JP3756798B2 - Metal pipe workability evaluation apparatus and evaluation method - Google Patents

Metal pipe workability evaluation apparatus and evaluation method Download PDF

Info

Publication number
JP3756798B2
JP3756798B2 JP2001321521A JP2001321521A JP3756798B2 JP 3756798 B2 JP3756798 B2 JP 3756798B2 JP 2001321521 A JP2001321521 A JP 2001321521A JP 2001321521 A JP2001321521 A JP 2001321521A JP 3756798 B2 JP3756798 B2 JP 3756798B2
Authority
JP
Japan
Prior art keywords
metal tube
stress
axial
circumferential
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001321521A
Other languages
Japanese (ja)
Other versions
JP2002323419A (en
Inventor
美昭 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001321521A priority Critical patent/JP3756798B2/en
Publication of JP2002323419A publication Critical patent/JP2002323419A/en
Application granted granted Critical
Publication of JP3756798B2 publication Critical patent/JP3756798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は鋼管,チタン管等の金属管の2次加工性を評価するための装置及び方法に関する。特に管の塑性異方性r値や加工硬化指数n値や肉厚t、肉厚管径比鋼管寸法t/Dなどの違いによる金属管の円周方向の加工性を一律に評価することができる。特に近年自動車用の構造部材のハイドロフォームを用いた成形を行う鋼管の製造時の加工性評価に適している。
【0002】
【従来の技術】
一般に鋼管の材料の機械的な特性を評価する方法はJIS11号の管の引張試験やJIS12号による鋼管から弧状引張試験を行う方法が用いられている。
【0003】
【発明が解決しようとする課題】
前記の材料試験法は鋼管の軸方向の単軸引っ張りの応力状態での応力−ひずみの関係しか評価できないという問題がある。
本発明は、金属管の種々の加工での変形に近い状態での材料の加工性を評価する装置及び評価方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
係る課題を解決するため、本発明の要旨とするところは、
(1)金属管1の両端を掴む支持部2と、金属管内へ流体圧を負荷する内圧負荷増圧装置3と,金属管に軸方向に応力を負荷する軸方向荷重制御装置4と、金属管の軸方向歪測定装置5と,金属管の円周方向径測定装置6と、前記軸方向歪測定装置5により測定した金属管軸方向歪と前記円周方向径測定装置6により測定した金属管円周方向径に基づいて金属管の軸方向に働く応力σφと金属管の円周方向に働く応力σθの応力比σφ/σθを制御する応力比制御手段7を有することを特徴とする金属管の加工性評価装置,
(2)金属管の両端を支持し、金属管内の軸方向に加える流体圧と金属管の軸方向に加える応力を制御しながら金属管の2次加工性を評価する方法において、金属管の軸方向歪と円周方向径を測定し、前記軸方向歪と前記円周方向径に基づいて金属管の軸方向に働く応力σφと金属管の円周方向に働く応力σθの応力比σφ/σθを求め、金属管が破断するまで前記応力比が一定となるように金属管に加える流体圧に応じて金属管の軸方向に加える応力を制御することを特徴とする金属管の加工性評価方法,にある。
【0005】
【発明の実施の形態】
本発明を詳細に説明する。
図1(a)〜(c)に本発明の実施例の評価装置を示す。
鋼管1をシールし、かつ軸方向の荷重の負荷により鋼管がすべらないように支持部2で左右を支持し、軸方向に応力を付与するシリンダーを鋼管両端に配置する。内圧負荷増圧装置3は金属管内に水,エマルジョン系の潤滑材やソリブル油等の水溶性潤滑材を添加した水等の流体に圧力を加える際に、油圧ポンプにより発生した1次圧の面積比を小さくさせて、増圧させる。
油圧等の1次圧の圧力を電磁減圧比例弁やサーボ弁を用いて1次圧を制御し、2次側の液体の圧力を増加させるものである。増圧装置としては、単動型、複動型があるが、どちらを用いてもよい。
【0006】
軸方向の荷重制御装置4はサーボバルブを用いてシリンダーのロッドとヘッド側の圧力と受圧面積からデジタルシグナルプロセッサー(DSP)を用いたデジタル制御を行う。鋼管の着脱等の位置決めを行う場合の位置制御はシリンダーに内蔵したデジタル変位計を用いた精密な位置のフィードバック制御により行う。
【0007】
まず鋼管1と支持部2を位置あわせし、鋼管1を固定する、その後、内圧の上昇に伴い、軸方向の荷重制御をシリンダーのロッド受圧面積とロッド負荷圧力の積と、ヘッド受圧面積とヘッドの負荷圧力との積の差分から計算できる荷重により鋼管へ力を負荷するシリンダーの軸荷重制御を行う。荷重はロードセルなどで直接測定するか、圧力検出から軸荷重を求めて制御してもよい。
【0008】
また、軸方向、円周方向の曲率により応力状態は変化するので、管中央部に間隔をLとする2本の罫書線(マーカー)を描き(図1(b)参照)、軸方向歪み測定装置5としてリニアCCDを用いた画像処理により罫書線の間隔の変化量から軸方向の歪を測定し,後述する(13)式により軸方向の歪を求め,円周方向径測定装置6としてリニアCCDセンサーを内蔵したカメラを管軸方向に3箇所設置し,半径方向変位を非接触のレーザで3箇所測定し、軸方向の曲率半径R[mm]を求めた
軸方向の曲率Rは管軸方向の3点の測定点より3点を通る円の計算より,求められる。測定位置を(x1,y1),(x2,y2),(x3,y3)とすると
B=((x1−x3)(x1 2−x2 2+y1 2−y2 2)−(x1−x2)(x1 2−x3 2+y1 2−y3 2) )
/{(−2(y1−y2)(x1−x3)+2(y1−y3)(x1−x2)) (1)
A=(−2B(y1−y2)+x1 2−x2 2+y1 2−y2 2)/(2(x1−x2)) (2)
Rz=SQR((x2−A)2+(y2−B)2) (3)
中央部のセンサーの半径方向位置から求めた周方向の曲率半径R[mm]は以下のように求められる。
周方向の曲率半径Rは初期の鋼管径D[mm]と加圧により貼り出した量ΔR[mm]により,
=D/2+ΔRにより求められる。
応力比制御手段7では、前記軸方向歪測定装置5により測定した金属管軸方向歪と前記円周方向径測定装置6により測定した金属管円周方向径に基づいて,後述するように金属管の軸方向に働く応力σφと金属管の円周方向に働く応力σθの応力比σφθを算出し、金属管が破断するまで前記応力比が一定となるように金属管に加える流体圧に応じて金属管の軸方向に加える応力を制御する。
【0009】
円周方向径測定装置6の測定結果に基づいて算出した曲率を用いて応力計算を行い(計算式は後述)、内圧負荷時に発生する鋼管端面受圧部に発生する荷重に加え、前述の応力状態によって規定されるシリンダー軸に与える荷重(計算式は後述)にてシリンダー軸荷重を制御する。また、内圧により周方向に鋼管が変形すると、管外径が変化し、カメラ5と罫書線までの距離が変化するので,円周方向径測定の結果を用いて補正する。
後述の(12)式により鋼管の初期の鋼管までの距離をH0として、鋼管の貼り出し量ΔRだけ近づく分の距離変化が補正できる。
また、鋼管の変形により、肉厚も変化するので管円周方向および管軸方向の2軸ひずみから体積一定の条件より肉厚ひずみを算出して(計算式は後述)、肉厚を求めて上述の応力の釣り合い計算を行い(計算式は後述)、軸荷重を決定することを時事刻々繰り返し制御を行う。
【0010】
以下に計算方法を詳細に説明する。
鋼管の肉厚中央の主曲率半径を鋼管の子午線方向曲率半径Rφ[mm]、円周方向曲率半径Rθ[mm]とする。
金属管の軸方向に働く応力σφ[MPa],金属管の円周方向に働く応力σθ[MPa]とする。
内圧p[MPa]、軸方向荷重W[N]が作用すると、力の釣り合い条件から子午線方向の釣り合いは

Figure 0003756798
となり、管の厚みをt[mm]とすれば、内圧との釣り合いは
Figure 0003756798
となる。
ここで応力比α=σφθとすると、内圧によって変化する軸方向荷重を示すW[MPa]は
Figure 0003756798
となる。内圧pが作用したときに、鋼管軸方向に対して圧力のかかる冶具端面荷重Wは(4)式で表せるので、(5)式に示すように冶具端面荷重W[N]と形状変化と応力比により規定される荷重W[N]にて制御を行う。
Figure 0003756798
Figure 0003756798
Figure 0003756798
:3点の軸方向に配置したセンサーによる半径方向位置より求めた子午線方向外面半径[mm]
Figure 0003756798
:中央部のセンサーの半径方向位置から求めた周方向外面半径[mm]
管子午線方向の長さL[mm]は
Figure 0003756798
となる。ここで、観測点からの距離変化(カメラから被測定物との距離)を考慮して,カメラからの距離をH0[mm],鋼管中央部の変位ΔR[mm]0は素管の罫書き長さL[mm]とすれば、
Figure 0003756798
となる。内圧pに応じて応力比α=σφθを決め、軸方向の荷重を変形した管中央部の子午線、周方向曲率に応じて制御することで、一定の応力状態を保つことが可能となる。
α=σφθを応力比として管軸方向の罫書き線の長さ変化より、子午線方向ひずみεφ、周方向ひずみεθ、板厚方向ひずみεはそれぞれ下記(13)〜(15)式のようになる。
Figure 0003756798
Figure 0003756798
Figure 0003756798
変形中の鋼管の肉厚は周方向の応力負荷のみであれば
α=0 (16)
となり、子午線と周方向の応力比が1:2であればα=0.5で平面ひずみ状態となる。
本発明では管中央部分の子午線の長さ変化と周方向の径(曲率)、子午線方向の曲率の変化を考慮し管中央部の応力状態を制御して子午線・周方向のひずみも求めることができる。
よって、ハイドロフォーム加工時にいろいろ方向に応力が作用するが、本発明のように応力比を一定にして制御することにより、応力比の違いによる鋼管のハイドロフォーム加工性が評価できる。これにより、軸方向と円周方向の主曲率で管中央部の円周方向の応力σθと子午線方向応力σφの応力比を変えて試験を行うことで、鋼管の各応力比での応力歪線図と破断限界線が得られる。
このように応力状態を一定にして、鋼管を変形させ、破断までの挙動を捉えることにより、板材と同様な加工限界を求めることができる。
【0011】
【実施例】
第2図に本発明の装置により、φ60.5mm肉厚t=1.6mmの冷延板を成形した長さ300mmの鋼管を用いてσφθ=0の場合と平面歪の状態σφθ=0.5の場合に加工硬化係数n値を変えた場合(鋼管成形のひずみが大きい場合と小さい場合)のひずみ履歴を示す。
同一板材を鋼管に成形・溶接した溶接管を製造した場合、加工硬化係数が高い方が、加工限界が高く、加工性に優れることがわかる。
このように応力状態を一定にして、鋼管を変形させ、破断までの挙動を捉えることにより、板材と同様な加工限界を求めることができる。
円周方向単軸状態でのひずみから、管円周方向の塑性異方性を表すrθ値を測定することが可能となる(第3図)。rθは単軸応力状態(管軸方向の応力がゼロのとき)で円周方向に膨くらむ際、軸方向と肉厚方向の歪増分(18式)より計算できる。
θ値は各歪の変化量から計算でき、εφ,εθは計測により求まり、ある時間ごとの歪の変化量(増分)は体積一定の条件より(14)式で表せる。
dεφ+dεθ+dε=0 (17) の関係式から
肉厚方向の歪増分dεがもとめられ 円周方向の異方性を示すrθ
θ=dεφ/dε(18)
を用いて算出できる。
ほぼ板材と同等な板材の円周方向の塑性異方性rθ値を得られていることが確認できている。
これにより従来の評価が困難であった、鋼管の塑性異方性を求めることが可能であり、かつ軸方向および円周方向の応力−ひずみ関係も求めることができた。
上述の計算により求められた軸方向は縦軸σφと、横軸εφを、円周方向は縦軸σθ、横軸にεθをプロットすればよい。
【0012】
【発明の効果】
以上詳述したように、従来技術では鋼管においては管引張りや切り出しによる引張り試験では軸(子午線)方向の応力−ひずみ関係しか捉えることができなかったが、本発明により、円周方向塑性異方性:rθ値を単軸応力場で測定することや、材料異方性により歪履歴が変化する挙動も捕らえることが可能である等優れた効果を有する。
【図面の簡単な説明】
【図1】本発明例の試験装置を示す全体概要図で、図1(a)は、初期状態を示す全体概要平面図、図1(b)は、初期状態を示す全体概要立面図、図1(c)は、試験時を示す全体概要図平面図。
【図2】本発明の制御に用いる鋼管の変形を示す説明図。
【図3】本発明例の評価装置を用いて、加工n値を変えた場合の破断限界線を求めた説明図。
【符号の説明】
1 金属管(鋼管)
2 支持部
3 内圧負荷増圧装置
4 軸方向荷重制御装置(シリンダーのデジタルサーボ制御)
5 軸方向歪測定装置
6 円周方向径測定装置
7 応力比制御手段[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus and method for evaluating secondary workability of a metal pipe such as a steel pipe or a titanium pipe. In particular, it is possible to uniformly evaluate the workability in the circumferential direction of a metal pipe due to differences in the plastic anisotropy r value, work hardening index n value, wall thickness t, wall thickness ratio steel pipe dimension t / D, etc. it can. In particular, in recent years, it is suitable for evaluation of workability at the time of manufacturing a steel pipe that is molded using a hydroform of a structural member for automobiles.
[0002]
[Prior art]
In general, as a method for evaluating the mechanical characteristics of the material of the steel pipe, there are used a JIS No. 11 pipe tensile test or a JIS No. 12 steel pipe arc tensile test.
[0003]
[Problems to be solved by the invention]
The material test method has a problem that only the stress-strain relationship in the uniaxial tensile stress state in the axial direction of the steel pipe can be evaluated.
An object of this invention is to provide the apparatus and evaluation method which evaluate the workability of the material in the state close | similar to the deformation | transformation in the various process of a metal pipe.
[0004]
[Means for Solving the Problems]
In order to solve the problem, the gist of the present invention is as follows:
(1) A support portion 2 that grips both ends of the metal tube 1, an internal pressure load intensifier 3 that applies fluid pressure into the metal tube, an axial load control device 4 that applies stress in the axial direction to the metal tube, and a metal Pipe axial strain measuring device 5, metal tube circumferential diameter measuring device 6, metal tube axial strain measured by axial strain measuring device 5 and metal measured by circumferential diameter measuring device 6 It has stress ratio control means 7 for controlling the stress ratio σ φ / σ θ between the stress σ φ acting in the axial direction of the metal tube and the stress σ θ acting in the circumferential direction of the metal tube based on the pipe circumferential direction diameter. A characteristic metal pipe workability evaluation device,
(2) A method for evaluating the secondary workability of a metal tube while supporting both ends of the metal tube and controlling the fluid pressure applied in the axial direction in the metal tube and the stress applied in the axial direction of the metal tube. Measure the direction strain and the circumferential diameter, and based on the axial strain and the circumferential diameter, the stress ratio σ of the stress σ φ acting in the axial direction of the metal tube and the stress σ θ acting in the circumferential direction of the metal tube seeking phi / sigma theta, of the metal tube, characterized in that to control the stress applied to the axial direction of the metal tube in accordance with the fluid pressure applied to the metal tube such that the stress ratio is kept constant until the metal tube is broken It is in the processability evaluation method.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail.
1A to 1C show an evaluation apparatus according to an embodiment of the present invention.
The steel pipe 1 is sealed, and left and right are supported by the support portion 2 so that the steel pipe does not slip due to an axial load, and cylinders that apply stress in the axial direction are disposed at both ends of the steel pipe. The internal pressure load intensifier 3 is an area of the primary pressure generated by the hydraulic pump when pressure is applied to a fluid such as water, water-based lubricants such as emulsion-based lubricants and solubilized oils added in metal pipes. Increase the pressure by decreasing the ratio.
The primary pressure such as hydraulic pressure is controlled by using an electromagnetic pressure reducing proportional valve or a servo valve to increase the secondary liquid pressure. As the pressure booster, there are a single-acting type and a double-acting type, either of which may be used.
[0006]
The axial load control device 4 uses a servo valve to perform digital control using a digital signal processor (DSP) from the cylinder rod and head side pressure and pressure receiving area. The position control when positioning such as attaching and detaching the steel pipe is performed by precise position feedback control using a digital displacement meter built in the cylinder.
[0007]
First, the steel pipe 1 and the support portion 2 are aligned, and the steel pipe 1 is fixed. Then, as the internal pressure increases, the axial load control is performed by multiplying the product of the rod pressure receiving area of the cylinder and the rod load pressure, the head pressure receiving area and the head. The axial load control of the cylinder that applies force to the steel pipe is performed by the load that can be calculated from the difference between the product and the load pressure. The load may be directly measured with a load cell or the like, or may be controlled by obtaining the axial load from pressure detection.
[0008]
In addition, since the stress state changes depending on the curvature in the axial direction and the circumferential direction, two ruled lines (markers) with an interval L 0 are drawn at the center of the tube (see FIG. 1B), and the axial distortion As the measuring device 5, the axial distortion is measured from the amount of change in the interval between the ruled lines by image processing using a linear CCD, and the axial distortion is obtained by the following equation (13). the camera with a built-in linear CCD sensor placed three in the tube axis direction, the radial displacement is measured three laser non-contact, the curvature of the axial radius R Z curvature in the axial direction obtained a [mm] R Z Is obtained by calculating a circle passing through three points from three measurement points in the tube axis direction. If the measurement position is (x 1 , y 1 ), (x 2 , y 2 ), (x 3 , y 3 )
B = ((x 1 −x 3 ) (x 1 2 −x 2 2 + y 1 2 −y 2 2 ) − (x 1 −x 2 ) (x 1 2 −x 3 2 + y 1 2 −y 3 2 ) )
/ {(− 2 (y 1 −y 2 ) (x 1 −x 3 ) +2 (y 1 −y 3 ) (x 1 −x 2 )) (1)
A = (− 2B (y 1 −y 2 ) + x 1 2 −x 2 2 + y 1 2 −y 2 2 ) / (2 (x 1 −x 2 )) (2)
R z = SQR ((x 2 −A) 2 + (y 2 −B) 2 ) (3)
The radius of curvature R B [mm] in the circumferential direction obtained from the radial position of the sensor in the center is obtained as follows.
The amount ΔR B [mm] was put up by the circumferential direction of the radius of curvature R B Initial steel pipe diameter D [mm] and a pressure,
R B = D / 2 + ΔR B
In the stress ratio control means 7, as will be described later, the metal tube axial strain measured by the axial strain measuring device 5 and the metal tube circumferential diameter measured by the circumferential diameter measuring device 6 are used. The stress ratio σ φ / σ θ between the stress σ φ acting in the axial direction of the metal and the stress σ θ acting in the circumferential direction of the metal tube is calculated, and the stress ratio is kept constant until the metal tube breaks. The stress applied in the axial direction of the metal tube is controlled according to the applied fluid pressure.
[0009]
Stress calculation is performed using the curvature calculated based on the measurement result of the circumferential diameter measuring device 6 (the calculation formula will be described later), and in addition to the load generated in the steel pipe end face pressure receiving portion generated at the time of internal pressure load, the stress state described above The cylinder shaft load is controlled by the load applied to the cylinder shaft defined by (the calculation formula will be described later). Further, when the steel pipe is deformed in the circumferential direction due to the internal pressure, the outer diameter of the pipe is changed and the distance between the camera 5 and the ruled line is changed. Therefore, the correction is made using the result of the circumferential diameter measurement.
The distance to the initial steel of the steel pipe by later-described equation (12) as H 0, minute distance varies toward amount [Delta] R B out adhesion of the steel pipe can be corrected.
Also, since the wall thickness changes due to the deformation of the steel pipe, the wall thickness strain is calculated from the biaxial strain in the tube circumferential direction and the tube axis direction under the condition of constant volume (the calculation formula will be described later), and the wall thickness is obtained. The balance calculation of the stress described above is performed (the calculation formula will be described later), and the axial load is determined and controlled repeatedly over time.
[0010]
The calculation method will be described in detail below.
The main curvature radius at the thickness center of the steel pipe is defined as a meridian direction curvature radius R φ [mm] and a circumferential curvature radius R θ [mm] of the steel pipe.
The stress σ φ [MPa] acting in the axial direction of the metal tube and the stress σ θ [MPa] acting in the circumferential direction of the metal tube are assumed.
When internal pressure p [MPa] and axial load W [N] are applied, the balance in the meridian direction is
Figure 0003756798
If the thickness of the tube is t [mm], the balance with the internal pressure is
Figure 0003756798
It becomes.
Here, if the stress ratio α = σ φ / σ θ , W p [MPa] indicating the axial load that changes depending on the internal pressure is
Figure 0003756798
It becomes. When the internal pressure p is applied, since the jig end surface load W A-consuming pressure to the steel pipe axis direction expressed by equation (4), (5) a jig end surface load W A [N] as shown in equation shape change And the load W p [N] defined by the stress ratio.
Figure 0003756798
Figure 0003756798
Figure 0003756798
R Z : meridian direction outer surface radius [mm] obtained from radial position by sensors arranged in three axial directions
Figure 0003756798
R B : Radius in the circumferential direction obtained from the radial position of the sensor in the center part [mm]
The length L [mm] in the meridian direction is
Figure 0003756798
It becomes. Here, taking into account the change in distance from the observation point (distance from the camera to the object to be measured), the distance from the camera is H 0 [mm], the displacement ΔR B [mm] and L 0 of the steel pipe center is prime. If the ruled length L N [mm] of the tube is
Figure 0003756798
It becomes. It is possible to maintain a constant stress state by determining the stress ratio α = σ φ / σ θ according to the internal pressure p and controlling the axial load according to the meridian and circumferential curvature of the deformed tube center. It becomes.
From the change in the length of the scribe line in the tube axis direction with α = σ φ / σ θ as the stress ratio, the meridian direction strain ε φ , the circumferential direction strain ε θ , and the plate thickness direction strain ε t are the following (13) to ( 15) It becomes like a formula.
Figure 0003756798
Figure 0003756798
Figure 0003756798
If the thickness of the steel pipe being deformed is only the stress load in the circumferential direction, α = 0 (16)
If the stress ratio between the meridian and the circumferential direction is 1: 2, a plane strain state is obtained when α = 0.5.
In the present invention, the meridian / circumferential strain can be obtained by controlling the stress state in the central part of the pipe in consideration of the length change of the meridian at the central part of the pipe, the circumferential diameter (curvature), and the change of the meridian direction of curvature. it can.
Therefore, stress acts in various directions during hydroforming, but by controlling the stress ratio to be constant as in the present invention, the hydroforming workability of the steel pipe due to the difference in stress ratio can be evaluated. As a result, the stress at each stress ratio of the steel pipe is tested by changing the stress ratio between the circumferential stress σ θ and the meridian stress σ φ at the center of the pipe with the principal curvature in the axial direction and the circumferential direction. Strain diagram and break limit line are obtained.
In this way, by making the stress state constant, deforming the steel pipe, and capturing the behavior up to the fracture, the processing limit similar to that of the plate material can be obtained.
[0011]
【Example】
FIG. 2 shows the case of σ φ / σ θ = 0 and the state of plane strain σ using a 300 mm long steel pipe formed by cold-rolled sheet of φ60.5 mm wall thickness t = 1.6 mm by the apparatus of the present invention. This shows the strain history when the work hardening coefficient n value is changed when φ / σ θ = 0.5 (when the steel pipe forming strain is large and small).
When a welded pipe is manufactured by welding and molding the same plate material to a steel pipe, it can be seen that a higher work hardening coefficient has a higher processing limit and excellent workability.
In this way, by making the stress state constant, deforming the steel pipe, and capturing the behavior up to the fracture, the processing limit similar to that of the plate material can be obtained.
From the strain in the uniaxial state in the circumferential direction, it is possible to measure the value representing the plastic anisotropy in the circumferential direction of the tube (FIG. 3). r theta can be calculated from the single-axis stress state when (tube axis direction of the stress at zero) dazzling Rise circumferentially, strain increments of axial and thickness direction (18 type).
The value can be calculated from the amount of change in each strain, ε φ and ε θ can be obtained by measurement, and the amount of change (increment) in strain per time can be expressed by equation (14) from the condition of constant volume.
dε φ + dε θ + dε t = 0 (17) r θ value indicating anisotropy in the circumferential direction is determined distortion increment d? t in the thickness direction from the relation of r θ = dε φ / dε t (18 )
Can be used to calculate.
It has been confirmed that the plastic anisotropy value in the circumferential direction of the plate material substantially equivalent to the plate material is obtained.
As a result, it was possible to determine the plastic anisotropy of the steel pipe, which was difficult to evaluate conventionally, and to determine the stress-strain relationship in the axial direction and the circumferential direction.
The axis direction obtained by the above calculation may be plotted with the vertical axis σ φ and the horizontal axis ε φ , the circumferential direction with the vertical axis σ θ , and the horizontal axis with ε θ .
[0012]
【The invention's effect】
As described in detail above, in the conventional technology, in the steel pipe, only the stress-strain relationship in the axial (meridian) direction can be grasped in the tensile test by pipe pulling and cutting, but according to the present invention, the circumferential plastic anisotropic sex: and measuring the r theta value in uniaxial stress field, having equal excellent effect strain history can be captured even behavior varies depending on the material anisotropy.
[Brief description of the drawings]
FIG. 1 is an overall schematic diagram showing a test apparatus of an example of the present invention, FIG. 1 (a) is an overall schematic plan view showing an initial state, and FIG. 1 (b) is an overall schematic elevation view showing an initial state; FIG.1 (c) is a general | schematic schematic top view which shows the time of a test.
FIG. 2 is an explanatory diagram showing deformation of a steel pipe used for control according to the present invention.
FIG. 3 is an explanatory diagram for determining a fracture limit line when the machining n value is changed using the evaluation apparatus of the present invention example.
[Explanation of symbols]
1 Metal pipe (steel pipe)
2 Support section 3 Internal pressure load booster 4 Axial load controller (digital servo control of cylinder)
5 Axial strain measuring device 6 Circumferential diameter measuring device 7 Stress ratio control means

Claims (2)

金属管(1)の両端を掴む支持部(2)と、金属管内へ流体圧を負荷する内圧負荷増圧装置(3)と,金属管に軸方向に応力を負荷する軸方向荷重制御装置(4)と、金属管の軸方向歪測定装置(5)と,金属管の円周方向径測定装置(6)と、前記軸方向歪測定装置(5)により測定した金属管軸方向歪と前記円周方向径測定装置(6)により測定した金属管円周方向径に基づいて金属管の軸方向に働く応力σφと金属管の円周方向に働く応力σθの応力比σφ/σθを制御する応力比制御手段(7)を有することを特徴とする金属管の加工性評価装置。A support part (2) that grips both ends of the metal pipe (1), an internal pressure load intensifier (3) that applies fluid pressure into the metal pipe, and an axial load control device that applies axial stress to the metal pipe ( 4), the axial strain measuring device (5) of the metal tube, the circumferential diameter measuring device (6) of the metal tube, the axial strain of the metal tube measured by the axial strain measuring device (5), and the Stress ratio σ φ / σ of stress σ φ acting in the axial direction of the metal tube and stress σ θ acting in the circumferential direction of the metal tube based on the circumferential diameter of the metal tube measured by the circumferential diameter measuring device (6) An apparatus for evaluating the workability of a metal tube, comprising stress ratio control means (7) for controlling θ . 金属管の両端を支持し、金属管内の軸方向に加える流体圧と金属管の軸方向に加える応力を制御しながら金属管の2次加工性を評価する方法において、金属管の軸方向歪と円周方向径を測定し、前記軸方向歪と前記円周方向径に基づいて金属管の軸方向に働く応力σφと金属管の円周方向に働く応力σθの応力比σφ/σθを求め、金属管が破断するまで前記応力比が一定となるように金属管に加える流体圧に応じて金属管の軸方向に加える応力を制御することを特徴とする金属管の加工性評価方法。In a method for evaluating the secondary workability of a metal tube while supporting both ends of the metal tube and controlling the fluid pressure applied in the axial direction in the metal tube and the stress applied in the axial direction of the metal tube, The circumferential diameter is measured, and the stress ratio σ φ / σ of the stress σ φ acting in the axial direction of the metal tube and the stress σ θ acting in the circumferential direction of the metal tube based on the axial strain and the diameter in the circumferential direction θ is obtained, and the processability evaluation of the metal tube is characterized by controlling the stress applied in the axial direction of the metal tube according to the fluid pressure applied to the metal tube so that the stress ratio is constant until the metal tube breaks Method.
JP2001321521A 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method Expired - Fee Related JP3756798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321521A JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-46803 2001-02-22
JP2001046803 2001-02-22
JP2001321521A JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2002323419A JP2002323419A (en) 2002-11-08
JP3756798B2 true JP3756798B2 (en) 2006-03-15

Family

ID=26609904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321521A Expired - Fee Related JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP3756798B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825168A (en) * 2017-03-23 2017-06-13 苏州市顺仪五金有限公司 A kind of routing machine with detection and blowing function

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819696B1 (en) * 2006-08-18 2008-04-04 주식회사 포스코 Tube friction measurement apparatus for hydroforming tube
GB2458293B (en) 2008-03-12 2012-10-17 Stats Uk Ltd Test tool
GB2458294B (en) * 2008-03-12 2012-10-24 Stats Uk Ltd Test tool
JP5029620B2 (en) * 2009-01-07 2012-09-19 株式会社デンソー Method for manufacturing cylindrical member
TWI509219B (en) * 2010-11-18 2015-11-21 Kokusai Keisokuki Kk Material testing machine
WO2012067179A1 (en) * 2010-11-18 2012-05-24 国際計測器株式会社 Material testing machine
KR101355734B1 (en) 2012-03-29 2014-01-28 현대제철 주식회사 Formability measuring device for metal sheet
CN106289731A (en) * 2015-05-12 2017-01-04 中国石油化工股份有限公司 A kind of assay device for cementing tool and test method thereof
JP6092348B1 (en) * 2015-11-09 2017-03-08 日本核燃料開発株式会社 Biaxial stress loading device and test method for tubular specimen
CN115532928B (en) * 2022-11-24 2023-03-03 江苏新恒基特种装备股份有限公司 Wall thickness real-time detection control device in hydraulic tee joint forming process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825168A (en) * 2017-03-23 2017-06-13 苏州市顺仪五金有限公司 A kind of routing machine with detection and blowing function

Also Published As

Publication number Publication date
JP2002323419A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP3756798B2 (en) Metal pipe workability evaluation apparatus and evaluation method
KR101139010B1 (en) Thin plate press molding device and thin plate press molding method
EP2319634B1 (en) Hydroforming equipment and hydroforming method
CN101819113B (en) Side bend test method
EP3505896B1 (en) Diaphragm producing method
KR20180095859A (en) Sensor for high-voltage line and manufacturing method thereof
Wu et al. Local constitutive behavior of undermatched welded joints in pipeline steel using digital image correlation technology
CN106404553B (en) Three-point bending sample ductile fracture toughness JIC auxiliary test device and test method
CN103115817A (en) Method for obtaining shrinkage strain ratio in continuous change of titanium alloy tube
Huang et al. Measurement of r-values of high strength steels using digital image correlation
JP4612564B2 (en) Mold for hydroforming
JP4625421B2 (en) Hydroform processing method and apparatus
JP2011173136A (en) Method of determining bending limitation of plate material and method of determining crack of pressed component by bending using the same
Şükür et al. Comparison of flow curves of AA 5457-O sheet material determined by hydraulic bulge and tensile tests at warm forming temperatures
Savic et al. Effects of gage section geometry on tensile material properties by digital image correlation
Konopik et al. Application of micro-tensile test for material characterization of mild steel DC01
Stachowicz Biaxial stress-strain relationship of sheet metal from hydraulic bulging test
Vasilescu Development of a hydraulic bulge test to determine the work hardening behaviour of sheet materials
Mahmudi Post-uniform deformation in uniaxial and equi-biaxial stretching of aluminium alloy sheets
CN205981900U (en) Test thin -walled pipe hoop tensile strength's device
Ren et al. Effect of weld characteristics on the formability of welded tubes in NC bending process
JP2007275967A (en) Method and apparatus for detecting crack of die in hydroforming process
JP3427138B2 (en) Bending method
Wang et al. Investigation of shrink flanging-prediction of wrinkling and experimental verification
Gedney Measuring the plastic strain ratio of sheer metals

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R151 Written notification of patent or utility model registration

Ref document number: 3756798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees