JP3756722B2 - Titanium copper alloy material and heat treatment method for titanium copper alloy - Google Patents

Titanium copper alloy material and heat treatment method for titanium copper alloy Download PDF

Info

Publication number
JP3756722B2
JP3756722B2 JP2000126844A JP2000126844A JP3756722B2 JP 3756722 B2 JP3756722 B2 JP 3756722B2 JP 2000126844 A JP2000126844 A JP 2000126844A JP 2000126844 A JP2000126844 A JP 2000126844A JP 3756722 B2 JP3756722 B2 JP 3756722B2
Authority
JP
Japan
Prior art keywords
titanium
copper alloy
temperature
mass
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000126844A
Other languages
Japanese (ja)
Other versions
JP2001303222A (en
Inventor
道晴 山本
Original Assignee
日鉱金属加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉱金属加工株式会社 filed Critical 日鉱金属加工株式会社
Priority to JP2000126844A priority Critical patent/JP3756722B2/en
Priority to US09/984,039 priority patent/US20020090315A1/en
Publication of JP2001303222A publication Critical patent/JP2001303222A/en
Application granted granted Critical
Publication of JP3756722B2 publication Critical patent/JP3756722B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性に優れ、良好な材料特性を有するチタン銅合金展伸材に関するものであり、さらに、詳しく述べるならば、溶体化処理後の冷却時に生じるスピノーダル分解による材料硬化を起こさない均質な焼なまし素材に関する。また、本発明は、チタン銅合金の熱間圧延や均質化焼鈍及び溶体化処理などの熱処理に際して、材料の加熱及び冷却条件を規定することによって均質な焼なまし方法を提供するものであり、銅合金の熱処理の分野に広く利用される。
【0002】
【従来の技術】
チタンを含んだ銅合金は、時効析出型の銅合金として材料特性の中でも特に強度及び応力緩和特性が優れているため、電子部品や端子・コネクター部品の分野において広く使用されてきている。該銅合金は、溶解鋳造によって鋳塊を製造し、その後に熱間及び冷間加工、熱処理などの加工を施され、また一部の材料についてはめっき等の表面処理を施されて、所定の特性及び形状にした後に部品に加工される。
該銅合金は、チタンを含んでおり過飽和からのCu3Ti相への中間相生成によって時効硬化するものと考えられており、上記特性のほかに耐熱性が高力ベリリウム銅と比べて優れていることも特長である。
【0003】
ところで、材料を熱処理する際には、その条件によって過飽和固溶体からの析出は核生成を必要としないスピノーダル分解が生じる。スピノーダル分解は、材料内部に存在する溶質濃度のゆらぎが生じると、系の自由エネルギーは過飽和固溶体としてのエネルギーよりも低く、相分解は自発的に進行して臨界核を形成しない。すなわち、材料内に一旦小さい濃度変動が生ずれば、次々に大きな濃度変動に変化していき最終的には2相に分離する。スピノーダル分解が起こると材料特性が大きく変化するが、この分解は急激に進行する。
【0004】
【発明が解決しようとする課題】
チタン銅は、熱間圧延や溶体化処理を行った後の硬さは、一般にHv80〜300の範囲にあり、組成及び冷却速度に大きく依存する。従来の熱間圧延や溶体化処理後のチタン銅では、急冷する時の温度や冷却速度のばらつきにより、局部的なスピノーダル分解が生じて、硬さや特性のばらつきが大きく品質が安定せず、その後の加工が不安定で不均一な特性を有する材料となっていた。例えば、条材を製造する際、熱処理条件によっては硬度のばらつきは、Hv100以上にもなり、最悪の場合は平均値の±50%程度にも及んでいた。
この改善方法として、▲1▼熱間圧延の仕上げ温度や溶体化処理の最終材料温度を一定にする、▲2▼熱間圧延及び溶体化処理後の冷却条件を一定にするなどの様々の対策が考えられるが、スピノーダル分解の特徴からこれだけでは特性のばらつきを完全に解消したり、安定した品質を得ることが困難である。
【0005】
本発明は、係る点に鑑みて為されたものであり、後加工が容易となる均質性に優れたチタン銅合金素材を提供するとともに、スピノーダル分解を阻止することができる熱処理方法を提供するものである。このような素材及び熱処理方法によれば、チタン銅合金の材料特性ばらつきが小さくなって品質が安定するため、時効処理後の硬度も一定し、その後の加工が容易になる。この結果、製品寸法精度が向上し、複雑な形状の製品の加工が可能になるなどの利点が生じる。
【0006】
【課題を解決するための手段】
本発明の要旨とするところは次の如くである。
(1)0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からな るチタン銅合金を600℃以上で加熱した後冷却するに際して、材料温度が少 なくとも500℃から300℃の温度区間内にあるときの冷却速度を200℃ /秒以上とすることにより硬さ分散をHv40以下としたことを特徴とする冷 間圧延かつ溶体化処理調質のチタン銅合金素材。
(2)0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からな るチタン銅合金を600℃以上の温度で熱間圧延し、500℃以上の温度で圧 延仕上げし、次いで冷却する際に、材料温度が少なくとも500℃から 300℃の温度区間内にあるときの冷却速度を200℃/秒以上とすることに より硬さ分散をHv40以下としたことを特徴とする熱間圧延かつ溶体化処理 調質のチタン銅合金素材。
(3)0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からな るチタン銅合金を溶体化処理及び時効処理する熱処理方法において、該溶体化 処理に際して、チタン銅合金を600℃以上で加熱した後冷却するに際して、 材料温度が少なくとも500℃から300℃の温度区間内にあるときの冷却速 度を200℃/秒以上とすることを特徴とするチタン銅合金の熱処理方法。
(4)誘導加熱装置を使用して溶体化処理を行うことを特徴とする(3)項記載の銅 合金の熱処理方法。
(5)0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からな るチタン銅合金を溶体化処理及び時効処理する熱処理方法において、チタン銅 合金を600℃以上の温度で熱間圧延し、500℃以上の温度で圧延仕上げ し、次いで冷却する際に、材料温度が少なくとも500℃から300℃の温度 区間内にあるときの冷却速度を200℃/秒以上として溶体化処理を行うこと を特徴とするチタン銅合金の熱処理方法。
【0007】
本発明に係るチタン銅は、基本成分として、チタンを0.5質量%以上5.0質量%未満含む。ここで、チタンの添加量が0.5質量%未満になると強度など優れた特性が得られず、5.0質量%以上になると材料が硬化して加工性の優れた材料が得られないためである。また、チタンの他に総量で1.0質量%以下のクロム、ジルコニウム、ニッケル、鉄などを添加した組成についても同様な効果が期待できる。これらの残部は銅及び不可避不純物からなる。
【0008】
本発明に係るチタン銅合金素材(1)、(2)は硬さの分散がHv40以下、より好ましくはHv30以下である。硬さの分散とはJISなどで規定される試験片採取法及び硬さ測定法で測定した該素材の最大硬さと最小硬さの差である。ここでチタン銅合金素材とは、段落0002で説明した工程で製造された熱間もしくは冷間圧延かつ溶体化処理状態であって、最終製品として加工を未だ受けていない状態の1個の材料、例えば1個(本)のコイル、条材、線材、板材等あるいは、これらを次工程の処理のために切断したロットである。従来は例えば平均硬さがHv=190、硬さ(Hv)の分散が60の素材が製造され、これを切断した加工用切り板(ワーク)の硬さはロット内でHv=230〜170の範囲でばらつくから、均質な加工特性や平坦な形状を有する材料を得ることが非常に困難になっていた。これに対して本発明素材は硬さのばらつきが極めて小さく加工が容易になる。これは、溶体化処理組織中のTi濃度のゆらぎに起因する。続いて、このような組織を作り出すことができる熱処理方法について説明する。
【0009】
チタン銅合金の加熱温度が600 ℃未満の加熱であると、材料が再結晶化しないため、熱処理を施してもその効果が得られないために、チタン銅合金を600 以上で加熱することとした。材料の加熱が終了し、冷却する際に急冷する温度範囲は少なくとも500 ℃〜 300 の範囲である。急冷温度を500 以上としたのは、通常の熱処理では連続設備を用いて行うが、種々の基礎試験の結果に特性のばらつきを引き起こすもっとも大きな要因は、加熱処理から冷却する時に水冷等の急冷を行う時の材料温度が重要であり、500 ℃以下で急冷しても既にスピノーダル分解が進んで局部的に特性のばらつきが生じるためである。従って、材料の加熱終了後は速やかに急冷することが必要となるが、通常のガス加熱炉或いは電気抵抗加熱炉では、薄板及び条材を生産性を確保した上で効率的に処理することが困難であり、急熱急冷が可能な誘導加熱炉を用いて連続処理を行うのが効率的でかつ安定した特性を有する材料を得ることが可能となる。
急冷する時の冷却速度を200 /秒以上である。該銅合金の冷却速度が特性に与える影響は大きく、200 /秒未満の冷却速度で冷却すると、スピノーダル分解が生じて材料が硬化し、その後の加工において加工性が著しく低下するためである。なお、この冷却速度は、材料の板厚や通板速度に依存するが、所定量の水を用いて材料を冷却することによって十分に達成可能な速度である。また、材料温度が300℃未満になるまで該冷却速度で冷却するのは、材料温度が300 以上で急冷を止めるとスピノーダル分解は発生して材料強度が高くなるためである。
【0010】
【作用】
本発明によれば、チタンを含んだ銅合金を600 以上で加熱した後に冷却し、材料温度が500 以上の時点で200 /秒以上の冷却速度で300 未満になるまで冷却すること、熱処理設備として誘導加熱炉を用いること、及び熱間圧延の際にも上記銅合金を600 以上の温度で熱間圧延を行い、材料温度が500 以上になった時点で200 /秒以上の冷却速度で300 未満になるまで冷却することにより、熱処理を施すとスピノーダル分解を起こして特性のばらつきを防止したり、後工程で加工が容易に出来るようにすることが可能となり、安定した品質の材料を歩留まりよく製造することができる。
【0011】
【実施例】
供試材として用いたチタンを所定質量%含有した銅合金(以下「チタン銅」と呼ぶ)の成分を表1に示す。所定の成分に配合されたチタン銅の鋳塊3.5kg(30mmt×80mmw×150mml)を真空溶解炉内で溶製し、押し湯部を切断した後に表面皮むきを行う。皮むきされた鋳塊は、大気中で850 で1時間均質化焼鈍を行った後に27mm厚から所定の厚さ(通常は8mm厚)まで熱間圧延を行う。圧延中は2色式輻射温度計で材料表面温度を測定し、所定の温度になったところで水冷した後、材料の硬さを測定した(試験 1と呼ぶ)。材料の冷却速度を調節するために材料厚さ及び水冷時の水量を調整して行った。なお、冷却速度は、材料に熱電対を挿入し、予めその熱処理条件で処理を行って求めた。
【0012】
【表1】

Figure 0003756722
【0013】
更に、900 で1時間溶体化処理をした後に、再度表面皮削りを行い、冷間圧延にて7.5mm厚から1.0mm厚にする。次に加熱・冷却速度を任意に変更でき、所定の熱処理条件で高温特性を調査するための試験装置であるグリーブル試験装置を用いて所定の温度で5分間加熱した後、材料を種々の冷却条件で冷却した。圧延板の任意の5個所につき材料の硬さを測定した後、更に所定の厚さまで冷間圧延を施して、熱処理条件が特性及び材料の加工性に与える影響を評価した(試験 2と呼ぶ)。なお、熱処理中の材料温度は接触式の熱電対を材料の熱処理部分に装着して試験中の材料温度を連続的に測定し、種々の冷却速度は水冷、汽水噴霧、空冷の水量、ガス流量を調整することによって行った。
【0014】
表2(図1)は、供試材を熱間圧延で加工した後、種々の冷却条件で冷却した後の材料硬さを測定した、試験▲1▼の結果を示す。硬さはマイクロビッカース硬さ(荷重300g)で任意の5点測定して、硬さ及びその分散(ばらつき)を評価した。表中No.16及び17は、硬さ分散は問題がないが、チタン含有量が0.5質量%未満であるため、この後冷間圧延、時効処理を行っても最終的要求特性である材料強度(Hv200以上)が得られなかった。
【0015】
表3(図2)には、冷間圧延にて1.0厚さとした供試材を所定の温度で5分加熱した後、種々の冷却条件で冷却して材料硬さを測定し、更に所定の厚さまで加工した時の加工性を、冷間加工圧延で加工度が70%以上に圧延してエッジの割れが発生するか否かにより、評価した試験▲2▼の結果を示す。本発明の熱処理法にて製造した鋳造材料は、特性のばらつきが軽微であり、また材料硬さが低いためその後の加工性が優れているため、品質の安定した該銅合金を製造することが可能となった。
【0016】
【発明の効果】
本発明によれば、特性のばらつきが軽微であり、また材料硬さが低いためその後の加工性が優れているため、品質の安定した該銅合金を製造することが可能となる。
【図面の簡単な説明】
【図1】 銅合金を熱間圧延した後、所定の条件で冷却した時の材料硬さを示す図表(表2)である。
【図2】 供試材を溶体化処理した後の冷却条件を変更した時の材料硬さ、更に冷間加工した時の加工性の評価結果を示す図表(表3)である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wrought titanium copper alloy having excellent workability and good material properties. More specifically, the present invention relates to a homogeneous material that does not cause material hardening due to spinodal decomposition that occurs during cooling after solution treatment. It relates to material that is annealed. Further, the present invention provides a homogeneous annealing method by prescribing the heating and cooling conditions of the material during heat treatment such as hot rolling and homogenizing annealing and solution treatment of titanium copper alloy, Widely used in the field of heat treatment of copper alloys.
[0002]
[Prior art]
A copper alloy containing titanium has been widely used in the field of electronic parts and terminal / connector parts because of its excellent strength and stress relaxation characteristics among aging precipitation type copper alloys. The copper alloy is manufactured by ingots by melt casting, and then subjected to processing such as hot and cold processing, heat treatment, etc., and some materials are subjected to surface treatment such as plating to obtain a predetermined ingot. It is processed into a part after making it into a characteristic and shape.
The copper alloy contains titanium and is considered to be age-hardened by intermediate phase formation from supersaturation to the Cu 3 Ti phase. In addition to the above properties, heat resistance is superior to high-strength beryllium copper. It is also a feature.
[0003]
By the way, when the material is heat-treated, depending on the conditions, precipitation from the supersaturated solid solution causes spinodal decomposition that does not require nucleation. In the spinodal decomposition, when fluctuation of the solute concentration existing in the material occurs, the free energy of the system is lower than the energy as a supersaturated solid solution, and the phase decomposition proceeds spontaneously and does not form a critical nucleus. That is, once a small concentration fluctuation occurs in the material, it gradually changes to a large concentration fluctuation and finally separates into two phases. When spinodal decomposition occurs, the material properties change greatly, but this decomposition proceeds rapidly.
[0004]
[Problems to be solved by the invention]
Titanium copper generally has a hardness after hot rolling or solution treatment in the range of Hv 80 to 300, and greatly depends on the composition and cooling rate. Titanium copper after conventional hot rolling and solution treatment causes local spinodal decomposition due to variations in temperature and cooling rate during rapid cooling, resulting in large variations in hardness and properties, resulting in unstable quality. This material was unstable and had non-uniform characteristics. For example, when the strip material is manufactured, the variation in hardness is Hv100 or more depending on the heat treatment condition, and in the worst case, it is about ± 50% of the average value.
This improvement method includes various measures such as (1) making the hot rolling finishing temperature and the final material temperature of the solution treatment constant, and (2) making the cooling conditions constant after the hot rolling and solution treatment. However, due to the characteristics of spinodal decomposition, it is difficult to completely eliminate variations in characteristics or to obtain stable quality.
[0005]
The present invention has been made in view of the above points, and provides a titanium-copper alloy material excellent in homogeneity that facilitates post-processing, and also provides a heat treatment method capable of preventing spinodal decomposition. It is. According to such a raw material and heat treatment method, the material characteristic variation of the titanium-copper alloy is reduced and the quality is stabilized. Therefore, the hardness after the aging treatment is also constant, and the subsequent processing becomes easy. As a result, the product dimensional accuracy is improved, and there are advantages such as the ability to process a product having a complicated shape.
[0006]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) When a titanium-copper alloy containing 0.5 mass% or more and less than 5.0 mass% of titanium and consisting of the remaining copper and impurities is heated at 600 ° C. or higher and then cooled, the material temperature is at least 500 ° C. Titanium copper alloy material of cold rolling and solution treatment tempering characterized in that the hardness dispersion is Hv 40 or less by setting the cooling rate at 200 ° C./second or more when it is in the temperature range from 300 to 300 ° C. .
(2) A titanium-copper alloy containing 0.5% by mass or more and less than 5.0% by mass of titanium, and the remaining copper and impurities are hot-rolled at a temperature of 600 ° C. or higher and rolled at a temperature of 500 ° C. or higher. When finishing and then cooling, the hardness dispersion is set to Hv 40 or less by setting the cooling rate at 200 ° C./second or more when the material temperature is in the temperature range of at least 500 ° C. to 300 ° C. Hot rolled and solution heat treated titanium copper alloy material.
(3) In a heat treatment method for solution treatment and aging treatment of titanium copper alloy containing 0.5% by mass or more and less than 5.0% by mass of titanium, and the balance copper and impurities, in the solution treatment, titanium copper When the alloy is heated at 600 ° C. or higher and then cooled, the cooling rate when the material temperature is at least in the temperature range of 500 ° C. to 300 ° C. is 200 ° C./second or more. Heat treatment method.
(4) The solution heat treatment method according to (3), wherein solution treatment is performed using an induction heating device .
(5) In a heat treatment method for solution treatment and aging treatment of a titanium copper alloy containing 0.5 mass% or more and less than 5.0 mass% of titanium, and the balance copper and impurities, the titanium copper alloy is heated to 600 ° C. or higher. Hot rolling at a temperature, rolling finish at a temperature of 500 ° C. or higher, and then cooling, when the material temperature is at least within a temperature range of 500 ° C. to 300 ° C., the cooling rate is 200 ° C./second or higher. A heat treatment method for a titanium-copper alloy, characterized by performing a heat treatment.
[0007]
The titanium copper according to the present invention contains 0.5% by mass or more and less than 5.0% by mass of titanium as a basic component. Here, when the addition amount of titanium is less than 0.5% by mass, excellent characteristics such as strength cannot be obtained, and when it is 5.0% by mass or more, the material is cured and a material with excellent workability cannot be obtained. The same effect can be expected for a composition in which, in addition to titanium, 1.0% by mass or less of chromium, zirconium, nickel, iron, or the like is added. These balances consist of copper and inevitable impurities.
[0008]
The titanium copper alloy materials (1) and (2) according to the present invention have a hardness dispersion of Hv 40 or less, more preferably Hv 30 or less. The dispersion of hardness is the difference between the maximum hardness and the minimum hardness of the material measured by a specimen collection method and a hardness measurement method specified by JIS and the like. Here, the titanium-copper alloy material is a hot or cold rolled and solution treatment state manufactured in the process described in paragraph 0002, and has not yet been processed as a final product, For example, one (book) coil, strip, wire, plate, etc., or a lot obtained by cutting them for the next process. Conventionally, for example, a material having an average hardness of Hv = 190 and a dispersion of hardness (Hv) of 60 is manufactured, and the hardness of a cutting board (work) obtained by cutting the material is Hv = 230 to 170 in a lot. Since it varies in the range, it has become very difficult to obtain a material having uniform processing characteristics and a flat shape. On the other hand, the material of the present invention has a very small variation in hardness and can be easily processed. This is due to fluctuations in Ti concentration in the solution treated structure. Subsequently, a heat treatment method capable of creating such a structure will be described.
[0009]
When the heating temperature of the titanium copper alloy is heated below 600 ° C., since the material does not re-crystallize, for be subjected to a heat treatment that effects can not be obtained, heating the titanium copper alloy at 600 ° C. or higher and did. The temperature range at which the material is heated and rapidly cooled when cooled is at least 500 ° C to 300 ° C. The reason for setting the quenching temperature to 500 ° C or higher is to use continuous equipment in normal heat treatment, but the biggest factor causing variations in characteristics in the results of various basic tests is rapid cooling such as water cooling when cooling from heat treatment. This is because the material temperature is important, and spinodal decomposition has already progressed and local variations in characteristics occur even if it is rapidly cooled below 500 ° C. Therefore, it is necessary to rapidly cool the material after heating, but in a normal gas heating furnace or electric resistance heating furnace, it is possible to efficiently process the thin plate and strip material while ensuring productivity. It is difficult, and it becomes possible to obtain a material having an efficient and stable characteristic by performing continuous treatment using an induction heating furnace capable of rapid heating and rapid cooling.
The cooling rate when quenching is 200 ° C / sec or more. This is because the cooling rate of the copper alloy has a great influence on the properties, and when cooled at a cooling rate of less than 200 ° C./second, spinodal decomposition occurs, the material is hardened, and the workability is remarkably lowered in the subsequent processing. Although this cooling rate depends on the plate thickness and the plate passing rate of the material, it is a rate that can be sufficiently achieved by cooling the material with a predetermined amount of water. The reason for cooling at the cooling rate until the material temperature becomes less than 300 ° C. is that spinodal decomposition occurs and the material strength increases when the material temperature is 300 ° C. or higher and the rapid cooling is stopped.
[0010]
[Action]
According to the present invention, the copper alloy containing titanium is heated at 600 ° C. or higher and then cooled, and when the material temperature is 500 ° C. or higher, it is cooled to a temperature of less than 300 ° C. at a cooling rate of 200 ° C./second or higher. The induction heating furnace is used as heat treatment equipment, and the above copper alloy is also hot-rolled at a temperature of 600 ° C or higher during hot rolling, and when the material temperature reaches 500 ° C or higher, 200 ° C / sec. By cooling to below 300 ° C at the above cooling rate, spinodal decomposition will occur when heat treatment is performed, and it will be possible to prevent variations in characteristics, and it will be possible to easily process in the subsequent process. Can be produced with a good yield.
[0011]
【Example】
Table 1 shows components of a copper alloy (hereinafter referred to as “titanium copper”) containing a predetermined mass% of titanium used as a test material. Titanium copper ingot 3.5 kg (30 mmt x 80 mmw x 150 mml) blended with the prescribed components is melted in a vacuum melting furnace, and the hot metal part is cut, and then the surface is peeled. The peeled ingot is homogenized and annealed at 850 ° C. for 1 hour in the air, and then hot rolled from a thickness of 27 mm to a predetermined thickness (usually 8 mm). During rolling, the surface temperature of the material was measured with a two-color radiation thermometer, and when it reached a predetermined temperature, it was cooled with water, and then the hardness of the material was measured (referred to as test circle 1 ). In order to adjust the cooling rate of the material, the thickness of the material and the amount of water during water cooling were adjusted. In addition, the cooling rate was calculated | required by inserting a thermocouple into material and processing by the heat processing conditions previously.
[0012]
[Table 1]
Figure 0003756722
[0013]
Further, after a solution treatment at 900 ° C. for 1 hour, surface cutting is performed again, and the thickness is changed from 7.5 mm to 1.0 mm by cold rolling. Next, the heating / cooling rate can be arbitrarily changed, and after heating for 5 minutes at a predetermined temperature using a greeble test device, which is a test device for investigating high-temperature characteristics under a predetermined heat treatment condition, the material is cooled under various cooling conditions. It was cooled with. After measuring the hardness of the material at any five locations on the rolled plate, it was further cold-rolled to a predetermined thickness to evaluate the effect of heat treatment conditions on the properties and workability of the material (referred to as test circle 2) ). The material temperature during heat treatment is measured continuously by attaching a contact-type thermocouple to the heat treatment portion of the material, and various cooling rates are water cooling, brackish water spray, air cooling water amount, gas flow rate. Made by adjusting.
[0014]
Table 2 (FIG. 1) shows the results of the test (1) in which the material hardness after the test material was processed by hot rolling and then cooled under various cooling conditions was measured. The hardness was measured at arbitrary five points using micro Vickers hardness (load 300 g) to evaluate the hardness and its dispersion (variation). No. in the table. In Nos. 16 and 17, there is no problem in hardness dispersion, but since the titanium content is less than 0.5% by mass, the material strength (Hv200) which is the final required property even after this cold rolling and aging treatment is performed. Above) was not obtained.
[0015]
In Table 3 (FIG. 2), after the test material having a thickness of 1.0 by cold rolling was heated at a predetermined temperature for 5 minutes, the material hardness was measured by cooling under various cooling conditions. The results of the test (2), in which the workability at the time of processing to the thickness is evaluated by whether or not the cracking of the edge occurs when the workability is rolled to 70% or more by cold work rolling, are shown. The casting material manufactured by the heat treatment method of the present invention has a slight variation in characteristics, and since the material hardness is low, and the subsequent workability is excellent, it is possible to manufacture the copper alloy with stable quality. It has become possible.
[0016]
【The invention's effect】
According to the present invention, variations in characteristics are slight, and since the material hardness is low and the subsequent workability is excellent, it is possible to produce the copper alloy with stable quality.
[Brief description of the drawings]
FIG. 1 is a table (Table 2) showing material hardness when a copper alloy is hot-rolled and then cooled under predetermined conditions.
FIG. 2 is a table (Table 3) showing evaluation results of material hardness when the cooling conditions are changed after solution treatment of the test material, and further, workability when cold working is performed.

Claims (5)

0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からなるチタン銅合金を600℃以上で加熱した後冷却するに際して、材料温度が少なくとも500℃から300℃の温度区間内にあるときの冷却速度を200℃/秒以上とすることにより硬さ分散をHv40以下としたことを特徴とする冷間圧延かつ溶体化処理調質のチタン銅合金素材。When the titanium-copper alloy comprising 0.5% by mass or more and less than 5.0% by mass of titanium and consisting of the remaining copper and impurities is heated at 600 ° C. or higher and then cooled, the temperature of the material is at least 500 ° C. to 300 ° C. A titanium-copper alloy material that is cold-rolled and solution-treated and tempered with a hardness dispersion of Hv 40 or less by setting the cooling rate to 200 ° C./second or more when it is inside. 0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からなるチタン銅合金を600℃以上の温度で熱間圧延し、500℃以上の温度で圧延仕上げし、次いで冷却する際に、材料温度が少なくとも500℃から300℃の温度区間内にあるときの冷却速度を200℃/秒以上とすることにより硬さ分散をHv40以下としたことを特徴とする熱間圧延かつ溶体化処理調質のチタン銅合金素材。Titanium copper alloy containing 0.5% by mass or more and less than 5.0% by mass of titanium, and the balance copper and impurities are hot-rolled at a temperature of 600 ° C. or higher, finished at a temperature of 500 ° C. or higher, and then cooled. In this case, the hot rolling is characterized in that the hardness dispersion is Hv 40 or less by setting the cooling rate when the material temperature is at least within a temperature range of 500 ° C. to 300 ° C. to 200 ° C./second or more. Titanium copper alloy material with solution treatment. 0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からなるチタン銅合金を溶体化処理及び時効処理する熱処理方法において、該溶体化処理に際して、チタン銅合金を600℃以上で加熱した後冷却するに際して、材料温度が少なくとも500℃から300℃の温度区間内にあるときの冷却速度を200℃/秒以上とすることを特徴とするチタン銅合金の熱処理方法。In the heat treatment method of solution treatment and aging treatment of a titanium copper alloy containing 0.5% by mass or more and less than 5.0% by mass of titanium, and the balance copper and impurities, the titanium copper alloy is subjected to 600 ° C. during the solution treatment. A method for heat-treating a titanium-copper alloy, wherein the cooling rate is 200 ° C./second or more when the material temperature is at least in the temperature range of 500 ° C. to 300 ° C. when cooling after heating as described above. 誘導加熱装置を使用して溶体化処理を行うことを特徴とする請求項3記載の銅合金の熱処理法。Heat treatment how the copper alloy according to claim 3, characterized in that the solution treatment using induction heating device. 0.5質量%以上5.0質量%未満のチタンを含み、残部銅及び不純物からなるチタン銅合金を溶体化処理及び時効処理する熱処理方法において、チタン銅合金を600℃以上の温度で熱間圧延し、500℃以上の温度で圧延仕上げし、次いで冷却する際に、材料温度が少なくとも500℃から300℃の温度区間内にあるときの冷却速度を200℃/秒以上として溶体化処理を行うことを特徴とするチタン銅合金の熱処理方法。In a heat treatment method for solution treatment and aging treatment of a titanium copper alloy containing 0.5 mass% or more and less than 5.0 mass% of titanium, and the balance copper and impurities, the titanium copper alloy is hot at a temperature of 600 ° C. or more. When it is rolled, rolled at a temperature of 500 ° C. or higher, and then cooled, a solution treatment is performed at a cooling rate of 200 ° C./second or higher when the material temperature is within a temperature range of at least 500 ° C. to 300 ° C. A heat treatment method for a titanium-copper alloy.
JP2000126844A 2000-04-27 2000-04-27 Titanium copper alloy material and heat treatment method for titanium copper alloy Expired - Fee Related JP3756722B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000126844A JP3756722B2 (en) 2000-04-27 2000-04-27 Titanium copper alloy material and heat treatment method for titanium copper alloy
US09/984,039 US20020090315A1 (en) 2000-04-27 2001-10-26 Titanium-copper alloy material, and heat-treating or hot-rolling method of titanium-copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000126844A JP3756722B2 (en) 2000-04-27 2000-04-27 Titanium copper alloy material and heat treatment method for titanium copper alloy

Publications (2)

Publication Number Publication Date
JP2001303222A JP2001303222A (en) 2001-10-31
JP3756722B2 true JP3756722B2 (en) 2006-03-15

Family

ID=18636537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000126844A Expired - Fee Related JP3756722B2 (en) 2000-04-27 2000-04-27 Titanium copper alloy material and heat treatment method for titanium copper alloy

Country Status (1)

Country Link
JP (1) JP3756722B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502166A (en) * 2014-12-15 2015-04-08 首钢总公司 Method of preparing sample wafer capable of representing grain sliding of steel and iron materials

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010007159A (en) * 2008-06-30 2010-01-14 Sumitomo Light Metal Ind Ltd Copper alloy material and electrode member of welding equipment
KR101895558B1 (en) * 2008-11-20 2018-09-07 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
JP5237900B2 (en) 2009-08-11 2013-07-17 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor device
KR101664819B1 (en) * 2016-01-22 2016-10-11 도와 메탈테크 가부시키가이샤 Cu-Ti-based copper alloy sheet material and method of manufacturing same
KR101875806B1 (en) * 2017-11-28 2018-08-02 주식회사 풍산 Method for manufacturing copper-titanium-based copper alloy material for automobile and electronic parts and copper alloy material therefrom
JP6629401B1 (en) 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP6629400B1 (en) 2018-08-30 2020-01-15 Jx金属株式会社 Titanium copper plate before aging treatment, pressed product and method for producing pressed product
JP7492812B2 (en) * 2019-03-28 2024-05-30 Jx金属株式会社 Metal leaf spring and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104502166A (en) * 2014-12-15 2015-04-08 首钢总公司 Method of preparing sample wafer capable of representing grain sliding of steel and iron materials

Also Published As

Publication number Publication date
JP2001303222A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
CN101503770B (en) Cu-Ni-Si-based copper alloy sheet material and method of manufacturing same
JP5847987B2 (en) Copper alloy containing silver
US4073667A (en) Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition
TWI539013B (en) Copper alloy sheet and method of manufacturing the same
JP4566020B2 (en) Copper alloy sheet for electrical and electronic parts with low anisotropy
CN107208191B (en) Copper alloy material and method for producing same
KR20170113410A (en) Copper alloy sheet and method for manufacturing copper alloy sheet
TW201026864A (en) Cu-ni-si-co based copper ally for electronic materials and manufacturing method therefor
US20160304990A1 (en) Copper-Titanium Alloy for Electronic Component
JP3756722B2 (en) Titanium copper alloy material and heat treatment method for titanium copper alloy
JP2012057242A (en) Method of manufacturing copper-based alloy with high strength, high conductivity and high heat resistance, and copper-based alloy with high strength, high conductivity and high heat resistance
JP7262947B2 (en) Al-Mg-Si alloy plate
JP3942505B2 (en) Titanium copper alloy material and manufacturing method thereof
JP4798943B2 (en) Aluminum alloy plate for forming and method for producing the same
CN115404377B (en) copper alloy
CN112359246B (en) Cu-Ti-P-Ni-Er copper alloy material and preparation method thereof
JP7222899B2 (en) Method for producing copper-nickel-tin alloy
WO2020044699A1 (en) Titanium copper plate, pressed product, and pressed-product manufacturing method
JP2000038647A (en) Method for working copper alloy
US20020090315A1 (en) Titanium-copper alloy material, and heat-treating or hot-rolling method of titanium-copper alloy
US20190226070A1 (en) Hot forming aluminum alloy plate and production method therefor
JP3763723B2 (en) Copper alloy wrought material with excellent bending workability and manufacturing method of copper alloy wrought material
JPH05132745A (en) Production of aluminum alloy excellent in formability
EP3461923B1 (en) Uniform grain size in hot worked spinodal copper alloy
CN112639143B (en) Titanium copper plate, press-formed article, and method for producing press-formed article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees