JP3754424B2 - Permissible current detector for superconducting equipment and power system using the same - Google Patents

Permissible current detector for superconducting equipment and power system using the same Download PDF

Info

Publication number
JP3754424B2
JP3754424B2 JP2003092354A JP2003092354A JP3754424B2 JP 3754424 B2 JP3754424 B2 JP 3754424B2 JP 2003092354 A JP2003092354 A JP 2003092354A JP 2003092354 A JP2003092354 A JP 2003092354A JP 3754424 B2 JP3754424 B2 JP 3754424B2
Authority
JP
Japan
Prior art keywords
current
superconducting
voltage
superconducting device
allowable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003092354A
Other languages
Japanese (ja)
Other versions
JP2004304879A (en
Inventor
由紀 工藤
宏 久保田
六月 山崎
久士 芳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003092354A priority Critical patent/JP3754424B2/en
Publication of JP2004304879A publication Critical patent/JP2004304879A/en
Application granted granted Critical
Publication of JP3754424B2 publication Critical patent/JP3754424B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【0001】
【発明の属する技術分野】
本発明は、超電導機器の許容通電電流検知装置およびそれを用いた電力システムに関する。
【0002】
【従来の技術】
近年、高温超電導体の材料開発が多くの研究機関や企業において積極的に行われ、高温超電導体を用いた電力用ケーブル、トランス、限流器など電力用の超電導機器の実用化に向けた研究開発が進められている。例えば、超電導限流器は、超電導体の超電導状態から常電導状態への転移の際に発生する抵抗を利用して、電流供給を停止するものである。現状の超電導限流器は、容量が小さく電力システムに適用するには不十分であるが、素子構造の改良や限流素子の直並列化による大容量化が提案されている(例えば特許文献1参照)。
【0003】
このような電力用の超電導機器を電力系統に接続して使用している際に超電導機器に不具合を生じると、品質の高い電力を安定的に供給することができなくなるので、超電導機器には非常に高い信頼性が要求される。超電導機器の不具合の一つに、超電導体の臨界電流が劣化して、許容通電電流値が低くなることが挙げられる。そのため、超電導機器の設置時および定期検査時に許容通電電流値を検知して、劣化している場合には迅速にメンテナンスや交換を行うことが必要である。
【0004】
一般に、超電導体の許容通電電流は、想定される臨界電流に近い電流を流した際に発生する微小な電圧を測定することにより評価される。ところが、電力系統での通常通電時には、超電導機器の電流容量を超電導体の臨界電流の50〜90%程度に設定している。このため、通常通電を行っている状態では電圧が発生しないのが普通であり、超電導機器の臨界電流が大幅に劣化した場合などの異常時にのみ電圧が発生する。こうした異常時に電圧を検出できたとしても、機器の損壊につながるという問題がある。一方、超電導機器を電力系統から切り離して、許容通電電流を評価しようとすると、代替機器の設置や切り替えなどの煩雑な作業が発生する。
【0005】
以上のような背景から、通常の使用状態すなわち電力系統に接続して通常通電している状態で、超電導機器の許容通電電流を測定して異常を検知できるようにすることが望まれている。
【0006】
【特許文献1】
特開平11−204845号公報
【0007】
【発明が解決しようとする課題】
本発明の目的は、電力用の超電導機器を電力系統に接続した状態で、許容通電電流を検知できる装置およびそれを用いた電力システムを提供することにある。
【0008】
【課題を解決するための手段】
本発明の一態様に係る超電導機器の許容通電電流検知装置は、電力供給源から負荷に至る電力系統に接続された、超電導体を含む超電導機器の許容通電電流を検知する装置であって、前記超電導機器に、超電導状態を保ちつつ通電している状態で、通電電流の周期より短い時間、重畳電流を供給する電流源と、前記超電導機器で発生した電圧信号を測定する手段と、前記電圧信号に基づいて前記超電導機器の許容通電電流を検知する手段とを有することを特徴とする。
【0009】
本発明に係る装置において、前記電流源はパルス電流源であり、前記重畳電流として通電電流のピークに同期したパルス電流を供給することが好ましい。
【0010】
本発明に係る装置は、さらに、前記超電導機器で発生した電圧が超電導体の長さ当り1μV/cm以上になるまで重畳電流を増加させるように電流源を制御する制御器を有することが好ましい。
【0011】
本発明に係る装置において、前記超電導機器の許容通電電流を検知する手段は、前記超電導機器で発生した電圧から、前記超電導機器のインダクタンスと接続抵抗による電圧とを除去した電圧に基づいて、前記超電導機器の許容通電電流を決定することが好ましい。
【0012】
本発明に係る装置は、前記超電導機器で発生した電圧が所定の値に達したときに、前記電流源および電圧測定手段を、前記電力系統から切り離すスイッチを有することが好ましい。
【0013】
本発明の他の態様に係る電力システムは、電力供給源と負荷とこれらの間に接続された超電導体を含む超電導機器とを有する電力系統と、前記超電導機器に、超電導状態を保ちつつ通電している状態で、通電電流の周期より短い時間、重畳電流を供給する電流源と、前記超電導機器で発生した電圧信号を測定する手段と、前記電圧信号に基づいて前記超電導機器の許容通電電流を検知する手段と、前記超電導機器をバイパスするバイパス電流経路とを有することを特徴とする。
【0014】
本発明に係る電力システムは、前記超電導機器と前記負荷との間に、通電電流の周波数以外の電気信号を除去するフィルタ回路を有することが好ましい。
【0015】
【発明の実施の形態】
以下、図1を参照して、本発明の実施形態に係る電力システムの概略的な構成を説明する。図1は、電力供給源(変電所)と負荷としての各種電力消費系統との間に、超電導機器として超電導限流器を接続した電力系統を含む電力システムを示している。図1には図示しないが、発電所間で電力の貸し借りをするために複数の発電所が連結され、また1つの発電所からは複数の変電所に電力が送られる。
【0016】
図1に示すように、図示しない発電所から送電される66kVの電力は変電所100で6.6kVに降圧されて複数の負荷(電力消費系統)へ送電される。図1では、負荷の例として、一般家庭(A系統)、工場(B系統)、病院(C系統)を示している。
【0017】
このような電力システムにおいて、たとえば図中のB系統のX地点で短絡事故が発生した場合、インピーダンスが急激に低下するため、B系統に電流が集中する。その結果、C系統への送電容量が低下して、電圧の低下などの不具合が生じる。その対策として、各電力系統には遮断器101が設けられ、短絡事故が起こった際に即座にその電力系統を遮断して他の電力系統から切り離すようにしている。しかし、遮断器101が動作するまでにはミリ秒オーダーの時間を要するため、瞬時の停電または電圧低下も許されない電力系統を連結することができないのが現状である。この問題を解決するために、各電力系統に超電導限流器102が接続される。超電導限流器102は許容量以上の電流が流れると瞬時に常伝導に転移して抵抗を発生し、大電流が流れるのを防ぐ。ただし、従来は超電導限流器102の異常などを簡便に検知することはできなかった。
【0018】
本発明の実施形態に係る電力システムでは、超電導限流器102に対して許容通電電流検知装置103を設けている。詳細は後述するが、許容通電電流検知装置103は超電導限流器102に電力系統に接続して通常通電電流を流したままで超電導限流器102の許容通電電流の検知を可能にする。したがって、超電導限流器102の劣化を速やかに判定してメンテナンスや交換が可能となり、電力システムの安定性を向上できる。
【0019】
本発明の実施形態に係る電力システムでは、切り替えスイッチ105を介して、超電導限流器102をバイパスするバイパス電流経路106を設けてもよい。この構成では、許容通電電流検知装置103によって超電導限流器102の許容通電電流の低下がないか常に監視し、低下が見られた場合には中央集中制御センター107に警報を送り、そこからの制御信号により切り替えスイッチ105を動作させて、バイパス電流経路106または図示しない予備の超電導限流器に切り替えてメンテナンスを行うようにできる。
【0020】
図2および図3を参照しながら、本発明の実施形態に係る超電導限流器の許容通電電流検知装置を説明する。図2は通常通電時における超電導限流器の接続状況を示す構成図である。図3は許容通電電流検知装置と超電導限流器との接続状況を示す構成図である。
【0021】
図2および図3に示すように、超電導限流器1は冷却容器2に設置され、液体窒素または冷凍機により77K以下に冷却されている。超電導限流器1は、電力供給源3(発電所、変電所など)と負荷4としての電力消費系統との間に直列接続されている。超電導限流器1は、電力系統で短絡事故が発生し大電流が流れる際に抵抗を発生し、電流を停止する作用を有する。
【0022】
図2に示すように、超電導限流器1と直列に電流測定装置5が接続され、超電導限流器1と並列に高圧プローブ6および光アイソレーション7を介して電圧測定装置8が接続されている。このように、通常通電時には、超電導限流器1に流れる電流を電流測定装置5によって、超電導限流器1において発生した電圧を電圧測定装置8によって常時観測している。高圧プローブ6および光アイソレーション7は、限流動作時には超電導限流器1に6.6kVまたは66kVの高電圧が印加されるため、1000分の1に降圧するために設けられている。このため、通常通電時に臨界電流のクライテリオンに相当する数mV〜数十mV程度の微小電圧を測定することは困難である。
【0023】
図3は、定期点検時における、本発明の実施形態に係る許容通電電流検知装置と超電導限流器との接続状況を示す構成図である。図3に示すように、破線で囲んだ許容通電電流検知装置9は、パルス電流源10、電圧測定装置11、電流測定装置12、データ処理装置13などの機器を含んでいる。パルス電流源10は超電導限流器1の電流導入端子31、32に接続され、超電導状態を保ちつつ通常通電している状態で、超電導機器1に通電電流の周期より短時間だけ重畳電流を供給する。電圧測定装置11は超電導限流器1の電圧測定端子33、34に接続され、超電導機器で発生した電圧信号を測定する。電流測定装置12は超電導限流器1に流れる電流を観測する。データ処理装置13は電圧測定装置11によって測定された電圧信号に基づいて超電導機器1の許容通電電流を検知する。
【0024】
図4(a)〜(d)に、通常通電電流It、パルス電流源10から供給されるパルス電流Ip、超電導限流器1に流れる電流If、超電導限流器1で発生する電圧Vfの波形を示す。この図に示すように、周波数50Hzの通常通電電流Itのピークに同期させて、パルス電流Ipを重畳させて供給する。その際に、超電導限流器1で発生した電圧Vfをデータ処理装置13に入力し、許容通電電流のクライテリオン(超電導体の長さ当りで1μV/cmの発生電圧)に相当する電圧が発生しているかどうかを判定し、クライテリオンに達するまでパルス電流の大きさを増加させるように、データ処理装置13からパルス電流源10に制御信号を送って制御する。このような手順で、超電導限流器1の許容通電電流を決定し、予め記録しておいた設置時の臨界電流と比較することにより、超電導限流器1の劣化を判定する。
【0025】
図4に示したように、定期点検時に超電導限流器1に通電する、通電電流Itとパルス電流Ipとを重畳させた電流Ifは、周期的な波形を有することが好ましい。これは、周期的な波形であれば簡便に平均化することができ、許容通電電流を検知する精度が向上するためである。超電導限流器1に通電する電流Ifを周期的な波形とするためには、パルス電流Ipの周波数を通電電流Itの周波数の整数倍にして、通電電流Itとパルス電流Ipとを同期させることが好ましい。
【0026】
なお、超電導体に臨界電流を超える電流が流れるとジュール発熱を生じ、その発熱量が大きいと温度上昇し超電導限流器1がクエンチするおそれがある。その場合には大量の液体窒素が蒸発し、最悪の場合は機器の損壊にまで及ぶ。したがって、超電導限流器1をクエンチにまで至らせないようにするために、重畳するパルス電流のピーク値は、設置時の臨界電流の3倍以下、さらには1.5倍以下が好ましい。また、パルス幅は、通電電流の周期の1/2以下、さらには1/10以下が好ましい。
【0027】
一方、パルス電流の周波数が高すぎると、超電導限流器には交流に対するインダクタンスがあるため電圧が発生し、許容通電電流の決定が困難になる。このため、パルス電流の周波数は100kHz以下が好ましい。なお、通常通電時に超電導限流器のインダクタンス以外に接続抵抗による電圧も微小であるが発生する。したがって、さらに許容通電電流の精度を向上させるためには、通常通電時に発生する電圧をモニターしておき、パルス電流を加えた際に発生した電圧から、インダクタンスと接続抵抗による電圧を除去し、その抽出された電圧に基づいて許容通電電流を決定することが好ましい。これらのインダクタンスと接続抵抗による電圧の除去はデータ処理装置13によって行うことが好ましい。
【0028】
本発明の実施形態に係る電力システムでは、電力供給源に他の電力系統も接続されている場合がある。その電力系統で短絡事故が発生した場合、本発明に使用されている超電導限流器1には高電圧が発生するため許容通電電流検知装置9が破壊されるおそれがある。この問題に対しては、図5および図6に示す構成を採用することが有効である。図5は、パルス電流発生器14の出力部にスイッチ15と高周波トランス16とを設けたパルス電流源10を示している。図6は電圧測定器17の入力部にスイッチ18を設けた電圧測定装置11を示している。これらの図に示すパルス電流源10および電圧測定装置11は、超電導限流器1に発生した電圧が所定値に達したときに、スイッチ15、18をオフして電力系統から切り離すことが可能である。
【0029】
パルス電流を供給した際に超電導限流器1で発生する電圧は数10mVから大きくても1V程度であり、電力系統の電圧6.6kVまたは66kVに比べて非常に小さく、負荷4への影響は非常に小さい。しかし、負荷4によっては周波数の大きいノイズを除去したい場合がある。この問題に対しては、図7に示すように、超電導限流器1と負荷4との間に、パルス電流を加えた際に発生する周波数の大きい電気信号を除去するフィルタ回路19を設置して電力システムを構成することが好ましい。
【0030】
以上においては、超電導機器が超電導限流器である場合について説明したが、超電導機器には超電導ケーブルや超電導トランスなども含まれる。また、許容通電電流検知装置を電力供給源と負荷(電力消費機器)との間に接続される超電導機器とともに電力システムの一部として組み込んだ場合について説明したが、許容通電電流検知装置を移動可能なラックに収納し、超電導機器に適宜接続して定期検査用として使用することもできる。したがって、設置場所が異なる複数の超電導機器の許容通電電流を定期的に調べることができる。また超電導機器を電力系統に接続しない状態でも、本発明に係る装置により許容通電電流を検知できることはいうまでもない。
【0031】
【実施例】
次に具体的な実施例について図を参照しながら説明する。
【0032】
[実施例1]
図8に本実施例における超電導限流器と許容通電電流検知装置を用いた電力システムの構成図を示す。超電導限流器1は冷却容器内2に設置されて液体窒素で77Kに冷却された状態で電力供給源3と負荷4との間に直列接続されている。超電導限流器1は容量が6.6kV(ピーク電圧9.3kV)/1kA(ピーク電流1.4kA)であり、Y系高温超電導薄膜を用いた限流素子を複数枚、直並列接続したモジュールで構成されている。Y系高温超電導薄膜の長さは4mであった。
【0033】
本実施例における許容通電電流検知装置9を破線で示す。超電導限流器1の電流導入端子31、32にはLC共振回路からなるパルス電流源(後により詳細に説明する)が、超電導限流器1の電圧測定端子33、34にはスイッチ18を介して電圧測定装置17がそれぞれ接続されている。電流測定装置12は超電導限流器1に流れる電流を観測する。データ処理装置13は電圧測定装置17によって測定された電圧信号に基づいて超電導機器1の許容通電電流を検知する。
【0034】
パルス電流源は、高周波トランス16(巻線比1:100、応答周波数50〜5kHz)、LC共振回路を切り離すスイッチ15、サイリスタスイッチ22、コンデンサ21、インダクタンス20、コンデンサを充電する充電器23から構成されている。コンデンサ21は複数のコンデンサで構成され、接続数を切り替えることにより容量を可変できる。同様に、インダクタンス20には線路長を選択できる複数の端子が設けられており、線路長を切り替えることによりインダクタンスを可変できる。本実施例ではコンデンサおよびインダクタンスの容量をそれぞれ25μF、1mHに設定した。したがって、サイリスタスイッチ22とスイッチ15をオンした場合、周波数1kHzの電流を流すことができる。また、充電器においてコンデンサの充電電圧を可変できる。例えば100V充電した場合、パルス電流Ipのピーク電流は1.6kAであった。パルス電流の大きさはコンデンサの充電電圧により調整した。
【0035】
図9(a)および(b)に、500A(ピーク電流700A)の通常通電電流Itと、超電導限流器1で発生する電圧Vfの波形を示す。通常通電時には、超電導限流器1にインダクタンスと接続抵抗による電圧が観測され、ピーク電圧は約1.4mVであった。この結果から、接続抵抗は約2μΩであることがわかった。なお、超電導限流器1のインダクタンスは50nH程度と小さく、発生電圧の大部分は接続抵抗によるものであった。
【0036】
図10(a)〜(d)に、通常通電電流に1kA(ピーク電流1.4kA)のパルス電流を重畳させたときに超電導限流器1に流れる電流Ifと、超電導限流器1で発生する電圧Vfの波形を示す。(a)に示すようにパルス電流はサイリスタスイッチ22の操作により通電電流のピークに同期させて供給した。(b)は実測の電圧波形であり、(c)はデータ処理装置13によって1000サイクルの波形を平均化した波形である。(d)は(c)の平均化した電圧から超電導限流器1の接続抵抗とインダクタンスによる電圧を除去した電圧波形である。
【0037】
超電導限流器1に使用したY系高温超電導薄膜の長さは4mであり、臨界電流のクライテリオン(1μV/cm)に相当する電圧は0.4mVである。(a)と(d)の結果を用いて0.4mVに達した電流値を見積もると約1.7kAであった。この電力システムを長期間使用したところ許容通電電流の低下が見られた。許容通電電流が設置時の臨界電流の80%まで低下したときに警報を発するように設定し、超電導限流器の交換を行うようにした。
【0038】
[実施例2]
実施例1と同様の電力システムにおいて、定期的に許容通電電流を検知している際に、同じ電力供給源に接続された他の電力系統で短絡事故が発生した。図11に、その際に超電導限流器1に流れる電流Ifと、超電導限流器1で発生する電圧Vfの波形を示す。超電導限流器1で発生する電圧がクエンチの判定基準である5Vに達したため、データ処理装置13よりスイッチ15、18に信号を送り、パルス電流源と電圧測定器を電力系統から切り離した。これにより、超電導限流器1の動作に伴って許容通電電流検知装置9に高電圧が印加されるのを避けて破損を免れることができた。
【0039】
[実施例3]
図7に示したように、超電導限流器1と負荷4との間に通電電流の周波数以外の電気信号を除去するフィルタ回路19を接続した電力システムを構成した。図12(a)および(b)に、フィルタ回路19なしの場合とフィルタ回路19ありの場合の負荷に加わる電圧の波形を示す。フィルタ回路19を設けたことにより、超電導限流器1にパルス電流を供給した際に発生する負荷4の電圧低下を防止でき、より安定した電力の供給が可能になった。
【0040】
[実施例4]
図13に本実施例における電力システムを示す。この電力システムでは、発電設備51と電力消費機器52が液体窒素循環装置53により77K以下に冷却された超電導ケーブル54で接続されており、超電導ケーブル54の両端にスイッチ57、57を介して許容通電電流検知装置55が接続されている。また、許容通電電流検知装置55には警報装置56が接続されている。
【0041】
超電導ケーブル54に通常通電電流を供給した状態で、通常通電電流の電流ピークに同期させてパルス幅1msecのパルス電流を重畳させ、パルス電流のピーク値を一定の割合で増加させて1μV/cmの電圧が発生するまで供給することにより、超電導ケーブル54の許容通電電流を検知することができる。
【0042】
通常通電電流が設置時の臨界電流の80%を超えた場合に警報装置6を作動させて合格の警報を発するようにした。一方、許容通電電流が設置時の臨界電流の80%以下になった場合にも警報装置6を動作させて交換のための警報を発するようにし、その警報に基づいて超電導ケーブル54を交換した。また、本実施例に係る許容通電電流検知装置55を有する電力システムでは、液体窒素の温度上昇による許容通電電流の低下を検知して警報を発することもできる。
【0043】
なお、図13には1本の超電導ケーブルしか図示していないが、距離が長い場合には複数の超電導ケーブルを中継し、それぞれの超電導ケーブルに対応して液体窒素循環装置が設けられる。このような場合、本発明に係る許容通電電流検知装置55を全ての超電導ケーブルに接続することが望ましいが、接続スイッチ57によって許容通電電流検知装置55を切り離すことができるので、定期検査のために全ての超電導ケーブルに対応して許容通電電流検知装置55を用意する必要はない。
【0044】
本発明に係る許容通電電流検知装置は、SMES、超電導変圧器など超電導線材を用いた装置、およびこれらの装置を含む電力システムにも応用できる。
【0045】
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
【0046】
【発明の効果】
以上説明したように本発明によれば、電力用の超電導機器を電力系統に接続した状態で超電導機器の許容通電電流を検知することができる。これにより、超電導機器の劣化を速やかに判定してメンテナンスや交換が可能となり、安定性に優れた電力システムを構築することが可能になる。
【図面の簡単な説明】
【図1】 本発明の実施形態に係る電力システムの概略的な構成図。
【図2】 超電導限流器の通常通電時における接続状況を示す構成図。
【図3】 本発明の実施形態に係る許容通電電流検知装置と超電導限流器との接続状況を示す構成図。
【図4】 本発明の実施形態に係る許容通電電流検知装置を超電導限流器に適用した場合の電流波形図。
【図5】 本発明の実施形態に係る許容通電電流検知装置のパルス電流源の構成図。
【図6】 本発明の実施形態に係る許容通電電流検知装置の電圧測定装置の構成図。
【図7】 本発明の実施形態に係る超電導限流器と負荷との間にフィルタ回路を設置した電力システムの構成図。
【図8】 本発明の実施例1における超電導限流器と許容通電電流検知装置を用いた電力システムの構成図。
【図9】 本発明の実施例1における、超電導限流器に流れる通常通電電流と超電導限流器で発生する電圧の波形図。
【図10】 本発明の実施例1における、通常通電電流にパルス電流を重畳させたときに超電導限流器に流れる電流と超電導限流器で発生する電圧の波形図。
【図11】 本発明の実施例2における、他の電力系統で短絡事故が発生した際に超電導限流器に流れる電流と超電導限流器で発生する電圧の波形図。
【図12】 本発明の実施例3における、フィルタ回路なしの電力システムおよびフィルタ回路なしの電力システムでの負荷に加わる電圧の波形図。
【図13】 本発明の実施例4における電力システムの構成図。
【符号の説明】
1…超電導限流器、2…冷却容器、3…電源、4…負荷、5…電流測定装置、6…高圧プローブ、7…光アイソレータ、8…電圧測定器、9…許容通電電流検知装置、10…パルス電流源、11…電圧測定装置、12…電流測定装置、13…データ処理装置、14…パルス電流発生器、15…スイッチ、16…高周波トランス、17…電圧測定器、18…スイッチ、19…フィルタ回路、20…インダクタンス、21…コンデンサ、22…サイリスタスイッチ、23…充電器、31、32…電流導入端子、33、34…電圧測定端子、51…発電設備、52…電力消費機器、53…液体窒素循環装置、54…超電導ケーブル、55…許容通電電流検知装置、56…警報装置、57…スイッチ、100…変電所、101…遮断器、102…超電導限流器、103…許容通電電流検知装置、105…切り替えスイッチ、106…バイパス電流経路、107…中央集中制御センター。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a permissible current detector for superconducting equipment and a power system using the same.
[0002]
[Prior art]
In recent years, high-temperature superconductor materials have been actively developed by many research institutions and companies, and research toward the practical application of power superconducting equipment such as power cables, transformers, and current limiters using high-temperature superconductors has been carried out. Development is underway. For example, the superconducting fault current limiter stops the current supply by using a resistance generated when the superconductor transitions from the superconducting state to the normal conducting state. Although the current superconducting current limiter has a small capacity and is insufficient to be applied to a power system, improvement of the element structure and increase in capacity by series paralleling of current limiting elements have been proposed (for example, Patent Document 1). reference).
[0003]
If such a superconducting device for electric power is connected to the power system and a malfunction occurs in the superconducting device, high-quality power cannot be stably supplied. High reliability is required. One of the problems of superconducting equipment is that the critical current of the superconductor deteriorates and the allowable current value decreases. For this reason, it is necessary to detect the allowable energization current value at the time of installing the superconducting device and at the regular inspection, and to perform maintenance and replacement promptly when it is deteriorated.
[0004]
In general, the allowable conducting current of a superconductor is evaluated by measuring a minute voltage generated when a current close to an assumed critical current is passed. However, during normal energization in the power system, the current capacity of the superconducting device is set to about 50 to 90% of the critical current of the superconductor. For this reason, it is normal that a voltage is not generated in a state where normal energization is performed, and a voltage is generated only at the time of abnormality such as when the critical current of the superconducting device is greatly deteriorated. Even if the voltage can be detected at the time of such an abnormality, there is a problem that the device is damaged. On the other hand, when the superconducting device is disconnected from the power system and an allowable energization current is to be evaluated, complicated operations such as installation and switching of alternative devices occur.
[0005]
From the background as described above, it is desired that an abnormality can be detected by measuring an allowable energization current of a superconducting device in a normal use state, that is, in a state of being normally energized by being connected to a power system.
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-204845
[Problems to be solved by the invention]
An object of the present invention is to provide a device capable of detecting an allowable energization current in a state where a superconducting device for electric power is connected to an electric power system, and an electric power system using the device.
[0008]
[Means for Solving the Problems]
An allowable energization current detection device for a superconducting device according to an aspect of the present invention is an apparatus for detecting an allowable energization current of a superconducting device including a superconductor connected to a power system from a power supply source to a load, A current source that supplies a superimposed current for a time shorter than the cycle of the energization current while energizing the superconducting device while maintaining a superconducting state, means for measuring a voltage signal generated in the superconducting device, and the voltage signal And a means for detecting an allowable energization current of the superconducting device based on the above.
[0009]
In the apparatus according to the present invention, it is preferable that the current source is a pulse current source, and a pulse current synchronized with a peak of an energized current is supplied as the superimposed current.
[0010]
The apparatus according to the present invention preferably further includes a controller for controlling the current source so as to increase the superimposed current until the voltage generated in the superconducting device becomes 1 μV / cm or more per length of the superconductor.
[0011]
In the apparatus according to the present invention, the means for detecting an allowable energization current of the superconducting device is based on a voltage obtained by removing an inductance of the superconducting device and a voltage due to a connection resistance from a voltage generated in the superconducting device. It is preferable to determine the allowable energization current of the device.
[0012]
The device according to the present invention preferably has a switch for disconnecting the current source and the voltage measuring means from the power system when the voltage generated in the superconducting device reaches a predetermined value.
[0013]
A power system according to another aspect of the present invention includes a power system including a power supply source, a load, and a superconducting device including a superconductor connected therebetween, and energizes the superconducting device while maintaining a superconducting state. A current source that supplies a superimposed current for a time shorter than the cycle of the energized current, a means for measuring a voltage signal generated in the superconducting device, and an allowable energizing current of the superconducting device based on the voltage signal. It has a means for detecting and a bypass current path for bypassing the superconducting device.
[0014]
The power system according to the present invention preferably includes a filter circuit that removes an electrical signal other than the frequency of the energized current between the superconducting device and the load.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a schematic configuration of a power system according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a power system including a power system in which a superconducting fault current limiter is connected as a superconducting device between a power supply source (substation) and various power consumption systems as loads. Although not shown in FIG. 1, a plurality of power plants are connected to lend and borrow power between power plants, and power is sent from one power plant to a plurality of substations.
[0016]
As shown in FIG. 1, 66 kV power transmitted from a power station (not shown) is stepped down to 6.6 kV at a substation 100 and transmitted to a plurality of loads (power consumption systems). In FIG. 1, a general household (A system), a factory (B system), and a hospital (C system) are shown as examples of loads.
[0017]
In such a power system, for example, when a short-circuit accident occurs at point X of the B system in the figure, the impedance is suddenly reduced, so that the current concentrates on the B system. As a result, the power transmission capacity to the C system is reduced, causing problems such as a voltage drop. As a countermeasure, a breaker 101 is provided in each power system, and when a short-circuit accident occurs, the power system is immediately cut off and separated from other power systems. However, since it takes a time on the order of milliseconds until the circuit breaker 101 operates, it is currently impossible to connect power systems that do not allow an instantaneous power failure or voltage drop. In order to solve this problem, a superconducting fault current limiter 102 is connected to each power system. Superconducting fault current limiter 102 instantaneously transitions to normal conduction when a current exceeding an allowable amount flows, generates resistance, and prevents a large current from flowing. However, conventionally, an abnormality of the superconducting fault current limiter 102 or the like cannot be detected easily.
[0018]
In the power system according to the embodiment of the present invention, the allowable conducting current detection device 103 is provided for the superconducting current limiter 102. As will be described in detail later, the allowable conducting current detector 103 is connected to the superconducting fault current limiter 102 in the power system, and allows detection of the allowable conducting current of the superconducting fault limiter 102 while the normal conducting current is flowing. Therefore, it is possible to quickly determine the deterioration of the superconducting fault current limiter 102 and perform maintenance or replacement, thereby improving the stability of the power system.
[0019]
In the power system according to the embodiment of the present invention, a bypass current path 106 that bypasses the superconducting current limiter 102 may be provided via the changeover switch 105. In this configuration, the allowable energizing current detector 103 always monitors whether the allowable energizing current of the superconducting fault current limiter 102 has decreased, and if a decrease is observed, an alarm is sent to the centralized control center 107, from which The changeover switch 105 is operated by a control signal, and maintenance can be performed by switching to the bypass current path 106 or a spare superconducting fault current limiter (not shown).
[0020]
With reference to FIG. 2 and FIG. 3, a description will be given of an allowable conduction current detection device for a superconducting fault current limiter according to an embodiment of the present invention. FIG. 2 is a block diagram showing the connection status of the superconducting fault current limiter during normal energization. FIG. 3 is a configuration diagram showing a connection state between the allowable energization current detection device and the superconducting fault current limiter.
[0021]
As shown in FIGS. 2 and 3, the superconducting fault current limiter 1 is installed in a cooling vessel 2 and cooled to 77K or less by liquid nitrogen or a refrigerator. The superconducting fault current limiter 1 is connected in series between a power supply source 3 (such as a power plant or a substation) and a power consumption system as a load 4. The superconducting fault current limiter 1 has a function of generating resistance and stopping current when a short circuit accident occurs in the power system and a large current flows.
[0022]
As shown in FIG. 2, a current measuring device 5 is connected in series with the superconducting current limiter 1, and a voltage measuring device 8 is connected in parallel with the superconducting current limiter 1 via a high voltage probe 6 and an optical isolation 7. Yes. Thus, during normal energization, the current flowing through the superconducting fault current limiter 1 is constantly observed by the current measuring device 5 and the voltage generated in the superconducting current limiter 1 is constantly observed by the voltage measuring device 8. The high voltage probe 6 and the optical isolation 7 are provided to step down to 1/1000 because a high voltage of 6.6 kV or 66 kV is applied to the superconducting current limiter 1 during current limiting operation. For this reason, it is difficult to measure a minute voltage of about several mV to several tens of mV corresponding to the critical current criterion during normal energization.
[0023]
FIG. 3 is a configuration diagram showing a connection state between the allowable conducting current detection device and the superconducting fault current limiter according to the embodiment of the present invention at the time of periodic inspection. As illustrated in FIG. 3, the allowable energization current detection device 9 surrounded by a broken line includes devices such as a pulse current source 10, a voltage measurement device 11, a current measurement device 12, and a data processing device 13. The pulse current source 10 is connected to the current introduction terminals 31 and 32 of the superconducting fault current limiter 1 and supplies the superconducting device 1 with a superimposed current for a shorter period of time than the period of the energizing current in a state of normal energization while maintaining the superconducting state. To do. The voltage measuring device 11 is connected to the voltage measuring terminals 33 and 34 of the superconducting fault current limiter 1 and measures a voltage signal generated by the superconducting device. The current measuring device 12 observes the current flowing through the superconducting fault current limiter 1. The data processing device 13 detects the allowable energization current of the superconducting device 1 based on the voltage signal measured by the voltage measuring device 11.
[0024]
4A to 4D show waveforms of the normal energization current It, the pulse current Ip supplied from the pulse current source 10, the current If flowing in the superconducting current limiter 1, and the voltage Vf generated in the superconducting current limiter 1. Indicates. As shown in this figure, the pulse current Ip is supplied in a superimposed manner in synchronization with the peak of the normal energization current It having a frequency of 50 Hz. At that time, the voltage Vf generated by the superconducting fault current limiter 1 is input to the data processing device 13, and a voltage corresponding to the allowable current-criteria criterion (generated voltage of 1 μV / cm per length of the superconductor) is generated. Control is performed by sending a control signal from the data processing device 13 to the pulse current source 10 so as to increase the magnitude of the pulse current until reaching the criterion. In such a procedure, the allowable conduction current of the superconducting fault current limiter 1 is determined, and the deterioration of the superconducting fault current limiter 1 is determined by comparing with the critical current at the time of installation recorded in advance.
[0025]
As shown in FIG. 4, it is preferable that the current If, which is applied to the superconducting fault current limiter 1 during the periodic inspection, in which the energization current It and the pulse current Ip are superimposed, has a periodic waveform. This is because a periodic waveform can be easily averaged, and the accuracy of detecting the allowable energization current is improved. In order to make the current If flowing in the superconducting fault current limiter 1 into a periodic waveform, the frequency of the pulse current Ip is set to be an integral multiple of the frequency of the current flowing It, and the current flowing It and the pulse current Ip are synchronized. Is preferred.
[0026]
If a current exceeding the critical current flows through the superconductor, Joule heat is generated. If the amount of generated heat is large, the temperature rises and the superconducting fault current limiter 1 may be quenched. In that case, a large amount of liquid nitrogen evaporates, and in the worst case, the damage to the equipment is reached. Therefore, in order to prevent the superconducting fault current limiter 1 from reaching quenching, the peak value of the superimposed pulse current is preferably not more than 3 times, more preferably not more than 1.5 times the critical current at the time of installation. The pulse width is preferably ½ or less, more preferably 1/10 or less of the period of the energization current.
[0027]
On the other hand, if the frequency of the pulse current is too high, the superconducting fault current limiter has an inductance with respect to alternating current, so that a voltage is generated and it is difficult to determine the allowable energizing current. For this reason, the frequency of the pulse current is preferably 100 kHz or less. In addition to the inductance of the superconducting fault current limiter during normal energization, the voltage generated by the connection resistance is very small. Therefore, in order to further improve the accuracy of the allowable energization current, the voltage generated during normal energization is monitored, and the voltage due to the inductance and connection resistance is removed from the voltage generated when the pulse current is applied. It is preferable to determine the allowable energization current based on the extracted voltage. It is preferable that the data processor 13 removes the voltage due to the inductance and the connection resistance.
[0028]
In the power system according to the embodiment of the present invention, another power system may be connected to the power supply source. When a short circuit accident occurs in the power system, a high voltage is generated in the superconducting fault current limiter 1 used in the present invention, so that the allowable energizing current detector 9 may be destroyed. For this problem, it is effective to employ the configuration shown in FIGS. FIG. 5 shows a pulse current source 10 in which a switch 15 and a high frequency transformer 16 are provided at the output of the pulse current generator 14. FIG. 6 shows a voltage measuring device 11 in which a switch 18 is provided at the input of the voltage measuring device 17. The pulse current source 10 and the voltage measuring device 11 shown in these drawings can be disconnected from the power system by turning off the switches 15 and 18 when the voltage generated in the superconducting current limiter 1 reaches a predetermined value. is there.
[0029]
When the pulse current is supplied, the voltage generated in the superconducting fault current limiter 1 is from several tens mV to 1 V at most, which is very small compared to the voltage 6.6 kV or 66 kV of the power system, and the influence on the load 4 is Very small. However, depending on the load 4, it may be desired to remove noise having a large frequency. To solve this problem, as shown in FIG. 7, a filter circuit 19 is installed between the superconducting current limiting device 1 and the load 4 to remove an electric signal having a large frequency that is generated when a pulse current is applied. It is preferable that the power system is configured.
[0030]
Although the case where the superconducting device is a superconducting fault current limiter has been described above, the superconducting device includes a superconducting cable, a superconducting transformer, and the like. In addition, although the case where the allowable energization current detection device is incorporated as a part of the power system together with the superconducting device connected between the power supply source and the load (power consuming device) has been described, the allowable energization current detection device can be moved It can also be used for periodic inspection by being housed in a simple rack and properly connected to superconducting equipment. Therefore, it is possible to periodically check the allowable energization currents of a plurality of superconducting devices having different installation locations. Needless to say, the allowable current can be detected by the device according to the present invention even when the superconducting device is not connected to the power system.
[0031]
【Example】
Next, specific examples will be described with reference to the drawings.
[0032]
[Example 1]
FIG. 8 shows a configuration diagram of a power system using the superconducting fault current limiter and the allowable energizing current detector in the present embodiment. The superconducting fault current limiter 1 is installed in the cooling vessel 2 and is connected in series between the power supply source 3 and the load 4 while being cooled to 77K with liquid nitrogen. The superconducting current limiter 1 has a capacity of 6.6 kV (peak voltage 9.3 kV) / 1 kA (peak current 1.4 kA), and is a module in which a plurality of current limiting elements using a Y-based high-temperature superconducting thin film are connected in series and parallel. It consists of The length of the Y-based high temperature superconducting thin film was 4 m.
[0033]
The allowable energization current detector 9 in the present embodiment is indicated by a broken line. The current introduction terminals 31 and 32 of the superconducting fault current limiter 1 have a pulse current source (described in detail later) formed of an LC resonance circuit. The voltage measuring devices 17 are connected to each other. The current measuring device 12 observes the current flowing through the superconducting fault current limiter 1. The data processing device 13 detects the allowable energization current of the superconducting device 1 based on the voltage signal measured by the voltage measuring device 17.
[0034]
The pulse current source includes a high-frequency transformer 16 (winding ratio 1: 100, response frequency 50 to 5 kHz), a switch 15 that cuts off an LC resonance circuit, a thyristor switch 22, a capacitor 21, an inductance 20, and a charger 23 that charges the capacitor. Has been. The capacitor 21 is composed of a plurality of capacitors, and the capacitance can be varied by switching the number of connections. Similarly, the inductance 20 is provided with a plurality of terminals capable of selecting the line length, and the inductance can be varied by switching the line length. In this embodiment, the capacitance of the capacitor and the inductance was set to 25 μF and 1 mH, respectively. Therefore, when the thyristor switch 22 and the switch 15 are turned on, a current having a frequency of 1 kHz can flow. In addition, the charging voltage of the capacitor can be varied in the charger. For example, when charged at 100 V, the peak current of the pulse current Ip was 1.6 kA. The magnitude of the pulse current was adjusted by the charging voltage of the capacitor.
[0035]
9A and 9B show the waveforms of the normal conduction current It of 500 A (peak current 700 A) and the voltage Vf generated in the superconducting current limiter 1. During normal energization, a voltage due to inductance and connection resistance was observed in the superconducting fault current limiter 1, and the peak voltage was about 1.4 mV. From this result, it was found that the connection resistance was about 2 μΩ. The inductance of the superconducting current limiting device 1 was as small as about 50 nH, and most of the generated voltage was due to connection resistance.
[0036]
10A to 10D, the current If flowing in the superconducting fault current limiter 1 when the pulse current of 1 kA (peak current 1.4 kA) is superimposed on the normal energizing current, and generated in the superconducting current limiter 1 The waveform of the voltage Vf to perform is shown. As shown in (a), the pulse current was supplied in synchronization with the peak of the energized current by operating the thyristor switch 22. (B) is an actually measured voltage waveform, and (c) is a waveform obtained by averaging the waveforms of 1000 cycles by the data processor 13. (D) is the voltage waveform which removed the voltage by the connection resistance and inductance of the superconducting fault current limiter 1 from the averaged voltage of (c).
[0037]
The length of the Y-based high-temperature superconducting thin film used for the superconducting fault current limiter 1 is 4 m, and the voltage corresponding to the critical current criterion (1 μV / cm) is 0.4 mV. Using the results of (a) and (d), the current value reaching 0.4 mV was estimated to be about 1.7 kA. When this power system was used for a long period of time, the allowable energization current decreased. A setting was made to issue an alarm when the allowable energization current dropped to 80% of the critical current at the time of installation, and the superconducting current limiter was replaced.
[0038]
[Example 2]
In the same power system as in Example 1, a short-circuit accident occurred in another power system connected to the same power supply source when the allowable energization current was periodically detected. FIG. 11 shows waveforms of the current If flowing in the superconducting fault current limiter 1 and the voltage Vf generated in the superconducting current limiter 1 at that time. Since the voltage generated in the superconducting current limiting device 1 has reached 5 V, which is the criterion for quenching, a signal is sent from the data processing device 13 to the switches 15 and 18, and the pulse current source and the voltage measuring device are disconnected from the power system. As a result, it was possible to avoid damage by avoiding the application of a high voltage to the allowable energizing current detector 9 with the operation of the superconducting fault current limiter 1.
[0039]
[Example 3]
As shown in FIG. 7, a power system was configured in which a filter circuit 19 that removes an electrical signal other than the frequency of the energized current was connected between the superconducting current limiter 1 and the load 4. 12A and 12B show waveforms of voltages applied to the load when the filter circuit 19 is not provided and when the filter circuit 19 is provided. By providing the filter circuit 19, it is possible to prevent a voltage drop of the load 4 that occurs when a pulse current is supplied to the superconducting fault current limiter 1, and a more stable power supply is possible.
[0040]
[Example 4]
FIG. 13 shows a power system in the present embodiment. In this power system, the power generation equipment 51 and the power consuming device 52 are connected by a superconducting cable 54 cooled to 77 K or less by the liquid nitrogen circulation device 53, and allowable energization is performed via switches 57, 57 at both ends of the superconducting cable 54. A current detection device 55 is connected. Further, an alarm device 56 is connected to the allowable energization current detection device 55.
[0041]
In a state where the normal conducting current is supplied to the superconducting cable 54, a pulse current having a pulse width of 1 msec is superimposed in synchronization with the current peak of the normal conducting current, and the peak value of the pulse current is increased at a constant rate to 1 μV / cm. By supplying the voltage until the voltage is generated, the allowable energization current of the superconducting cable 54 can be detected.
[0042]
When the normal energizing current exceeds 80% of the critical current at the time of installation, the alarm device 6 is operated to issue a pass alarm. On the other hand, even when the allowable energization current becomes 80% or less of the critical current at the time of installation, the alarm device 6 is operated to issue an alarm for replacement, and the superconducting cable 54 is replaced based on the alarm. Moreover, in the electric power system having the allowable energization current detection device 55 according to the present embodiment, it is possible to issue a warning by detecting a decrease in the allowable energization current due to the temperature rise of liquid nitrogen.
[0043]
Although only one superconducting cable is shown in FIG. 13, when the distance is long, a plurality of superconducting cables are relayed, and a liquid nitrogen circulation device is provided corresponding to each superconducting cable. In such a case, it is desirable to connect the allowable energization current detection device 55 according to the present invention to all the superconducting cables. However, the allowable energization current detection device 55 can be disconnected by the connection switch 57. It is not necessary to prepare the allowable energization current detection device 55 corresponding to all superconducting cables.
[0044]
The allowable energizing current detection device according to the present invention can be applied to devices using superconducting wires such as SMES and superconducting transformers, and power systems including these devices.
[0045]
Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
[0046]
【The invention's effect】
As described above, according to the present invention, it is possible to detect an allowable energization current of a superconducting device in a state where the superconducting device for power is connected to the power system. As a result, it is possible to promptly determine the deterioration of the superconducting device, perform maintenance and replacement, and construct a power system with excellent stability.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a power system according to an embodiment of the present invention.
FIG. 2 is a configuration diagram showing a connection state of the superconducting fault current limiter during normal energization.
FIG. 3 is a configuration diagram showing a connection state between an allowable energization current detection device and a superconducting fault current limiter according to an embodiment of the present invention.
FIG. 4 is a current waveform diagram when the allowable energization current detector according to the embodiment of the present invention is applied to a superconducting fault current limiter.
FIG. 5 is a configuration diagram of a pulse current source of the allowable energization current detection device according to the embodiment of the present invention.
FIG. 6 is a configuration diagram of a voltage measurement device of the allowable energization current detection device according to the embodiment of the present invention.
FIG. 7 is a configuration diagram of a power system in which a filter circuit is installed between a superconducting fault current limiter and a load according to an embodiment of the present invention.
FIG. 8 is a configuration diagram of a power system using a superconducting fault current limiter and an allowable energizing current detection device according to Embodiment 1 of the present invention.
FIG. 9 is a waveform diagram of a normal energizing current flowing in the superconducting fault current limiter and a voltage generated in the superconducting fault current limiter in Embodiment 1 of the present invention.
FIG. 10 is a waveform diagram of a current flowing in a superconducting current limiter and a voltage generated in the superconducting current limiter when a pulse current is superimposed on a normal energizing current in Example 1 of the present invention.
FIG. 11 is a waveform diagram of a current flowing in a superconducting fault current limiter and a voltage generated in the superconducting fault current limiter when a short circuit accident occurs in another power system in Example 2 of the present invention.
FIG. 12 is a waveform diagram of a voltage applied to a load in a power system without a filter circuit and a power system without a filter circuit in Example 3 of the present invention.
FIG. 13 is a configuration diagram of a power system in Embodiment 4 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Superconducting current limiting device, 2 ... Cooling container, 3 ... Power supply, 4 ... Load, 5 ... Current measuring device, 6 ... High voltage probe, 7 ... Optical isolator, 8 ... Voltage measuring device, 9 ... Allowable energizing current detection device, DESCRIPTION OF SYMBOLS 10 ... Pulse current source, 11 ... Voltage measuring device, 12 ... Current measuring device, 13 ... Data processing device, 14 ... Pulse current generator, 15 ... Switch, 16 ... High frequency transformer, 17 ... Voltage measuring device, 18 ... Switch, DESCRIPTION OF SYMBOLS 19 ... Filter circuit, 20 ... Inductance, 21 ... Capacitor, 22 ... Thyristor switch, 23 ... Charger, 31, 32 ... Current introduction terminal, 33, 34 ... Voltage measurement terminal, 51 ... Power generation equipment, 52 ... Power consumption apparatus, 53 ... Liquid nitrogen circulation device, 54 ... Superconducting cable, 55 ... Allowable energization current detection device, 56 ... Alarm device, 57 ... Switch, 100 ... Substation, 101 ... Circuit breaker, 102 ... Superconductivity FCL, 103 ... allowable energization current sensing device, 105 ... changeover switch, 106 ... bypass current path, 107 ... centralized control center.

Claims (7)

電力供給源から負荷に至る電力系統に接続された、超電導体を含む超電導機器の許容通電電流を検知する装置であって、
前記超電導機器に、超電導状態を保ちつつ通電している状態で、通電電流の周期より短い時間、重畳電流を供給する電流源と、
前記超電導機器で発生した電圧信号を測定する手段と、
前記電圧信号に基づいて前記超電導機器の許容通電電流を検知する手段と
を有することを特徴とする超電導機器の許容通電電流検知装置。
A device for detecting an allowable energization current of a superconducting device including a superconductor connected to an electric power system from a power supply source to a load,
In a state where the superconducting device is energized while maintaining a superconducting state, a current source that supplies a superimposed current for a time shorter than the cycle of the energized current;
Means for measuring a voltage signal generated in the superconducting device;
And an apparatus for detecting an allowable energization current of the superconducting device based on the voltage signal.
前記電流源はパルス電流源であり、前記重畳電流として通電電流のピークに同期したパルス電流を供給することを特徴とする請求項1に記載の超電導機器の許容通電電流検知装置。2. The apparatus according to claim 1, wherein the current source is a pulse current source, and a pulse current synchronized with a peak of the energization current is supplied as the superimposed current. さらに、前記超電導機器で発生した電圧が超電導体の長さ当り1μV/cm以上になるまで重畳電流を増加させるように電流源を制御する制御器を有することを特徴とする請求項1または2に記載の超電導機器の許容通電電流検知装置。3. The controller according to claim 1, further comprising a controller for controlling a current source so as to increase a superimposed current until a voltage generated in the superconducting device is 1 μV / cm or more per length of the superconductor. An allowable energizing current detector for the superconducting equipment described. 前記超電導機器の許容通電電流を検知する手段は、前記超電導機器で発生した電圧から、前記超電導機器のインダクタンスと接続抵抗による電圧とを除去した電圧に基づいて、前記超電導機器の許容通電電流を決定することを特徴とする請求項1乃至3のいずれか1項に記載の超電導機器の許容通電電流検知装置。The means for detecting an allowable energization current of the superconducting device determines an allowable energization current of the superconducting device based on a voltage obtained by removing an inductance of the superconducting device and a voltage due to a connection resistance from a voltage generated in the superconducting device. The allowable conducting current detection device for a superconducting device according to any one of claims 1 to 3, wherein 前記超電導機器で発生した電圧が所定の値に達したときに、前記電流源および電圧測定手段を、前記電力系統から切り離すスイッチを有することを特徴とする請求項1乃至4のいずれか1項に記載の超電導機器の許容通電電流検知装置。5. The switch according to claim 1, further comprising a switch that disconnects the current source and the voltage measuring unit from the power system when a voltage generated in the superconducting device reaches a predetermined value. 6. An allowable energizing current detector for the superconducting equipment described. 電力供給源と負荷とこれらの間に接続された超電導体を含む超電導機器とを有する電力系統と、
前記超電導機器に、超電導状態を保ちつつ通電している状態で、通電電流の周期より短い時間、重畳電流を供給する電流源と、
前記超電導機器で発生した電圧信号を測定する手段と、
前記電圧信号に基づいて前記超電導機器の許容通電電流を検知する手段と、
前記超電導機器をバイパスするバイパス電流経路と
を有することを特徴とする電力システム。
A power system having a power supply source, a load, and a superconducting device including a superconductor connected therebetween;
In a state where the superconducting device is energized while maintaining a superconducting state, a current source that supplies a superimposed current for a time shorter than the cycle of the energized current;
Means for measuring a voltage signal generated in the superconducting device;
Means for detecting an allowable energization current of the superconducting device based on the voltage signal;
A power system comprising: a bypass current path that bypasses the superconducting device.
前記超電導機器と前記負荷との間に、通電電流の周波数以外の電気信号を除去するフィルタ回路を有することを特徴とする請求項6に記載の電力システム。The power system according to claim 6, further comprising a filter circuit that removes an electrical signal other than a frequency of an energized current between the superconducting device and the load.
JP2003092354A 2003-03-28 2003-03-28 Permissible current detector for superconducting equipment and power system using the same Expired - Fee Related JP3754424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092354A JP3754424B2 (en) 2003-03-28 2003-03-28 Permissible current detector for superconducting equipment and power system using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092354A JP3754424B2 (en) 2003-03-28 2003-03-28 Permissible current detector for superconducting equipment and power system using the same

Publications (2)

Publication Number Publication Date
JP2004304879A JP2004304879A (en) 2004-10-28
JP3754424B2 true JP3754424B2 (en) 2006-03-15

Family

ID=33405477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092354A Expired - Fee Related JP3754424B2 (en) 2003-03-28 2003-03-28 Permissible current detector for superconducting equipment and power system using the same

Country Status (1)

Country Link
JP (1) JP3754424B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015924A1 (en) * 2005-07-29 2007-02-08 American Superconductor Corporation Fault management of hts power cable
GB2457706B (en) 2008-02-22 2010-03-10 Siemens Magnet Technology Ltd Coil energisation apparatus and method of energising a superconductive coil

Also Published As

Publication number Publication date
JP2004304879A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
RU2510092C2 (en) Device and method to interrupt current in transmission line or to distribute energy and current limitation layout
US20170004948A1 (en) Electrical circuit protector
US8400747B2 (en) Superconducting coil, superconducting magnet, and method of operating superconducting magnet
US8693146B2 (en) Quench detection system for a superconductor fault current limiter
EP2707938B1 (en) Methods and apparatus for orderly run-down of superconducting magnets
WO2009067467A2 (en) Method and apparatus for protection of ac-dc power converters
CN105637724A (en) Converters for wind turbine generators
US11710959B2 (en) Transformer rectifier unit power quality protection
US10516261B2 (en) Interconnection equipment for a high-voltage DC grid
TWI542103B (en) Superconducting fault current limiter recovery system
CN110634641B (en) Industrial grade general superconducting magnet system
CN105206449B (en) Make the apparatus and method and current limliting arrangement of the current interruption of transmission line of electricity or distribution line
JP3933974B2 (en) Voltage fluctuation compensation device
JP3754424B2 (en) Permissible current detector for superconducting equipment and power system using the same
WO2013033137A1 (en) Bypass switch for a boost device
CN110581539B (en) Protection device and protection method for direct-current power distribution network
KR20230026271A (en) Dc power distribution architecture and method applicable to data centers
US11038336B1 (en) Redundant power module and discharge circuit for improved substation device availability
RU2777031C1 (en) Method for protecting a current-limiting device based on high-temperature superconductors in a high-voltage network line without a shutter element and a complex of relay protections for implementing the method
CN113541125A (en) Power supply device
JP2003061241A (en) Protector of superconducting power storage system
Carcagno et al. New 30 kA power system at Fermilab and its use for measuring the effects of ripple current on the performance of superconducting high field magnets
CN116982127A (en) Superconducting magnet device, NMR device, and MRI device
JPH07170652A (en) Grounding protection device for superconducting coil
CN111969559A (en) Voltage transformer cabinet fault protection device and method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R151 Written notification of patent or utility model registration

Ref document number: 3754424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees