JP2002323419A - Device and method for evaluating workability of metallic pipe - Google Patents

Device and method for evaluating workability of metallic pipe

Info

Publication number
JP2002323419A
JP2002323419A JP2001321521A JP2001321521A JP2002323419A JP 2002323419 A JP2002323419 A JP 2002323419A JP 2001321521 A JP2001321521 A JP 2001321521A JP 2001321521 A JP2001321521 A JP 2001321521A JP 2002323419 A JP2002323419 A JP 2002323419A
Authority
JP
Japan
Prior art keywords
stress
metal tube
pipe
axial
circumferential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001321521A
Other languages
Japanese (ja)
Other versions
JP3756798B2 (en
Inventor
Yoshiaki Itami
美昭 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001321521A priority Critical patent/JP3756798B2/en
Publication of JP2002323419A publication Critical patent/JP2002323419A/en
Application granted granted Critical
Publication of JP3756798B2 publication Critical patent/JP3756798B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a device and method for evaluating workability of metallic pipe by which the workability of a steel pipe in the circumferential direction can be evaluated by evaluating the material characteristics of the pipe in the circumferential direction required for expanding the pipe by hydroforming, etc., and so on. SOLUTION: The device for evaluating workability of metallic pipe is provided with supporting sections 2 which seize both ends of the metallic pipe 1, an internal pressure applying and increasing device 3 which applies a fluid pressure into the pipe 1, and an axial load controller 4 which applies an axial stress to the pipe 1. The device is also provided with an axial strain measuring instrument 5 which measures the axial strain of the pipe 1, a circumferential diameter measuring instrument 6 which measures the circumferential diameter of the pipe 1, and a stress ratio control means 7 which controls the ratio σϕ /σθ of the stress σϕworking in the axial direction of the pipe 1 to the stress σθ working in the circumferential direction of the pipe 1 based on the axial strain measured by means of the instrument 5 and the circumferential diameter of the pipe 1 measured by means of the instrument 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は鋼管,チタン管等の
金属管の2次加工性を評価するための装置及び方法に関
する。特に管の塑性異方性r値や加工硬化指数n値や肉
厚t、肉厚管径比鋼管寸法t/Dなどの違いによる金属
管の円周方向の加工性を一律に評価することができる。
特に近年自動車用の構造部材のハイドロフォームを用い
た成形を行う鋼管の製造時の加工性評価に適している。
The present invention relates to an apparatus and a method for evaluating the secondary workability of a metal pipe such as a steel pipe and a titanium pipe. In particular, it is possible to uniformly evaluate the workability in the circumferential direction of a metal pipe due to differences in the pipe plastic anisotropy r value, work hardening index n value, wall thickness t, wall thickness ratio steel pipe size t / D, etc. it can.
Particularly, in recent years, it is suitable for workability evaluation at the time of manufacturing a steel pipe in which a structural member for an automobile is formed using a hydroform.

【0002】[0002]

【従来の技術】一般に鋼管の材料の機械的な特性を評価
する方法はJIS11号の管の引張試験やJIS12号
による鋼管から弧状引張試験を行う方法が用いられてい
る。
2. Description of the Related Art Generally, as a method for evaluating the mechanical properties of a steel pipe material, a method of performing a JIS No. 11 pipe tensile test or a method of performing an JIS No. 12 arc-shaped tensile test on a steel pipe is used.

【0003】[0003]

【発明が解決しようとする課題】前記の材料試験法は鋼
管の軸方向の単軸引っ張りの応力状態での応力−ひずみ
の関係しか評価できないという問題がある。本発明は、
金属管の種々の加工での変形に近い状態での材料の加工
性を評価する装置及び評価方法を提供することを目的と
する。
However, the above-mentioned material testing method has a problem that only a stress-strain relationship in a state of uniaxial tensile stress in a steel pipe in an axial direction can be evaluated. The present invention
It is an object of the present invention to provide an apparatus and an evaluation method for evaluating workability of a material in a state close to deformation in various processes of a metal tube.

【0004】[0004]

【課題を解決するための手段】係る課題を解決するた
め、本発明の要旨とするところは、(1)金属管1の両
端を掴む支持部2と、金属管内へ流体圧を負荷する内圧
負荷増圧装置3と,金属管に軸方向に応力を負荷する軸
方向荷重制御装置4と、金属管の軸方向歪測定装置5
と,金属管の円周方向径測定装置6と、前記軸方向歪測
定装置5により測定した金属管軸方向歪と前記円周方向
径測定装置6により測定した金属管円周方向径に基づい
て金属管の軸方向に働く応力σφと金属管の円周方向に
働く応力σθの応力比σφ/σθを制御する応力比制御
手段7を有することを特徴とする金属管の加工性評価装
置,(2)金属管の両端を支持し、金属管内の軸方向に
加える流体圧と金属管の軸方向に加える応力を制御しな
がら金属管の2次加工性を評価する方法において、金属
管の軸方向歪と円周方向径を測定し、前記軸方向歪と前
記円周方向径に基づいて金属管の軸方向に働く応力σφ
と金属管の円周方向に働く応力σθの応力比σ φ/σθ
を求め、金属管が破断するまで前記応力比が一定となる
ように金属管に加える流体圧に応じて金属管の軸方向に
加える応力を制御することを特徴とする金属管の加工性
評価方法,にある。
[MEANS FOR SOLVING THE PROBLEMS]
Therefore, the gist of the present invention is as follows.
The support part 2 that grips the end and the internal pressure that applies fluid pressure into the metal tube
Load booster 3 and shaft for applying stress to metal tube in the axial direction
Directional load control device 4 and metal tube axial strain measuring device 5
A metal pipe circumferential diameter measuring device 6 and the axial strain measurement
Metal tube axial strain measured by the measuring device 5 and the circumferential direction
Based on the diameter in the circumferential direction of the metal tube measured by the diameter measuring device 6
Σ acting in the axial direction of the metal pipeφAnd in the circumferential direction of the metal tube
Working stress σθStress ratio σφ/ ΣθStress ratio control to control
Metal pipe workability evaluation apparatus characterized by having means 7
(2) Support both ends of the metal tube, and
Do not control the applied fluid pressure and the stress applied in the axial direction of the metal tube.
In the method for evaluating the secondary workability of a metal tube,
The axial strain and circumferential diameter of the tube are measured and the axial strain and
Stress σ acting in the axial direction of the metal pipe based on the circumferential diameterφ
Σ acting in the circumferential direction of the pipe and metal tubeθStress ratio σ φ/ Σθ
And the stress ratio is constant until the metal tube breaks
In the axial direction of the metal tube according to the fluid pressure applied to the metal tube
Workability of metal tube characterized by controlling applied stress
Evaluation method.

【0005】[0005]

【発明の実施の形態】本発明を詳細に説明する。図1
(a)〜(c)に本発明の実施例の評価装置を示す。鋼
管1をシールし、かつ軸方向の荷重の負荷により鋼管が
すべらないように支持部2で左右を支持し、軸方向に応
力を付与するシリンダーを鋼管両端に配置する。内圧負
荷増圧装置3は金属管内に水,エマルジョン系の潤滑材
やソリブル油等の水溶性潤滑材を添加した水等の流体に
圧力を加える際に、油圧ポンプにより発生した1次圧の
面積比を小さくさせて、増圧させる。油圧等の1次圧の
圧力を電磁減圧比例弁やサーボ弁を用いて1次圧を制御
し、2次側の液体の圧力を増加させるものである。増圧
装置としては、単動型、複動型があるが、どちらを用い
てもよい。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described in detail. FIG.
(A) to (c) show an evaluation device according to an embodiment of the present invention. The steel pipe 1 is sealed, and the left and right sides are supported by the support portion 2 so that the steel pipe does not slip due to the load in the axial direction, and cylinders that apply stress in the axial direction are arranged at both ends of the steel pipe. The internal pressure load intensifier 3 is an area of a primary pressure generated by a hydraulic pump when a pressure is applied to a fluid such as water or a water to which a water-soluble lubricant such as an emulsion-based lubricant or solble oil is added in a metal pipe. Reduce ratio and increase pressure. The primary pressure, such as oil pressure, is controlled using an electromagnetic pressure reducing proportional valve or a servo valve to increase the pressure of the liquid on the secondary side. There are a single-acting type and a double-acting type as a pressure intensifier, and either may be used.

【0006】軸方向の荷重制御装置4はサーボバルブを
用いてシリンダーのロッドとヘッド側の圧力と受圧面積
からデジタルシグナルプロセッサー(DSP)を用いた
デジタル制御を行う。鋼管の着脱等の位置決めを行う場
合の位置制御はシリンダーに内蔵したデジタル変位計を
用いた精密な位置のフィードバック制御により行う。
The load control device 4 in the axial direction performs digital control using a digital signal processor (DSP) based on the pressure on the rod and head side of the cylinder and the pressure receiving area using a servo valve. Position control for positioning such as attachment and detachment of a steel pipe is performed by precise position feedback control using a digital displacement meter built in a cylinder.

【0007】まず鋼管1と支持部2を位置あわせし、鋼
管1を固定する、その後、内圧の上昇に伴い、軸方向の
荷重制御をシリンダーのロッド受圧面積とロッド負荷圧
力の積と、ヘッド受圧面積とヘッドの負荷圧力との積の
差分から計算できる荷重により鋼管へ力を負荷するシリ
ンダーの軸荷重制御を行う。荷重はロードセルなどで直
接測定するか、圧力検出から軸荷重を求めて制御しても
よい。
First, the steel pipe 1 and the supporting part 2 are aligned and the steel pipe 1 is fixed. Then, as the internal pressure increases, the load control in the axial direction is performed by multiplying the product of the rod pressure receiving area of the cylinder by the rod load pressure and the head pressure. Axial load control of a cylinder that applies a force to a steel pipe with a load that can be calculated from the difference between the product of the area and the load pressure of the head is performed. The load may be measured directly by a load cell or the like, or may be controlled by obtaining a shaft load from pressure detection.

【0008】また、軸方向、円周方向の曲率により応力
状態は変化するので、管中央部に間隔をLとする2本
の罫書線(マーカー)を描き(図1(b)参照)、軸方
向歪み測定装置5としてリニアCCDを用いた画像処理
により罫書線の間隔の変化量から軸方向の歪を測定し,
後述する(13)式により軸方向の歪を求め,円周方向
径測定装置6としてリニアCCDセンサーを内蔵したカメ
ラを管軸方向に3箇所設置し,半径方向変位を非接触の
レーザで3箇所測定し、軸方向の曲率半径R[mm]
を求めた 軸方向の曲率Rは管軸方向の3点の測定点より3点を
通る円の計算より,求められる。測定位置を(x1,y1),(x
2,y2),(x3,y3)とすると B=((x1−x3)(x1 2−x2 2+y1 2−y2 2)−(x1−x2)(x1 2−x3 2+y1 2−y3 2) ) /{(−2(y1−y2)(x1−x3)+2(y1−y3)(x1−x2)) (1) A=(−2B(y1−y2)+x1 2−x2 2+y1 2−y2 2)/(2(x1−x2)) (2) Rz=SQR((x2−A)2+(y2−B)2) (3) 中央部のセンサーの半径方向位置から求めた周方向の曲
率半径R[mm]は以下のように求められる。周方向
の曲率半径Rは初期の鋼管径D[mm]と加圧により
貼り出した量ΔR[mm]により,R=D/2+Δ
により求められる。応力比制御手段7では、前記軸
方向歪測定装置5により測定した金属管軸方向歪と前記
円周方向径測定装置6により測定した金属管円周方向径
に基づいて,後述するように金属管の軸方向に働く応力
σφと金属管の円周方向に働く応力σθの応力比σφ/
σθを算出し、金属管が破断するまで前記応力比が一定
となるように金属管に加える流体圧に応じて金属管の軸
方向に加える応力を制御する。
Further, the axial direction, since the stress state by the curvature of the circumferential direction changes, draw two scribed lines the distance between L 0 in the pipe central part (Marker) (see FIG. 1 (b)), The axial distortion is measured from the amount of change in the interval between the scribe lines by image processing using a linear CCD as the axial distortion measuring device 5,
The axial strain is obtained by the following equation (13), and cameras having a built-in linear CCD sensor as circumferential diameter measuring devices 6 are installed at three places in the tube axis direction, and radial displacement is measured at three places by a non-contact laser. Measure the radius of curvature R Z [mm] in the axial direction
Curvature R Z axial sought than calculation of a circle passing through three points from the measurement point of the three points the tube axis direction can be calculated. Set the measurement position to (x 1 , y 1 ), (x
2 , y 2 ) and (x 3 , y 3 ), B = ((x 1 −x 3 ) (x 1 2 −x 2 2 + y 1 2 −y 2 2 ) − (x 1 −x 2 ) ( x 1 2 −x 3 2 + y 1 2 −y 3 2 )) / ((− 2 (y 1 −y 2 ) (x 1 −x 3 ) +2 (y 1 −y 3 ) (x 1 −x 2 ) ) (1) A = (- 2B (y 1 -y 2) + x 1 2 -x 2 2 + y 1 2 -y 2 2) / (2 (x 1 -x 2)) (2) R z = SQR ( (x 2 -A) 2 + ( y 2 -B) 2) (3) of curvature of the circumferential direction determined from the radial position of the central portion of the sensor radius R B [mm] is determined as follows. The amount ΔR B [mm] was put up by the circumferential direction of the radius of curvature R B Initial steel pipe diameter D [mm] and a pressure, R B = D / 2 + Δ
It is determined by R B. The stress ratio control means 7 uses the metal pipe axial strain measured by the axial strain measuring device 5 and the metal pipe circumferential diameter measured by the circumferential diameter measuring device 6 as described later, based on the metal pipe axial strain. Ratio of stress σ φ acting in the axial direction of σ to stress σ θ acting in the circumferential direction of the metal pipe σ φ /
σ θ is calculated, and the stress applied in the axial direction of the metal tube is controlled in accordance with the fluid pressure applied to the metal tube so that the stress ratio becomes constant until the metal tube breaks.

【0009】円周方向径測定装置6の測定結果に基づい
て算出した曲率を用いて応力計算を行い(計算式は後
述)、内圧負荷時に発生する鋼管端面受圧部に発生する
荷重に加え、前述の応力状態によって規定されるシリン
ダー軸に与える荷重(計算式は後述)にてシリンダー軸
荷重を制御する。また、内圧により周方向に鋼管が変形
すると、管外径が変化し、カメラ5と罫書線までの距離
が変化するので,円周方向径測定の結果を用いて補正す
る。後述の(12)式により鋼管の初期の鋼管までの距
離をH0として、鋼管の貼り出し量ΔRだけ近づく分
の距離変化が補正できる。また、鋼管の変形により、肉
厚も変化するので管円周方向および管軸方向の2軸ひず
みから体積一定の条件より肉厚ひずみを算出して(計算
式は後述)、肉厚を求めて上述の応力の釣り合い計算を
行い(計算式は後述)、軸荷重を決定することを時事刻
々繰り返し制御を行う。
A stress is calculated by using the curvature calculated based on the measurement result of the circumferential diameter measuring device 6 (the calculation formula will be described later). The cylinder shaft load is controlled by the load (calculation formula will be described later) applied to the cylinder shaft specified by the stress state. Further, when the steel pipe is deformed in the circumferential direction by the internal pressure, the outer diameter of the pipe changes, and the distance between the camera 5 and the scribe line changes. Therefore, the correction is made using the result of the diameter measurement in the circumferential direction. The distance to the initial steel of the steel pipe by later-described equation (12) as H 0, minute distance varies toward amount [Delta] R B out adhesion of the steel pipe can be corrected. In addition, since the wall thickness changes due to the deformation of the steel pipe, the wall thickness distortion is calculated from the biaxial strain in the pipe circumferential direction and the pipe axis direction under a condition of constant volume (calculation formula is described later), and the wall thickness is obtained. The above-mentioned stress balance calculation is performed (the calculation formula will be described later), and the control of repeatedly determining the shaft load is performed every moment.

【0010】以下に計算方法を詳細に説明する。鋼管の
肉厚中央の主曲率半径を鋼管の子午線方向曲率半径Rφ
[mm]、円周方向曲率半径Rθ[mm]とする。金属
管の軸方向に働く応力σφ[MPa],金属管の円周方
向に働く応力σθ[MPa]とする。内圧p[MPa]、軸方
向荷重W[N]が作用すると、力の釣り合い条件から子午
線方向の釣り合いは となり、管の厚みをt[mm]とすれば、内圧との釣り
合いは となる。ここで応力比α=σφθとすると、内圧に
よって変化する軸方向荷重を示すW[MPa]は となる。内圧pが作用したときに、鋼管軸方向に対して
圧力のかかる冶具端面荷重Wは(4)式で表せるの
で、(5)式に示すように冶具端面荷重W[N]と形
状変化と応力比により規定される荷重W[N]にて制
御を行う。 :3点の軸方向に配置したセンサーによる半径方向
位置より求めた子午線方向外面半径[mm] :中央部のセンサーの半径方向位置から求めた周方
向外面半径[mm]管子午線方向の長さL[mm]は となる。ここで、観測点からの距離変化(カメラから被
測定物との距離)を考慮して,カメラからの距離をH0
[mm],鋼管中央部の変位ΔR[mm]0は素
管の罫書き長さL[mm]とすれば、 となる。内圧pに応じて応力比α=σφθを決め、
軸方向の荷重を変形した管中央部の子午線、周方向曲率
に応じて制御することで、一定の応力状態を保つことが
可能となる。α=σφθを応力比として管軸方向の
罫書き線の長さ変化より、子午線方向ひずみεφ、周方
向ひずみεθ、板厚方向ひずみεはそれぞれ下記(1
3)〜(15)式のようになる。 変形中の鋼管の肉厚は周方向の応力負荷のみであれば α=0 (16) となり、子午線と周方向の応力比が1:2であればα=
0.5で平面ひずみ状態となる。本発明では管中央部分
の子午線の長さ変化と周方向の径(曲率)、子午線方向
の曲率の変化を考慮し管中央部の応力状態を制御して子
午線・周方向のひずみも求めることができる。よって、
ハイドロフォーム加工時にいろいろ方向に応力が作用す
るが、本発明のように応力比を一定にして制御すること
により、応力比の違いによる鋼管のハイドロフォーム加
工性が評価できる。これにより、軸方向と円周方向の主
曲率で管中央部の円周方向の応力σθと子午線方向応力
σφの応力比を変えて試験を行うことで、鋼管の各応力
比での応力歪線図と破断限界線が得られる。このように
応力状態を一定にして、鋼管を変形させ、破断までの挙
動を捉えることにより、板材と同様な加工限界を求める
ことができる。
Hereinafter, the calculation method will be described in detail. The main radius of curvature at the center of the wall thickness of the steel pipe is defined as the radius of curvature R φ in the meridian direction of the steel pipe.
[Mm] and the radius of curvature in the circumferential direction R θ [mm]. Stress σ φ [MPa] acting in the axial direction of the metal tube and stress σ θ [MPa] acting in the circumferential direction of the metal tube. When the internal pressure p [MPa] and the axial load W [N] are applied, the balance in the meridian direction is And if the thickness of the tube is t [mm], the balance with the internal pressure is Becomes Here, assuming that the stress ratio α = σ φ / σ θ , W p [MPa] indicating the axial load that changes with the internal pressure is Becomes When the internal pressure p is applied, since the jig end surface load W A-consuming pressure to the steel pipe axis direction expressed by equation (4), (5) a jig end surface load W A [N] as shown in equation shape change And a load Wp [N] specified by the stress ratio. R Z : outer radius in the meridian direction [mm] obtained from radial positions obtained by three sensors arranged in the axial direction R B : the circumferential outer surface radius [mm] obtained from the radial position of the sensor at the center, and the length L [mm] in the meridian direction are Becomes Here, taking into account the distance change from the observation point (the distance from the camera to the object to be measured), the distance from the camera to H 0
[Mm], the displacement [Delta] R B of the steel tube central portion [mm], L 0 is if ruling of blank tube write length L N [mm], Becomes Decide stress ratio α = σ φ / σ θ in response to internal pressure p,
By controlling the load in the axial direction according to the meridian and the curvature in the circumferential direction at the center of the deformed pipe, a constant stress state can be maintained. From the change in the length of the scored line in the tube axis direction with α = σ φ / σ θ as the stress ratio, the meridional strain ε φ , circumferential strain ε θ , and thickness strain ε t are given below (1
Equations 3) to (15) are obtained. The wall thickness of the steel pipe during deformation becomes α = 0 (16) if only the stress in the circumferential direction is applied. If the stress ratio between the meridian and the circumferential direction is 1: 2, α =
At 0.5, a plane strain state occurs. In the present invention, it is possible to determine the meridian / circumferential strain by controlling the stress state of the pipe central portion in consideration of the change in the length of the meridian in the central portion of the pipe, the diameter in the circumferential direction (curvature), and the change in the curvature in the meridian direction. it can. Therefore,
Stress acts in various directions during hydroforming, but by controlling the stress ratio to be constant as in the present invention, the hydroforming workability of the steel pipe due to the difference in the stress ratio can be evaluated. By changing the stress ratio between the circumferential stress σ θ and the meridional stress σ φ at the center of the pipe at the principal curvatures in the axial direction and the circumferential direction, the stress at each stress ratio of the steel pipe is obtained. A strain diagram and a breaking limit line are obtained. In this way, by keeping the stress state constant, deforming the steel pipe and capturing the behavior up to the fracture, it is possible to obtain the same processing limit as that of the sheet material.

【0011】[0011]

【実施例】第2図に本発明の装置により、φ60.5m
m肉厚t=1.6mmの冷延板を成形した長さ300m
mの鋼管を用いてσφθ=0の場合と平面歪の状態
σ φθ=0.5の場合に加工硬化係数n値を変えた
場合(鋼管成形のひずみが大きい場合と小さい場合)の
ひずみ履歴を示す。同一板材を鋼管に成形・溶接した溶
接管を製造した場合、加工硬化係数が高い方が、加工限
界が高く、加工性に優れることがわかる。このように応
力状態を一定にして、鋼管を変形させ、破断までの挙動
を捉えることにより、板材と同様な加工限界を求めるこ
とができる。円周方向単軸状態でのひずみから、管円周
方向の塑性異方性を表すrθ値を測定することが可能と
なる(第3図)。rθは単軸応力状態(管軸方向の応力
がゼロのとき)で円周方向に膨くらむ際、軸方向と肉厚
方向の歪増分(18式)より計算できる。rθ値は各歪の
変化量から計算でき、εφ,εθは計測により求まり、
ある時間ごとの歪の変化量(増分)は体積一定の条件よ
り(14)式で表せる。 dεφ+dεθ+dε=0 (17) の関係式から肉
厚方向の歪増分dεがもとめられ 円周方向の異方性
を示すrθ値 rθ=dεφ/dε(18) を用いて算出できる。ほぼ板材と同等な板材の円周方向
の塑性異方性rθ値を得られていることが確認できてい
る。これにより従来の評価が困難であった、鋼管の塑性
異方性を求めることが可能であり、かつ軸方向および円
周方向の応力−ひずみ関係も求めることができた。上述
の計算により求められた軸方向は縦軸σφと、横軸εφ
を、円周方向は縦軸σθ、横軸にεθをプロットすれば
よい。
FIG. 2 shows an apparatus according to the present invention.
m: 300 m length formed from cold rolled sheet with thickness t = 1.6 mm
using a steel pipe of mφ/ σθ= 0 and plane strain
σ φ/ σθThe work hardening coefficient n value was changed when = 0.5
(In case of large and small strain of steel pipe forming)
Shows the strain history. The same plate material is formed and welded on a steel pipe.
When a pipe is manufactured, the higher the work hardening coefficient
It shows that the field is high and the workability is excellent. Like this
Deformation of steel pipe with constant force state, behavior until fracture
To obtain the same processing limit as the sheet material.
Can be. From the strain in the uniaxial state in the circumferential direction,
R representing plastic anisotropy in the directionθValue can be measured
(Fig. 3). rθIs the uniaxial stress state (the stress in the pipe axis direction)
(When is zero), when expanding in the circumferential direction, the axial direction and wall thickness
It can be calculated from the directional strain increment (Equation 18). rθThe value is
Can be calculated from the amount of change, εφ, ΕθIs determined by measurement,
The amount of change (increment) in strain for a certain time depends on the condition of constant volume.
(14) dεφ+ dεθ+ dεt= 0 meat from the relational expression of (17)
Strain increment dε in the thickness directiontCircumferential anisotropy
RθValue rθ= Dεφ/ dεtIt can be calculated using (18). Circumferential direction of plate material almost equivalent to plate material
Plastic anisotropy rθThat the value has been obtained.
You. As a result, the plasticity of steel pipes was difficult to evaluate in the past.
Anisotropy can be determined, and axial and circular
The circumferential stress-strain relationship could also be determined. Above
The axis direction obtained by the calculation ofφAnd the horizontal axis εφ
And the circumferential direction is the vertical axis σθ, The horizontal axis is εθIf you plot
Good.

【0012】[0012]

【発明の効果】以上詳述したように、従来技術では鋼管
においては管引張りや切り出しによる引張り試験では軸
(子午線)方向の応力−ひずみ関係しか捉えることがで
きなかったが、本発明により、円周方向塑性異方性:r
θ値を単軸応力場で測定することや、材料異方性により
歪履歴が変化する挙動も捕らえることが可能である等優
れた効果を有する。
As described above in detail, in the prior art, in a steel pipe, only a stress-strain relationship in the axial (meridian) direction can be grasped in a tensile test by pipe pulling or cutting, but according to the present invention, the circular pipe is used. Circumferential plastic anisotropy: r
It has excellent effects such as the ability to measure the θ value in a uniaxial stress field and the ability to capture the behavior in which the strain history changes due to material anisotropy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明例の試験装置を示す全体概要図で、図1
(a)は、初期状態を示す全体概要平面図、図1(b)
は、初期状態を示す全体概要立面図、図1(c)は、試
験時を示す全体概要図平面図。
FIG. 1 is an overall schematic diagram showing a test apparatus according to an example of the present invention.
FIG. 1A is an overall schematic plan view showing an initial state, and FIG.
1 is an overall schematic elevation view showing an initial state, and FIG. 1C is an overall schematic plan view showing a test time.

【図2】本発明の制御に用いる鋼管の変形を示す説明
図。
FIG. 2 is an explanatory diagram showing deformation of a steel pipe used for control of the present invention.

【図3】本発明例の評価装置を用いて、加工n値を変え
た場合の破断限界線を求めた説明図。
FIG. 3 is an explanatory view showing the use of the evaluation apparatus of the present invention to determine a breaking limit line when the processing n value is changed.

【符号の説明】[Explanation of symbols]

1 金属管(鋼管) 2 支持部 3 内圧負荷増圧装置 4 軸方向荷重制御装置(シリンダーのデジタルサーボ
制御) 5 軸方向歪測定装置 6 円周方向径測定装置 7 応力比制御手段
DESCRIPTION OF SYMBOLS 1 Metal pipe (steel pipe) 2 Support part 3 Internal pressure load booster 4 Axial load control device (digital servo control of a cylinder) 5 Axial strain measurement device 6 Circumferential diameter measurement device 7 Stress ratio control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属管(1)の両端を掴む支持部(2)
と、金属管内へ流体圧を負荷する内圧負荷増圧装置
(3)と,金属管に軸方向に応力を負荷する軸方向荷重
制御装置(4)と、金属管の軸方向歪測定装置(5)
と,金属管の円周方向径測定装置(6)と、前記軸方向
歪測定装置(5)により測定した金属管軸方向歪と前記
円周方向径測定装置(6)により測定した金属管円周方
向径に基づいて金属管の軸方向に働く応力σφと金属管
の円周方向に働く応力σθの応力比σφ/σθを制御す
る応力比制御手段(7)を有することを特徴とする金属
管の加工性評価装置。
1. A support (2) for gripping both ends of a metal tube (1).
An internal pressure load intensifier (3) for applying a fluid pressure into the metal tube, an axial load controller (4) for applying an axial stress to the metal tube, and an axial strain measuring device (5) for the metal tube. )
A metal pipe circumferential diameter measuring device (6); a metal tube axial strain measured by the axial strain measuring device (5); and a metal tube circle measured by the circumferential diameter measuring device (6). that it has a stress stress ratio control means for controlling the stress ratio sigma phi / sigma theta stress sigma theta acting in the circumferential direction of the sigma phi and the metal tube (7) which acts in the axial direction of the metal tube based on the circumferential diameter Characteristic metal pipe workability evaluation device.
【請求項2】金属管の両端を支持し、金属管内の軸方向
に加える流体圧と金属管の軸方向に加える応力を制御し
ながら金属管の2次加工性を評価する方法において、金
属管の軸方向歪と円周方向径を測定し、前記軸方向歪と
前記円周方向径に基づいて金属管の軸方向に働く応力σ
φと金属管の円周方向に働く応力σθの応力比σφ/σ
θを求め、金属管が破断するまで前記応力比が一定とな
るように金属管に加える流体圧に応じて金属管の軸方向
に加える応力を制御することを特徴とする金属管の加工
性評価方法。
2. A method for evaluating the secondary workability of a metal tube while supporting both ends of the metal tube and controlling the fluid pressure applied in the axial direction inside the metal tube and the stress applied in the axial direction of the metal tube. Is measured in the axial direction and the diameter in the circumferential direction, and the stress σ acting in the axial direction of the metal pipe is determined based on the axial strain and the diameter in the circumferential direction.
Stress ratio between φ and stress σ θ acting in the circumferential direction of the metal tube σ φ / σ
Obtain θ , and control the stress applied in the axial direction of the metal tube according to the fluid pressure applied to the metal tube so that the stress ratio is constant until the metal tube breaks. Method.
JP2001321521A 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method Expired - Fee Related JP3756798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001321521A JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-46803 2001-02-22
JP2001046803 2001-02-22
JP2001321521A JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2002323419A true JP2002323419A (en) 2002-11-08
JP3756798B2 JP3756798B2 (en) 2006-03-15

Family

ID=26609904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001321521A Expired - Fee Related JP3756798B2 (en) 2001-02-22 2001-10-19 Metal pipe workability evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP3756798B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819696B1 (en) * 2006-08-18 2008-04-04 주식회사 포스코 Tube friction measurement apparatus for hydroforming tube
GB2458294A (en) * 2008-03-12 2009-09-16 Stats A method and tool for strength and pressure testing of tubular components
GB2458293A (en) * 2008-03-12 2009-09-16 Stats A method and tool for strength and pressure testing of tubular components
JP2010158695A (en) * 2009-01-07 2010-07-22 Denso Corp Method of manufacturing cylindrical member
WO2012067179A1 (en) * 2010-11-18 2012-05-24 国際計測器株式会社 Material testing machine
KR101355734B1 (en) 2012-03-29 2014-01-28 현대제철 주식회사 Formability measuring device for metal sheet
TWI509219B (en) * 2010-11-18 2015-11-21 Kokusai Keisokuki Kk Material testing machine
CN106289731A (en) * 2015-05-12 2017-01-04 中国石油化工股份有限公司 A kind of assay device for cementing tool and test method thereof
JP6092348B1 (en) * 2015-11-09 2017-03-08 日本核燃料開発株式会社 Biaxial stress loading device and test method for tubular specimen
CN115532928A (en) * 2022-11-24 2022-12-30 江苏新恒基特种装备股份有限公司 Wall thickness real-time detection and control device in hydraulic tee forming process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825168B (en) * 2017-03-23 2018-09-21 苏州市顺仪五金有限公司 A kind of routing machine with detection and blowing function

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100819696B1 (en) * 2006-08-18 2008-04-04 주식회사 포스코 Tube friction measurement apparatus for hydroforming tube
GB2458294A (en) * 2008-03-12 2009-09-16 Stats A method and tool for strength and pressure testing of tubular components
GB2458293A (en) * 2008-03-12 2009-09-16 Stats A method and tool for strength and pressure testing of tubular components
US8122774B2 (en) 2008-03-12 2012-02-28 Stats (Uk) Limited Test tool
US8935951B2 (en) 2008-03-12 2015-01-20 Stats (Uk) Limited Test tool
GB2458293B (en) * 2008-03-12 2012-10-17 Stats Uk Ltd Test tool
GB2458294B (en) * 2008-03-12 2012-10-24 Stats Uk Ltd Test tool
JP2010158695A (en) * 2009-01-07 2010-07-22 Denso Corp Method of manufacturing cylindrical member
CN103250039A (en) * 2010-11-18 2013-08-14 国际计测器株式会社 Material testing machine
WO2012067179A1 (en) * 2010-11-18 2012-05-24 国際計測器株式会社 Material testing machine
US8950268B2 (en) 2010-11-18 2015-02-10 Kokusai Kiesokuki Kabushiki Kaisha Material testing machine
TWI509219B (en) * 2010-11-18 2015-11-21 Kokusai Keisokuki Kk Material testing machine
JP5838165B2 (en) * 2010-11-18 2015-12-24 国際計測器株式会社 Material testing machine
KR101355734B1 (en) 2012-03-29 2014-01-28 현대제철 주식회사 Formability measuring device for metal sheet
CN106289731A (en) * 2015-05-12 2017-01-04 中国石油化工股份有限公司 A kind of assay device for cementing tool and test method thereof
JP6092348B1 (en) * 2015-11-09 2017-03-08 日本核燃料開発株式会社 Biaxial stress loading device and test method for tubular specimen
CN115532928A (en) * 2022-11-24 2022-12-30 江苏新恒基特种装备股份有限公司 Wall thickness real-time detection and control device in hydraulic tee forming process
CN115532928B (en) * 2022-11-24 2023-03-03 江苏新恒基特种装备股份有限公司 Wall thickness real-time detection control device in hydraulic tee joint forming process

Also Published As

Publication number Publication date
JP3756798B2 (en) 2006-03-15

Similar Documents

Publication Publication Date Title
Hussaini et al. Development of experimental and theoretical forming limit diagrams for warm forming of austenitic stainless steel 316
JP2002323419A (en) Device and method for evaluating workability of metallic pipe
Kuwabara et al. Anisotropic plastic deformation of extruded aluminum alloy tube under axial forces and internal pressure
JP5170089B2 (en) Thin plate press forming apparatus and press forming method
CN111292813B (en) Method for drawing anisotropic material fracture forming limit diagram and using method thereof
Khalfallah et al. Mechanical characterization and constitutive parameter identification of anisotropic tubular materials for hydroforming applications
He et al. A novel test method for continuous nonlinear biaxial tensile deformation of sheet metals by bulging with stepped-dies
CN112683652A (en) Method for testing critical bending angle of metal plate
Sumita et al. Measurement of Work Hardening Behavior of Pure Titanium Sheet Using A Servo‐Controlled Tube Bulge Testing Apparatus
CN103115817B (en) Method for obtaining shrinkage strain ratio in continuous change of titanium alloy tube
CN104897480A (en) Method for evaluating bending mechanical properties of unequal-wall-thickness metal tube
Sumita et al. Measurement and material modeling of biaxial work-hardening behavior for pure titanium sheet
Stachowicz Biaxial stress-strain relationship of sheet metal from hydraulic bulging test
CN110501229A (en) A kind of non contact metal tubing CSR value test macro and method
CN205981900U (en) Test thin -walled pipe hoop tensile strength's device
Mulder et al. Determination of flow curves under equibiaxial stress conditions
Savic et al. Effects of gage section geometry on tensile material properties by digital image correlation
KR101056210B1 (en) Strain measurement device and measuring method for hydraulic bulge molding
Li et al. A Study On Critical Thinning In Thin‐walled Tube Bending Of Al‐Alloy 5052O Via Coupled Ductile Fracture Criteria
Smith et al. Flow stress curves using new volume measurement method for hydraulic bulge test
US20030054091A1 (en) Method and fixture for evaluating the quality of surface coatings
Sadłowska et al. On the problem of material properties in numerical simulation of tube hydroforming
Atkinson An investigation of hydraulic bulging as a biaxial straining test for sheet metal
TWI509243B (en) A testing system and method of metal sheet
Ferron et al. Strain Localization and Fracture in Metal Sheets and Thin-Walled Structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R151 Written notification of patent or utility model registration

Ref document number: 3756798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees