JP3756804B2 - Continuous cast slabs with no intergranular cracking defects - Google Patents

Continuous cast slabs with no intergranular cracking defects Download PDF

Info

Publication number
JP3756804B2
JP3756804B2 JP2001365520A JP2001365520A JP3756804B2 JP 3756804 B2 JP3756804 B2 JP 3756804B2 JP 2001365520 A JP2001365520 A JP 2001365520A JP 2001365520 A JP2001365520 A JP 2001365520A JP 3756804 B2 JP3756804 B2 JP 3756804B2
Authority
JP
Japan
Prior art keywords
mass
continuous cast
cast slab
ppm
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001365520A
Other languages
Japanese (ja)
Other versions
JP2003166038A (en
Inventor
昌光 若生
政明 永原
智 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001365520A priority Critical patent/JP3756804B2/en
Publication of JP2003166038A publication Critical patent/JP2003166038A/en
Application granted granted Critical
Publication of JP3756804B2 publication Critical patent/JP3756804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造法で鋳造された鋳片に関し、特に粒化割れ起因の表面欠陥のない連続鋳造鋳片に係わるものである。
【0002】
【従来の技術】
鋼の大量生産は、主として連続鋳造機を含むプロセスで行なわれているが、成分としてTiやNb、V、N等を含有する場合には、連鋳機内で鋳片が曲げや矯正のために変形する際に、鋳片内のγ結晶粒界に沿って割れが生じるという問題がある。
この問題に対する対応策は従来から検討されており、主な技術を挙げれば、特公昭56−46530号公報、特公昭59−28424号公報、特公昭61−11704号公報、特開昭60−56457号公報がある。
【0003】
特公昭56−46530号公報では、Nb+V量を規定する式、N量とTi量の関係を規定する式を用いて、連続鋳造時の鋳片表面割れを防止する技術を提示しているが、NbとNの関係を規定していないため、NbとNがともに多ければ、割れを生じる危険性がある。
特公昭59−28424号公報では、連鋳での凝固に続く冷却過程において特性条件の塑性歪を加えてオーステナイト結晶粒を微細化させることによって、割れを防止する技術を提示しているが、近年の垂直曲げ式連鋳機では、鋳型の直後に曲げ点があるため、その間に所定の歪みを与えることは難しい。また、特開昭60−56457号公報でも、加工歪みを与えて割れを防止する技術が提示されているが、同様な理由で問題がある。
【0004】
更に、特公昭61−11704号公報では、垂直曲げ型連鋳機で、鋳片側面に注水する水の量を規程して割れを防止する技術を提示しているが、Nb,Nの量が多くなると効果がなくなり、また、水量を減少させすぎると、ブレークアウトが生じる危険性も大きくなる。また、同様に連鋳機内で鋳片の表面に注水する量を制限して鋳片温度を高く維持する技術も公知であるが、同様にブレークアウトの危険性や、C量によっては鋳片の内部割れ発生の危険性も増大するという問題がある。
従って、上記した方法では、いずれの場合も制約や問題があり、連続鋳造鋳片の粒界割れを完全に防止することを困難であった。
【0005】
【発明が解決しようとする課題】
本発明は、連続鋳造の冷却条件や歪み付与の条件に関係なく割れを防止するための成分範囲を提示することにより、連続鋳造での製造条件を特に規定することなく、粒界割れ起因の連続鋳造鋳片の表面割れを防止することが可能な鋳片を提供するものである。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を特徴とする。
(1) C:0.001〜0.5質量%、Mn:0.1〜3.0質量%、Si:0.005〜2.0質量%、P:0.001〜0.1質量%、S:0.001〜0.05質量%、酸素を0.0005〜0.0050質量%、Nを0.002以上0.015質量%以下含み、かつ、Alを0.001〜0.1質量%含み、かつ、Nbを0.006〜0.1質量%含み、かつ、Tiを0.004〜0.1質量%含み、残部鉄および不可避的不純物からなり、成分を以下の[1],[2],[3]式を満足するように調整した粒界割れ欠陥の生じない連続鋳造鋳片。
W(N)−0.292×W(Ti)−0.152
×(W(Nb)−60)≦5 ・・・・・[1]
W(Nb)×W(N)≦9000 ・・・・・[2]
W(Ti)/W(N)≦3.42 ・・・・・[3]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
(2) C:0.001〜0.5質量%、Mn:0.1〜3.0質量%、Si:0.005〜2.0質量%、P:0.001〜0.1質量%、S:0.001〜0.05質量%、酸素を0.0005〜0.0050質量%、Nを0.002以上0.015質量%以下含み、かつ、Alを0.001〜0.1質量%含み、かつ、Nbを0.006〜0.1質量%含み、かつ、Tiを0.004〜0.1質量%含み、かつ、Vを0.01〜0.1質量%含み、残部鉄および不可避的不純物からなり、成分を以下の[1],[2],[3]式を満足するように調整したことを特徴とする粒界割れ欠陥の生じない連続鋳造鋳片。
W(N)−0.292×W(Ti)−0.152
×(W(Nb)−60)≦5 ・・・・・[1]
W(Nb)×W(N)≦9000 ・・・・・[2]
W(Ti)/W(N)≦3.42 ・・・・・[3]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
【0007】
(3) 前記連続鋳造鋳片の組成に加えて、さらにCr,Moのうち一種または二種以上を0.1質量%以下含み、残部鉄および不可避的不純物からなる(1)または(2)に記載の粒界割れ欠陥の生じない連続鋳造鋳片。
(4) 前記連続鋳造鋳片の組成に加えて、さらにCuを0.5質量%以下含み、残部鉄および不可避的不純物からなる(1)ないし(3)のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。
(5) 前記連続鋳造鋳片の組成に加えて、さらにNiを0.5質量%以下含み、残部鉄および不可避的不純物からなる(1)ないし(4)のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。
【0008】
(6) 前記連続鋳造鋳片の組成に加えて、さらにBを0.1質量%以下含み、残部鉄および不可避的不純物からなる(1)ないし(5)のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。
【0009】
(7) 前記連続鋳造鋳片の組成に加えて、さらにZr,Mg,Caのうち一種または二種以上を0.1質量%以下含み、残部鉄および不可避的不純物からなる(1)ないし(6)のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。
【0010】
【発明の実施の形態】
本発明者らは、TiやNbやN等を含有する鋼の脆化が、いずれもオーステナイト(γ)結晶粒界の脆化であることに着目して、これらの脆化が生じる条件を検討した結果、脆化すなわち割れの発生有無と鋼の成分組成および該鋼成分組成との関係式を着想するに至った。
【0011】
以下、本発明の詳細について記述する。
本発明者らは、まず、TiやNbやNの含有量を変えた鋼を用いて、引っ張り試験を行なった。
表1に示す成分の鋼を用いて、1400℃まで加熱してγ結晶粒を大きくし、その後冷却して、所定の温度に保持後、引っ張りを行ない、試料の絞り値を測定した。特に、連続鋳造機内で粒界割れが発生する温度領域のうち、上限にあたる900℃での絞り値に着目し、成分との関係を検討した。
【0012】
【表1】

Figure 0003756804
【0013】
成分範囲を検討する際には、鋼に溶解しているN量、NbNの析出量に着目した。Nbを含む析出物は一般にNbCNであるが、ここでは、簡易的にNbNで代表させた。成分指標を表す横軸として、W(N)−0.292×W(Ti)−0.152×(W(Nb)−60)とし、析出物の量を表す指標として、W(Nb)×W(N)を用いて層別して、縦軸となる絞り値との関係を表すと、図1のようになった。(ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm))。
【0014】
図より、横軸、すなわち、W(N)−0.292×W(Ti)−0.152×(W(Nb)−60)の値が5以下で、かつW(Nb)×W(N)の値が9000以下の場合に、絞り値60%以上を確保できることが判る。絞り値60%は、連続鋳造機内で粒化割れが発生しない下限の限界値であり、これ以上の値であれば、連続鋳造機内では、粒化割れは発生しにくい。
【0015】
次に、本発明の条件を規定した理由と具体的な適用法について説明する。
先ず、実際の鋼材に適用される鋼の成分範囲についてであるが、成分組成としては以下のような成分範囲が好ましい。
Cは鋼の強度を持たすために不可欠の元素であるため、下限を0.001質量%とし、上限は板材で用いられる最大炭素量として0.5質量%とした。
また、Mnも強度を得るために必要でありその効果を出すために下限を0.1質量%とし、上限は特殊用途で使用される場合の最大値3質量%とした。
Siは用途によっては不要の場合もあるが、不可避的に混入するためその下限を0.005質量%とし、上限は特殊用途で用いられる2質量%とした。
【0016】
Pは鋼に有害な元素であるため、その上限を0.1質量%とし極力少ないほうが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。
Sも同様に製品特性に害をなす場合が多く極力低位とすることが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。また上限は連続鋳造時の割れを防ぐために0.05質量%とした。
Vは材料の強度や靱性を上げるために用いられているが、その効果を得るための最低量として下限0.01質量%、上限は材質に悪影響を与える0.1質量%とした。
【0017】
Ti,Nb,Nは本発明に関係する元素である。材料の強度や靱性を上げるために用いられているが、本発明の効果を得るためには上限が制限される。また、下限は脆化の発生しない値で規定した。すなわち下限以下であれば、本発明を用いる必要はない。この観点から、それぞれ、Ti:0.004〜0.1質量%、Nb:0.006〜0.1質量%、N:0.002〜0.015質量%となる。
Alは脱酸元素として一般的に使用されているが、Nと化合してAlNを生成するため、材料の強度を上げる目的で用いられることもある。この観点から下限は不可避的に混入する0.001質量%とし、上限は材料の強度を上げすぎること、および介在物量が増えすぎる問題から0.1質量%とした。
また、酸素は非金属介在物生成の原因となるため、極力低いほうが望ましいが、下限は不可避的に混入する0.001質量%とし、上限は介在物があまり多くなると製品欠陥の原因となるので、0.050質量%とした。
【0018】
その他、鋼の用途に応じてCr,Mo,Cu,Ni,B,Zr,Mg,Caの一種または二種以上を0.1質量%以下含ませることができる。
すなわち、Cr,Moは焼入れ性を向上させることにより、母材の強度および靱性を向上させるために有効な元素であるが、鋼材HAZ部においては過剰な添加は靱性を著しく低下させるため0.1質量%を上限とした。
Cuは鋼材の強度を向上させるために有効であるが、HAZ靱性の低下やCu脆化の問題があるために、0.5質量%を上限とした。
【0019】
Niは鋼材の強度および靱性を向上させるために有効であるが、Ni量の増加は製造コストを上昇させるので0.5質量%を上限とした。
Bは鋼材の強度の向上に有効であるが、過剰な含有は靱性を著しく低下させるので上限を0.1質量%とした。
Zr,Mg,Caは強力な脱酸元素として、微細酸化物の個数増大に有効な元素であるが、過剰な添加は併せて介在物の粗大化も促進するため0.1質量%を上限とした。
【0020】
次に、関係式の規定であるが、上述したように、鋼に溶解しているN量とNbNの析出量を表す指標であり、その限界値は、ラボ実験での成分条件と絞り値との関係を解析した結果から得られたものである。鋼に溶解している(固溶)N量の指標としては、以下の[1]式とした。
Figure 0003756804
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
ただし、W(Nb)−60<0の時は、[1]式中で、W(Nb)−60=0とおく
【0021】
これは、全N量からTiと化合してTiNとして析出する量を除き、更にNbと化合してNbNとして析出する量を除いたものである。Nbの場合には、Tiより低温で析出物が生成するので、60ppm分を引いた場合に絞り値との関係がうまく整理できた。ここで、限界値5は、実験での実績値より求めた。また、係数0.292、および0.152はそれぞれ、TiNを形成するNのTiに対する質量比、およびNbNを形成するNのNb対する質量比である。
【0022】
また、NbN析出量を表す指標であるが、下記に示した[2]式とした。
W(Nb)×W(N)≦9000 ・・・・・[2]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
これは、Nb濃度とN濃度の積が大きい場合にはNbNが析出しやすいという熱力学的性質を利用したものである。
【0023】
更に、厚板向けの材料では、材質の観点からは、高靭性を維持するために、以下の条件を加えたほうが良い。
W(Ti)/W(N)≦3.42 ・・・・・[3]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
これは、Tiが対象となる鋼種は、TiとNbとNが含まれている炭素鋼であれば、どんなものでも構わない。
【0024】
なお、結晶粒界脆化に起因する鋳片の割れは、鋼の組織がγからαに変態する温度(成分によって変化するが、一般には750〜800℃)でも発生する場合がある。この温度領域での割れを防止するには、本発明に加えて連鋳機内での最低温度を800℃以上に保つことが望ましい。
【0025】
【実施例】
表2に示す成分の炭素鋼を表3に示す製造条件で連続鋳造し、得られた鋳片の割れを調査した。割れの調査方法としては、表4に示すように、鋳片上面と下面にスカーフ溶削を2mm〜10mm行い、表面を目視観察した。更に鋳片からサンプルを切り出し、断面の割れの状態をカラーチェックで調査した。結果を表5に示す。
【0026】
【表2】
Figure 0003756804
【0027】
【表3】
Figure 0003756804
【0028】
【表4】
Figure 0003756804
【0029】
【表5】
Figure 0003756804
【0030】
表5より、本発明の条件を満たす場合(A〜H)には、目視観察およびカラーチェックとも割れは検出されなかった。更に、W(Ti)/W(N)≦3.42(条件式(3))を満足したC,D,E,Fでは、非常に良好な靭性も得られた。
【0031】
一方、I〜Pのいずれの比較例においては、成分が本発明条件を満たさないために、割れが発生した。すなわち、I,J,L,Nでは、条件式[1]を満足しないために、また、K,M,Oでは、条件式[2]を満足しないために、更に、Pでは両方の条件式を満足しないために、鋳片の目視やカラーチェック検査で割れが観察された。
【0032】
【発明の効果】
以上のように本発明により、NbやTi、Nを含む鋼においても連続鋳造時の粒化割れが発生しなくなり、表面疵のない良好な鋳片が得られることが可能となる。
【図面の簡単な説明】
【図1】絞り値と固溶N指標とNbN析出指標の関係を表した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slab cast by a continuous casting method, and particularly relates to a continuous cast slab having no surface defects due to grain cracking.
[0002]
[Prior art]
Mass production of steel is mainly carried out in a process including a continuous casting machine. However, when Ti, Nb, V, N, etc. are contained as components, the slab is bent or straightened in the continuous casting machine. When deforming, there is a problem that cracks occur along the γ grain boundaries in the slab.
Countermeasures for this problem have been studied in the past, and the main technologies are listed in Japanese Patent Publication No. 56-46530, Japanese Patent Publication No. 59-28424, Japanese Patent Publication No. 61-11704, Japanese Patent Publication No. 60-56457. There is a gazette.
[0003]
In Japanese Examined Patent Publication No. 56-46530, a technique for preventing cracking of the slab surface during continuous casting is presented using an expression that defines the Nb + V amount and an expression that defines the relationship between the N amount and the Ti amount. Since the relationship between Nb and N is not defined, there is a risk of cracking if both Nb and N are large.
In Japanese Patent Publication No. 59-28424, a technique for preventing cracking is proposed by adding a plastic strain as a characteristic condition in the cooling process following solidification in continuous casting to refine the austenite crystal grains. In the vertical bending type continuous casting machine, since there is a bending point immediately after the mold, it is difficult to give a predetermined strain therebetween. Japanese Patent Application Laid-Open No. 60-56457 also discloses a technique for preventing cracking by imparting processing distortion, but there is a problem for the same reason.
[0004]
Furthermore, Japanese Patent Publication No. 61-11704 discloses a technique for preventing cracking by regulating the amount of water injected into the side surface of a slab in a vertical bending type continuous casting machine. If it increases, the effect is lost, and if the amount of water is reduced too much, the risk of breakout increases. Similarly, a technique for maintaining a high slab temperature by limiting the amount of water poured onto the surface of the slab in the continuous casting machine is also known. Similarly, depending on the risk of breakout and the C amount, There is a problem that the risk of occurrence of internal cracks also increases.
Therefore, the above-described methods have limitations and problems in any case, and it is difficult to completely prevent the grain boundary cracking of the continuous cast slab.
[0005]
[Problems to be solved by the invention]
The present invention presents a component range for preventing cracking regardless of the cooling conditions and strain imparting conditions of continuous casting, and thus does not specifically define the manufacturing conditions in continuous casting, and is continuous due to intergranular cracking. The present invention provides a slab capable of preventing surface cracking of the cast slab.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is characterized by the following configurations.
(1) C: 0.001 to 0.5 mass%, Mn: 0.1 to 3.0 mass%, Si: 0.005 to 2.0 mass%, P: 0.001 to 0.1 mass% , S: 0.001 to 0.05 mass%, oxygen is 0.0005 to 0.0050 mass%, N is 0.002 or more and 0.015 mass% or less, and Al is 0.001 to 0.1 mass%. wherein wt%, and comprises a Nb from 0.006 to .1% by weight and comprises a Ti .004-.1 wt%, Ri Do the balance iron and inevitable impurities, the following ingredients [1 ], [2], [3] Continuous cast slabs that do not cause grain boundary cracking defects adjusted to satisfy the equations .
W (N) -0.292 × W (Ti) -0.152
× (W (Nb) −60) ≦ 5 [1]
W (Nb) × W (N) ≦ 9000 (2)
W (Ti) / W (N) ≦ 3.42 [3]
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
(2) C: 0.001 to 0.5 mass%, Mn: 0.1 to 3.0 mass%, Si: 0.005 to 2.0 mass%, P: 0.001 to 0.1 mass% , S: 0.001 to 0.05 mass%, oxygen is 0.0005 to 0.0050 mass%, N is 0.002 or more and 0.015 mass% or less, and Al is 0.001 to 0.1 mass%. Inclusive, Nb in an amount of 0.006 to 0.1% by mass, Ti in an amount of 0.004 to 0.1% by mass, V in an amount of 0.01 to 0.1% by mass, and the balance Ri do iron and unavoidable impurities, the following ingredients [1], [2], [3] the continuous casting does not cause intergranular cracking defects, characterized in that adjusted so as to satisfy the equation slab.
W (N) -0.292 × W (Ti) -0.152
× (W (Nb) −60) ≦ 5 [1]
W (Nb) × W (N) ≦ 9000 (2)
W (Ti) / W (N) ≦ 3.42 [3]
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
[0007]
(3) In addition to the composition of the continuous cast slab, further comprising 0.1% by mass or less of one or more of Cr and Mo, the balance consisting of iron and inevitable impurities (1) or (2) Continuous cast slab without the described grain boundary cracking defect.
(4) In addition to the composition of the continuous cast slab, the grain boundary cracking defect according to any one of (1) to (3), further including 0.5% by mass or less of Cu, and remaining iron and inevitable impurities Continuous cast slab that does not cause
(5) In addition to the composition of the continuous cast slab, the grain boundary cracking defect according to any one of (1) to (4), further including Ni in an amount of 0.5% by mass or less, and remaining iron and inevitable impurities Continuous cast slab that does not cause
[0008]
(6) In addition to the composition of the continuous cast slab, the grain boundary cracking defect according to any one of (1) to (5), further including B in an amount of 0.1% by mass or less and comprising the remaining iron and inevitable impurities Continuous cast slab that does not cause
[0009]
(7) In addition to the composition of the continuous cast slab, it further contains one or more of Zr, Mg, and Ca in an amount of 0.1% by mass or less, and consists of the balance iron and inevitable impurities (1) to (6 The continuous cast slab in which the grain boundary cracking defect according to any one of the above is not generated.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventors of the present invention have focused on the fact that the embrittlement of steel containing Ti, Nb, N, etc. is the embrittlement of austenite (γ) grain boundaries, and studied the conditions under which these embrittlement occurs. As a result, the inventors have come up with the relational expression between the occurrence of embrittlement, that is, cracking, the steel component composition, and the steel component composition.
[0011]
Details of the present invention will be described below.
The present inventors first performed a tensile test using steel with different contents of Ti, Nb, and N.
Using steels having the components shown in Table 1, the γ crystal grains were enlarged by heating to 1400 ° C., then cooled, held at a predetermined temperature, pulled, and the aperture value of the sample was measured. In particular, focusing on the drawing value at 900 ° C., which is the upper limit, in the temperature range in which intergranular cracking occurs in the continuous casting machine, the relationship with the components was examined.
[0012]
[Table 1]
Figure 0003756804
[0013]
When examining the component ranges, attention was paid to the amount of N dissolved in the steel and the amount of NbN precipitated. The precipitate containing Nb is generally NbCN, but here it is simply represented by NbN. The horizontal axis representing the component index is W (N) −0.292 × W (Ti) −0.152 × (W (Nb) −60), and the index representing the amount of precipitate is W (Nb) × FIG. 1 shows the relationship with the aperture value on the vertical axis, stratified using W (N). (W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)).
[0014]
From the figure, the horizontal axis, that is, the value of W (N) −0.292 × W (Ti) −0.152 × (W (Nb) −60) is 5 or less and W (Nb) × W (N When the value of) is 9000 or less, it can be seen that an aperture value of 60% or more can be secured. The drawing value of 60% is a lower limit value at which no grain cracking occurs in the continuous casting machine. If the value is larger than this, the grain cracking is less likely to occur in the continuous casting machine.
[0015]
Next, the reason for defining the conditions of the present invention and the specific application method will be described.
First, regarding the component range of steel applied to actual steel materials, the following component ranges are preferable as the component composition.
Since C is an indispensable element for imparting the strength of steel, the lower limit is set to 0.001% by mass, and the upper limit is set to 0.5% by mass as the maximum amount of carbon used in the plate material.
Further, Mn is also necessary for obtaining strength, and in order to exert its effect, the lower limit is set to 0.1% by mass, and the upper limit is set to 3% by mass when used for special purposes.
Although Si may be unnecessary depending on the application, since it is inevitably mixed, the lower limit is set to 0.005 mass%, and the upper limit is set to 2 mass% used for special applications.
[0016]
Since P is an element harmful to steel, the upper limit is preferably 0.1% by mass and is preferably as small as possible. However, since it is inevitably mixed, the lower limit is 0.001% by mass.
S is also harmful to the product characteristics in the same way, and it is desirable to make it as low as possible. However, since it is inevitably mixed, the lower limit of 0.001% by mass is practical. The upper limit was set to 0.05% by mass to prevent cracking during continuous casting.
V is used to increase the strength and toughness of the material. The minimum amount for obtaining the effect is 0.01% by mass, and the upper limit is 0.1% by mass that adversely affects the material.
[0017]
Ti, Nb, and N are elements related to the present invention. Although used to increase the strength and toughness of the material, the upper limit is limited to obtain the effects of the present invention. Further, the lower limit was defined as a value at which embrittlement does not occur. That is, if it is below a lower limit, it is not necessary to use this invention. From this viewpoint, Ti: 0.004 to 0.1 mass%, Nb: 0.006 to 0.1 mass%, and N: 0.002 to 0.015 mass%, respectively.
Al is generally used as a deoxidizing element. However, since it combines with N to produce AlN, it may be used for the purpose of increasing the strength of the material. From this viewpoint, the lower limit is set to 0.001% by mass, and the upper limit is set to 0.1% by mass because the strength of the material is excessively increased and the amount of inclusions is excessively increased.
Also, since oxygen causes non-metallic inclusions, it is desirable that it be as low as possible. However, the lower limit is unavoidably mixed to 0.001% by mass, and the upper limit causes product defects if too much inclusions are present. 0.050% by mass.
[0018]
In addition, Cr, Mo, Cu, Ni, B, Zr, Mg, or Ca may be contained in an amount of 0.1% by mass or less in accordance with the use of steel.
That is, Cr and Mo are effective elements for improving the strength and toughness of the base material by improving the hardenability. However, excessive addition in the steel HAZ part significantly reduces the toughness. The upper limit was mass%.
Cu is effective for improving the strength of the steel material, but due to the problem of reduced HAZ toughness and Cu embrittlement, the upper limit was made 0.5 mass%.
[0019]
Ni is effective for improving the strength and toughness of the steel, but an increase in the amount of Ni increases the manufacturing cost, so the upper limit was made 0.5 mass%.
B is effective in improving the strength of the steel material, but excessive content significantly reduces toughness, so the upper limit was made 0.1% by mass.
Zr, Mg, and Ca are effective deoxidizing elements and are effective elements for increasing the number of fine oxides. However, excessive addition also promotes the coarsening of inclusions, so the upper limit is 0.1% by mass. did.
[0020]
Next, as defined in the relational expression, as described above, it is an index representing the amount of N dissolved in steel and the amount of NbN precipitated, and the limit values are the component conditions and the aperture value in the laboratory experiment. It was obtained from the result of analyzing the relationship. The following formula [1] was used as an index of the amount of N dissolved (solid solution) in steel.
Figure 0003756804
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
However, when W (Nb) −60 <0, W (Nb) −60 = 0 is set in the formula [1].
This is the total N content except for the amount that combines with Ti and precipitates as TiN, and further excludes the amount that combines with Nb and precipitates as NbN. In the case of Nb, precipitates are formed at a temperature lower than that of Ti, so that the relationship with the aperture value can be well organized when subtracting 60 ppm. Here, the limit value 5 was calculated | required from the actual value in experiment. Coefficients 0.292 and 0.152 are the mass ratio of N forming TiN to Ti and the mass ratio of N forming NbN to Nb, respectively.
[0022]
Moreover, although it is a parameter | index showing NbN precipitation amount, it was set as the following [2] type | formula.
W (Nb) × W (N) ≦ 9000 (2)
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
This utilizes the thermodynamic property that NbN is likely to precipitate when the product of Nb concentration and N concentration is large.
[0023]
Furthermore, in the material for thick plates, it is better to add the following conditions from the viewpoint of the material in order to maintain high toughness.
W (Ti) / W (N) ≦ 3.42 [3]
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
Any steel may be used as long as it is a carbon steel containing Ti, Nb and N.
[0024]
Note that cracking of the slab caused by grain boundary embrittlement may occur even at a temperature at which the steel structure transforms from γ to α (although it varies depending on the component, it is generally 750 to 800 ° C.). In order to prevent cracking in this temperature range, it is desirable to keep the minimum temperature in the continuous casting machine at 800 ° C. or higher in addition to the present invention.
[0025]
【Example】
Carbon steels having the components shown in Table 2 were continuously cast under the production conditions shown in Table 3, and cracks of the resulting slabs were investigated. As a method for investigating cracks, as shown in Table 4, scarf cutting was performed on the upper and lower surfaces of the slab by 2 mm to 10 mm, and the surface was visually observed. Further, a sample was cut out from the slab, and the state of the cross-sectional crack was examined by color check. The results are shown in Table 5.
[0026]
[Table 2]
Figure 0003756804
[0027]
[Table 3]
Figure 0003756804
[0028]
[Table 4]
Figure 0003756804
[0029]
[Table 5]
Figure 0003756804
[0030]
From Table 5, when the conditions of the present invention were satisfied (A to H), no crack was detected in both visual observation and color check. Furthermore, very good toughness was obtained with C, D, E, and F satisfying W (Ti) / W (N) ≦ 3.42 (conditional expression (3)).
[0031]
On the other hand, in any of Comparative Examples I to P, cracks occurred because the components did not satisfy the conditions of the present invention. That is, since conditional expression [1] is not satisfied for I, J, L, and N, and conditional expression [2] is not satisfied for K, M, and O, both conditional expressions are used for P. Therefore, cracks were observed by visual inspection and color check inspection of the slab.
[0032]
【The invention's effect】
As described above, according to the present invention, even in a steel containing Nb, Ti, and N, granulation cracking does not occur during continuous casting, and a good slab having no surface defects can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between a drawing value, a solute N index, and an NbN precipitation index.

Claims (7)

C:0.001〜0.5質量%、Mn:0.1〜3.0質量%、Si:0.005〜2.0質量%、P:0.001〜0.1質量%、S:0.001〜0.05質量%、酸素を0.0005〜0.0050質量%、Nを0.002以上0.015質量%以下含み、かつ、Alを0.001〜0.1質量%含み、かつ、Nbを0.006〜0.1質量%含み、かつ、Tiを0.004〜0.1質量%含み、残部鉄および不可避的不純物からなり、成分を以下の[1],[2],[3]式を満足するように調整したことを特徴とする粒界割れ欠陥の生じない連続鋳造鋳片。
W(N)−0.292×W(Ti)−0.152
×(W(Nb)−60)≦5 ・・・・・[1]
W(Nb)×W(N)≦9000 ・・・・・[2]
W(Ti)/W(N)≦3.42 ・・・・・[3]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
C: 0.001 to 0.5 mass%, Mn: 0.1 to 3.0 mass%, Si: 0.005 to 2.0 mass%, P: 0.001 to 0.1 mass%, S: 0.001 to 0.05 mass%, oxygen 0.0005 to 0.0050 mass%, N 0.002 to 0.015 mass%, and Al 0.001 to 0.1 mass% and includes Nb from 0.006 to 0.1 wt%, and contains a Ti from 0.004 to 0.1 wt%, Ri Do the balance iron and inevitable impurities, the following ingredients [1], [ A continuous cast slab that is adjusted so as to satisfy the formulas [2] and [3] and is free from grain boundary cracking defects.
W (N) -0.292 × W (Ti) -0.152
× (W (Nb) −60) ≦ 5 [1]
W (Nb) × W (N) ≦ 9000 (2)
W (Ti) / W (N) ≦ 3.42 [3]
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
C:0.001〜0.5質量%、Mn:0.1〜3.0質量%、Si:0.005〜2.0質量%、P:0.001〜0.1質量%、S:0.001〜0.05質量%、酸素を0.0005〜0.0050質量%、Nを0.002以上0.015質量%以下含み、かつ、Alを0.001〜0.1質量%含み、かつ、Nbを0.006〜0.1質量%含み、かつ、Tiを0.004〜0.1質量%含み、かつ、Vを0.01〜0.1質量%含み、残部鉄および不可避的不純物からなり、成分を以下の[1],[2],[3]式を満足するように調整したことを特徴とする粒界割れ欠陥の生じない連続鋳造鋳片。
W(N)−0.292×W(Ti)−0.152
×(W(Nb)−60)≦5 ・・・・・[1]
W(Nb)×W(N)≦9000 ・・・・・[2]
W(Ti)/W(N)≦3.42 ・・・・・[3]
ここで、W(N):N濃度(ppm)、W(Ti):Ti濃度(ppm)、W(Nb):Nb濃度(ppm)
C: 0.001-0.5 mass%, Mn: 0.1-3.0 mass%, Si: 0.005-2.0 mass%, P: 0.001-0.1 mass%, S: 0.001 to 0.05 mass%, oxygen 0.0005 to 0.0050 mass%, N 0.002 to 0.015 mass%, and Al 0.001 to 0.1 mass% Nb is contained in an amount of 0.006 to 0.1% by mass, Ti is contained in an amount of 0.004 to 0.1% by mass, and V is contained in an amount of 0.01 to 0.1% by mass. Ri do from impurities, the following ingredients [1], [2], [3] the continuous casting does not cause intergranular cracking defects, characterized in that adjusted so as to satisfy the equation slab.
W (N) -0.292 × W (Ti) -0.152
× (W (Nb) −60) ≦ 5 [1]
W (Nb) × W (N) ≦ 9000 (2)
W (Ti) / W (N) ≦ 3.42 [3]
Here, W (N): N concentration (ppm), W (Ti): Ti concentration (ppm), W (Nb): Nb concentration (ppm)
前記連続鋳造鋳片の組成に加えて、さらにCr,Moのうち一種または二種以上を0.1質量%以下含み、残部鉄および不可避的不純物からなることを特徴とする請求項1または2に記載の粒界割れ欠陥の生じない連続鋳造鋳片。 3. In addition to the composition of the continuous cast slab, the alloy further comprises 0.1% by mass or less of one or more of Cr and Mo, and is composed of the balance iron and inevitable impurities. Continuous cast slab without the described grain boundary cracking defect. 前記連続鋳造鋳片の組成に加えて、さらにCuを0.5質量%以下含み、残部鉄および不可避的不純物からなることを特徴とする請求項1ないし3のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。 The intergranular crack defect according to any one of claims 1 to 3, further comprising 0.5 mass% or less of Cu in addition to the composition of the continuous cast slab, comprising the balance iron and inevitable impurities. Continuous cast slab that does not cause 前記連続鋳造鋳片の組成に加えて、さらにNiを0.5質量%以下含み、残部鉄および不可避的不純物からなることを特徴とする請求項1ないし4のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。 The intergranular crack defect according to any one of claims 1 to 4, further comprising 0.5% by mass or less of Ni in addition to the composition of the continuous cast slab, comprising the balance iron and inevitable impurities. Continuous cast slab that does not cause 前記連続鋳造鋳片の組成に加えて、さらにBを0.1質量%以下含み、残部鉄および不可避的不純物からなることを特徴とする請求項1ないし5のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。 The grain boundary crack defect according to any one of claims 1 to 5, further comprising 0.1 mass% or less of B in addition to the composition of the continuous cast slab, comprising the balance iron and inevitable impurities. Continuous cast slab that does not cause 前記連続鋳造鋳片の組成に加えて、さらにZr,Mg,Caのうち一種または二種以上を0.1質量%以下含み、残部鉄および不可避的不純物からなることを特徴とする請求項1ないし6のいずれかに記載の粒界割れ欠陥の生じない連続鋳造鋳片。 In addition to the composition of the continuous cast slab, it further comprises 0.1 mass% or less of one or more of Zr, Mg, and Ca, and consists of the balance iron and inevitable impurities. The continuous cast slab in which the grain boundary cracking defect according to any one of 6 is not generated.
JP2001365520A 2001-11-30 2001-11-30 Continuous cast slabs with no intergranular cracking defects Expired - Fee Related JP3756804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365520A JP3756804B2 (en) 2001-11-30 2001-11-30 Continuous cast slabs with no intergranular cracking defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365520A JP3756804B2 (en) 2001-11-30 2001-11-30 Continuous cast slabs with no intergranular cracking defects

Publications (2)

Publication Number Publication Date
JP2003166038A JP2003166038A (en) 2003-06-13
JP3756804B2 true JP3756804B2 (en) 2006-03-15

Family

ID=19175533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365520A Expired - Fee Related JP3756804B2 (en) 2001-11-30 2001-11-30 Continuous cast slabs with no intergranular cracking defects

Country Status (1)

Country Link
JP (1) JP3756804B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100537814C (en) * 2004-04-19 2009-09-09 日立金属株式会社 High Cr high-ni austenitic heat-resistant cast steel reaches by its exhaust system part that constitutes
JP5494173B2 (en) * 2010-04-21 2014-05-14 新日鐵住金株式会社 Steel for torsion bar and torsion bar of seat belt retractor with excellent torsional fracture characteristics
JP5870860B2 (en) * 2012-06-22 2016-03-01 新日鐵住金株式会社 Continuous cast slab for high toughness steel with excellent surface crack resistance

Also Published As

Publication number Publication date
JP2003166038A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US4153454A (en) Steel materials having an excellent hydrogen induced cracking resistance
EP2141254B1 (en) Steel ingot for forging and integral crankshaft
WO2018104984A1 (en) HIGH Mn STEEL SHEET AND PRODUCTION METHOD THEREFOR
EP1978124A1 (en) Forging steel, forging and crankshaft
KR20180038029A (en) High-strength thick steel plate for structural use and manufacturing method therefor
EP3677700A1 (en) High-mn steel and production method therefor
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
CN108300938A (en) A kind of rolled wire steel and its processing method
JP2005298909A (en) Cast slab having reduced surface crack
JP3633515B2 (en) Hot-rolled steel sheet having excellent resistance to hydrogen-induced cracking and method for producing the same
JP3756804B2 (en) Continuous cast slabs with no intergranular cracking defects
JP5870019B2 (en) Forged steel products with excellent resistance to hydrogen cracking
JPWO2002077309A1 (en) Cast steel and casting mold
JP2015006680A (en) Continuous casting method of cast piece and continuous casting cast piece
JP3509634B2 (en) Low alloy cast steel and its heat treatment method
JP5443331B2 (en) Forged steel and assembled crankshaft
JP3831184B2 (en) Stainless steel slab having austenite-ferrite two-phase excellent in hot workability
DE112021004006T5 (en) High corrosion resistant Ni-Cr-Mo-N alloy with superior phase stability
DE112021003995T5 (en) HIGHLY CORROSION RESISTANT AUSTENITIC STAINLESS STEEL AND METHOD OF MAKING THE SAME
JP4593006B2 (en) Method for producing a billet free from crack defects
JP7530447B2 (en) Precipitation hardening martensitic stainless steel with excellent fatigue resistance
JPH0790504A (en) Ni-containing steel for low temperature use and secondary cooling method of its continuously cast slab
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
JP3186614B2 (en) Continuous casting method of Ni-containing steel
JP2659271B2 (en) Manufacturing method of homogeneous large low alloy steel ingot

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R151 Written notification of patent or utility model registration

Ref document number: 3756804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees