤に水圧計、飽和度計器を設置し、各計器のデータに基づいて注入井戸からの圧縮気体の注入圧力及び注入量が制御されることを特徴とする請求項1〜8のいずれか1項に記載の圧縮気体注入による飽和地盤の地震時液状化防止方法。9. A water pressure gauge and a saturation meter are installed on the ground to be prevented from liquefaction, and the injection pressure and the injection amount of compressed gas from the injection well are controlled based on the data of each meter. The liquefaction prevention method at the time of earthquake of the saturated ground by compressed gas injection of any one of these.
JP2003120929A 2002-05-01 2003-04-25 Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection Expired - Fee Related JP3757216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003120929A JP3757216B2 (en) 2002-05-01 2003-04-25 Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002129501 2002-05-01
JP2002223922 2002-07-31
JP2003120929A JP3757216B2 (en) 2002-05-01 2003-04-25 Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection

Publications (2)

Publication Number Publication Date
JP2004124692A JP2004124692A (en) 2004-04-22
JP3757216B2 true JP3757216B2 (en) 2006-03-22

Family

ID=32303234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003120929A Expired - Fee Related JP3757216B2 (en) 2002-05-01 2003-04-25 Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection

Country Status (1)

Country Link
JP (1) JP3757216B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411949A (en) * 2018-03-28 2018-08-17 中国建筑第八工程局有限公司 Basement bottom board biogas breakthrough reinforces enclosed construction and processing method
CN109837919A (en) * 2019-01-06 2019-06-04 许增荣 The technology of liquid in gas injection drive row Rock And Soil

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313773B2 (en) * 2005-03-14 2009-08-12 株式会社エヌ・アイ・ティ Ground hardening material injection method and its equipment
JP4787001B2 (en) * 2005-11-09 2011-10-05 株式会社竹中工務店 Ground liquefaction suppression method and liquefaction suppression performance maintenance device
JP5142348B2 (en) * 2006-03-13 2013-02-13 有限会社アサヒテクノ How to prevent ground liquefaction
JP5039321B2 (en) * 2006-04-28 2012-10-03 株式会社不動テトラ Desaturated composite method
JP4794390B2 (en) * 2006-08-08 2011-10-19 大成建設株式会社 Pile foundation reinforcement structure and reinforcement method
JP5152801B2 (en) * 2008-08-08 2013-02-27 株式会社成玄 Ground improvement method
JP5132605B2 (en) * 2009-02-19 2013-01-30 株式会社竹中工務店 Air injecting device, air injecting system, and method for injecting air into ground
JP5243627B2 (en) * 2011-02-09 2013-07-24 有限会社アサヒテクノ Ground improvement method
JP2012225143A (en) * 2011-02-09 2012-11-15 Asahi Techno:Kk Ground improvement method
JP5933225B2 (en) * 2011-11-11 2016-06-08 株式会社不動テトラ How to inject air into the ground
JP5918521B2 (en) * 2011-12-09 2016-05-18 佐藤工業株式会社 Ground improvement method
JP6040552B2 (en) * 2012-03-29 2016-12-07 株式会社大林組 Groundwater level lowering method and system using vacuum deep well
JP6012295B2 (en) * 2012-07-04 2016-10-25 東亜建設工業株式会社 Method and system for injecting air into the ground
JP5458332B1 (en) * 2013-03-04 2014-04-02 強化土株式会社 Ground improvement method
CN103132536A (en) * 2013-03-18 2013-06-05 中国水利水电第七工程局成都水电建设工程有限公司 Drainage technology of geologic chemistry before grouting
JP6050178B2 (en) * 2013-05-13 2016-12-21 鹿島建設株式会社 Ground improvement method
CN106677156B (en) * 2016-12-27 2018-12-11 吴慧明 A method of disturbance treatment being carried out to soft soil foundation using aerosol
KR102330696B1 (en) * 2021-07-13 2021-11-24 (주)이피에스엔지니어링 Apparatus and method for spilled groundwater restoration to secure ground stability
KR102447250B1 (en) * 2021-07-14 2022-09-27 (주)이피에스엔지니어링 Apparatus and method for managing groundwater in response to groundwater fluctuation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411949A (en) * 2018-03-28 2018-08-17 中国建筑第八工程局有限公司 Basement bottom board biogas breakthrough reinforces enclosed construction and processing method
CN108411949B (en) * 2018-03-28 2020-02-07 中国建筑第八工程局有限公司 Basement bottom plate methane leakage point reinforcing and sealing structure and processing method
CN109837919A (en) * 2019-01-06 2019-06-04 许增荣 The technology of liquid in gas injection drive row Rock And Soil

Also Published As

Publication number Publication date
JP2004124692A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
JP3757216B2 (en) Method of preventing liquefaction of saturated ground during earthquake by compressed gas injection
JP2004107931A (en) Construction method for preventing ground liquefaction due to earthquake, and facility used in the construction method
US5927907A (en) Method and apparatus for preventing liquefaction of ground caused by violent earthquake
WO2007129693A1 (en) Soil improvement method
JP5213216B2 (en) Ground improvement method
JP4114944B2 (en) Ground improvement method
JP2007303270A5 (en)
JP5918521B2 (en) Ground improvement method
JP2018150772A (en) Liquefaction countermeasure structure of underground structure
JP2001262555A (en) Liquefaction measures construction method of ground
JP4026739B2 (en) Ground improvement method by gas dissolved water injection
Fan et al. Effect of a soluble subgrade on leakage through a geomembrane defect
CN110656642A (en) Method for treating collapsible loess foundation by controllable pre-soaking
CN110144871A (en) A kind of dark creek processing construction method
JP2001123438A (en) Construction method for preventing liquefaction in earthquake of soil within city or the like by injecting air-dissolved water or compressed air into ground, device used therefor, and construction method therefor
JP2001011847A (en) Mounting load increasing and decreasing method
JP5519722B2 (en) Ground improvement method
KR100857922B1 (en) A sand mat execution method according to the cause that can make sand reduction through unnecessary section reduction for impeachment
JP2004092049A (en) Foundation structure for structure
JP2871524B2 (en) Sand blast prevention mat method
JP3256492B2 (en) Construction method for preventing liquefaction of ground during earthquakes and structure of water pipes used for this method
CN109469086A (en) A kind of Collapsible Loess District pump house ground Simple treatment method
JP3002188B1 (en) Ground excavation method
JPH11256609A (en) Uplift prevention method of structure and uplift prevention construction
JP2005282130A (en) Ground excavation method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20031222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051226

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3757216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees