JP3754359B2 - Lubrication cooling system - Google Patents

Lubrication cooling system Download PDF

Info

Publication number
JP3754359B2
JP3754359B2 JP2001373017A JP2001373017A JP3754359B2 JP 3754359 B2 JP3754359 B2 JP 3754359B2 JP 2001373017 A JP2001373017 A JP 2001373017A JP 2001373017 A JP2001373017 A JP 2001373017A JP 3754359 B2 JP3754359 B2 JP 3754359B2
Authority
JP
Japan
Prior art keywords
oil
water
ultrasonic
nozzle
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001373017A
Other languages
Japanese (ja)
Other versions
JP2003170332A (en
Inventor
八郎 野村
修逸 斎藤
Original Assignee
野村精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 野村精機株式会社 filed Critical 野村精機株式会社
Priority to JP2001373017A priority Critical patent/JP3754359B2/en
Publication of JP2003170332A publication Critical patent/JP2003170332A/en
Application granted granted Critical
Publication of JP3754359B2 publication Critical patent/JP3754359B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、潤滑冷却の技術分野に属し、特に金属材を切削加工する際に刃物の潤滑と冷却の効果を向上させるために、刃物へ油膜付着水霧を噴射させることとする潤滑冷却装置に関する。
【0002】
【従来の技術】
低公害性が強く求められる中、切削加工時における刃物と被加工物との間の潤滑そして冷却においても同様に、使用油量を少なくかつ効果が大きいことが望まれる。そこで近来、水粒表面に油膜を形成したものを切削加工部位に噴射して、主として油分で潤滑し、水分で冷却を行なうことが提案され、また広く実施されている。
【0003】
上記油膜付着水霧を形成する方法としては、例えば、特開2000−218466に開示されているものがある。この方法によると、霧吹きの原理を応用して圧搾空気によって油霧を発生させ、この油霧が水霧表面に付着して油膜を形成している。
【0004】
かかる霧吹きの原理の方法で生成される油膜付着水霧は、水霧の粒子径が100〜700μmと比較的大きく重量があるので、潤滑冷却部位が遠く位置していても、その慣性によって集中的に正確に噴射でき又付着して油膜を形成する油の量が水に対して100分の1程度であることから、切削等の摩擦熱による油煙の発生は比較的少ない。
【0005】
一方、微細粒子は微細空隙への浸透力が強い性質があることから上記油膜付着水霧の粒子径の微小化が進められている。
【0006】
【発明が解決しようとする課題】
上記のごとくの油膜付着水霧粒子径の微小化の目的は、低公害性の促進のみならず、潤滑冷却分野における切削加工時の刃物と被加工物との所定部位の微細空隙に的確に該油膜付着水霧を浸透させることにある。
【0007】
しかしながら、上述した公知の方法にあたっての圧搾空気を用いた霧吹きの原理により発生する油霧及び水霧の粒子径は、圧搾空気流の圧力及び流量等の作動条件により霧化発生状況が異なってしまい、その条件の変動が小さくとも生成された粒子の径に大きな差が出てしまう。
【0008】
特に、上記公知方法による油霧化は、油の粘性による影響が著しく、それによっても粒子径の大小差は大きい。導通管を流通する油粒子径の大きいものは、導通管壁に付着したり垂れ落ちたりし、油を効率良く水霧に付着させることができない欠点がある。
【0009】
このような欠点を補うべく、他の公知の例、例えば、特開2001−150294では、油を効率良く水霧に付着させるために、垂れ落ちた油を回収し、バイパス通路を設け、再度圧搾空気で油霧化し直して微細油霧にした油霧層をつくり、水霧に付着させる方法を取っている。この方策では、二重又は三重に再油霧化された方式も提案されている。しかしこの方法にあっても全体としての油の回収による油霧化効率は向上できても、水霧そして油霧の径のバラツキという問題を基本的に解決することはできない。
【0010】
従って、水霧の径のバラツキはノズルから油膜付着水霧を噴射したときに噴霧の拡散そして到達範囲が拡大するといったことにより所定部位に集中的に到達せず、また油霧径のバラツキは、過多に付着した油膜が油煙を生ずるといった問題を残してしまう。
【0011】
本発明は、かかる事情に鑑み、きわめて微小径の水霧そして油霧を径のバラツキが殆どないものとして生成し、正確に所定部位へ油膜付着水霧を噴射でき、油消費量が少なくても潤滑そして冷却効果の優れた装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の潤滑冷却装置は、水と油とから油膜付着水霧を形成し、これをノズルから噴出するために、水と油とを所定比率で定量供給する定量液供給装置と、該定量液供給装置から受けた定量の水と油に超音波を印加して油膜付着水霧を発生せしめる超音波装置とを有し、該超音波装置がノズルに接続されており、該超音波装置は、水と油を共存含浸保持する保液部材もしくは共存貯留する保液槽と、所定径の微細孔が形成された細孔板とを有し、該細孔板が上記保液部材にもしくは保液槽内の共存液に接触し、上記細孔板に連接する超音波振動体もしくは該細孔板を連接しない超音波振動体が超音波発生装置からの超音波を受けるようになっていることを特徴としている。かくして、水と油が所定比率で超音波を受けて形成された油膜付着水霧はノズルから噴出され所定部位を潤滑そして冷却する。上記超音波装置では、細孔板に多数形成された微細孔の径は、所望の霧化粒径を決定するためにその粒子径に対応して定められる。
【0013】
本発明において、定量液供給装置は、水を定量供給する定量水供給装置と油を定量供給する定量油供給装置とを有し、両供給装置が超音波装置に接続されているようにすることができる。
【0015】
油膜付着水霧は、最少量で最適の潤滑冷却効果をもたらすことが望まれ、そのためには噴射量を最適値に調整設定でき、かつそれを一定に保つことが必要であり、定量水供給装置と定量油供給装置のそれぞれは、外部から水そして油のそれぞれを補給できる貯槽と、該貯槽へ加圧空気を送り込む給気管と、貯槽から水そして油を送出する送出管と、該送出管に設けられた流量の調整弁とを有し、水そして油のそれぞれを連続的又は断続的に送出管から定量供給できることが望ましい。
【0016】
本発明において、潤滑冷却部位が遠い位置にあっても、油膜付着水霧を更に正確に集中して噴射するには、ノズル装置は内外ノズルが二重噴出口を形成し、一方のノズル、例えば内側のノズルが超音波装置からの配管に連通し、他方の外側のノズルには加圧空気送気管が接続されていることが望ましい。また内外ノズルの内部での流れが直線流又は旋回流をなしていることが望ましく、特に、旋回流は所定部位に油膜付着水霧の流速が衝突した際の反流作用を防止する。
【0017】
【発明の実施の形態】
以下、添付図面に基づき、本発明の実施の形態を説明する。
【0018】
図1に示す第一実施形態の潤滑冷却装置は、定量液供給装置1と超音波装置30とノズル装置40とを有する。更に、定量供給装置1は、定量水供給装置11と定量油供給装置21とで構成されている。
【0019】
上記定量水供給装置11と定量油供給装置21は、圧力供給源(図示せず)に接続された空気供給管2から分岐されて接続されるそれぞれの空圧制御器12,22と、給気管13,23と、貯槽14,24と、流量調整弁15,25とが接続され構成されている。上記空圧制御器12,22は、それぞれ貯槽14,24内の水そして油に対し、常に適切とされる一定の圧力で制御された空圧を用いて与えるものである。貯槽14,24は、それぞれ所定量だけ水そして油を貯えておく容量をもち、上記給気管13,23と連通している以外は外部に対して密閉されているが、定期的に水そして油をそれぞれ補給可能となっている。そして流量調整弁15,25は、それぞれ水そして油の流量を調整できるが、遮断も可能となっている。
【0020】
上記定量水供給装置11と定量油供給装置21の流量調整弁15,25のそれぞれは、液送出管31,32に連通し、それぞれの下流端出口が上記超音波装置30の保液部材34又は及び保液槽35に臨んでおり、定流量の水そして油を保液部材34又は及び保液槽に供給している。
【0021】
上記液送出管31,32を経由し、定流量水そして定流量油が順次保液部材34又は及び保液槽35に供給されると、保液部材34に共存して含浸又は保液槽35に共存して貯留されている水と油(以下、「保液」という)は、水と油の比重及び表面張力の違いにより水の表面に付着するように同一空間で共存する。
【0022】
本発明に適用可能な超音波装置の形態には、超音波振動体から連接する細孔板方式、ランジバン方式、ネブライザ方式の三方式があるが、本実施形態では超音波振動体から連接する細孔板方式の形態を用いて説明する。
【0023】
上記超音波装置30は、図2のごとく、超音波発振器37と、超音波振動子36と、超音波振動子に連接している超音波振動体33と、超音波振動体33から連接する細孔板33aと、保液部材34又は及び保液槽35とを有している。
【0024】
超音波発振器37は、例えば、70k〜2000kHzの範囲の周波数で発振が可能であるが、前記周波数の内の超音波振動子36とこれに連接している超音波振動体33及び細孔板33aとの共振周波数により該細孔板33aが励振される。上記細孔板33aは、保液部材34又は保液槽35の保液に対して軽く接面しており、本実施形態では、上記細孔板33aに孔径100μm程度の細孔が多数貫通形成されている。
【0025】
上記超音波装置30の超音波振動子36と該超音波振動子36に連接している超音波振動体33及び細孔板33aと保液部材34又は及び保液槽35は、それぞれ加圧空気が流れる霧化送気管38内に配置されており、該霧化送気管38は、配管39にてノズル装置40に接続されている。
【0026】
ノズル装置40は、内ノズル41と外ノズル42とを有する二重噴出口を形成し、両ノズル41,42は同心に配置され、両ノズル41,42からの噴出流が出口にて同心をなして合流するように位置づけられている。内ノズル41には上記霧化送気管38からの配管39が接続され、外ノズル42には圧力空気供給源(図示せず)に接続された送気管43が接続されている。上記両ノズル41,42は内部での流れが直線流又は旋回流をなすように、上記配管39そして送気管43がノズルに対して接線方向成分をもって接続されていたり、あるいは内面に螺旋形状面を設けておくことが好ましい。
【0027】
かかる本実施形態装置において潤滑冷却のための油膜付着水霧は、次のようにして生成される。
【0028】
▲1▼ 貯槽14,24には、例えば一日の使用量に十分なだけの水そして油がそれぞれ保有されるべく補給がなされている。空圧制御器12,22そして流量調整弁15,25は、単位時間当たりの水そして油の流量がそれぞれ所定潤滑冷却条件に見合ったものとなるように、開度が調整される。
【0029】
▲2▼ 圧力空気供給源からの空気は、給気管13,23を流れ、貯槽14,24内の水そして油を加圧する。
【0030】
▲3▼ 貯槽内の加圧により貯槽14,24から送り出された水そして油は、液送出管31から定流量水を、液送出管32から定流量油を超音波装置30の保液部材34又は及び保液槽35にもたらし、保液部材34に含浸又は保液槽35に貯留された水に対し供給された油を順次添加することで保水(含浸された又は貯留された水)表面に油膜を形成させ油膜保水を生成する。
【0031】
▲4▼ 超音波振動体33は、超音波振動子36からの超音波振動により振動する。一方、超音波振動体33に連接する細孔板33aは、保液部材34に含浸された油膜保水又は保液槽35内の油膜保水に接面している。上記細板孔33aには無数の微細孔が形成されており、該細孔板33aが振動すると上記保液部材34に含浸された油膜保水又は保液槽35内の油膜保水が該細孔板33aの無数の微細孔を通して霧化される。霧化された水霧は油膜が付着された状態で放出される。放出された該油膜付着水霧は、上記細孔の細径にほぼ等しく、その粒子径にバラツキは殆どない。即ち、粒径は約100μmである。
【0032】
▲5▼ 油膜付着水霧は、配管39を通りノズル装置40の内ノズル41から噴出される。この噴出流はコアンダ効果(Coanda effect)のもとで、内ノズル41の内面に沿った鋭く細いビームを形成し、それをそのまま維持して遠方の所定部位にまで達する。本実施形態では、油膜自体はきわめて薄いが、水霧はその質量が比較的大きいので、その効果は大きい。その際、外ノズル42からの噴出空気流は、上記内ノズル41からの噴出流を空気抵抗からエスコートし上記効果を助長する。特に、両ノズル41,42からの噴出流が旋回流であれば、油膜付着水霧の流速が所定部位に衝突した際に生ずる該流速の反流作用を防止することができ、効果的に上記油膜付着水霧を所定部位に作用せしめる。
【0033】
本実施形態装置では、空気流を圧力0.1〜0.3MPa、流量30〜100NL/minのもとで供給すると、油膜付着水霧は上記コアンダ効果による内ノズル41の先端より100mm以上の距離にまで噴射する。また、噴射される油膜付着水霧の流束の直径は、ノズルを最適流出形とすれば5mm以内に収束される。
【0034】
なお、従来の圧搾空気を用いた霧吹きの原理による霧化方式では、油膜付着水霧粒子径は100〜700μmの範囲でバラツキを発生するが、本発明の超音波による霧化方式では、霧化粒子径はほぼ均一で殆どバラツキがない。
【0035】
本実施形態では、使用する油膜付着水霧を100μmに設定した場合、同一切削条件で液使用量を両方式で比較すると、従来の霧吹き原理による霧化方式のものは、水10リットル、油0.1リットルの使用量のとき、超音波による本発明の霧化方式のものは水7.5リットル、油0.075リットルとなり、粒子径のバラツキが少ないだけ、また水霧と油霧の混合過程がないだけ効率が良くなる。
【0036】
本発明では、細孔板33aの細孔径100μmとしたが、これは好ましい例であり、50〜100μm、更には30〜600μmでも使用可能である。
【0037】
また、本実施形態では、超音波振動子は70k〜2000kHzの周波数で振動することとしたが、これは油の粘度状況、超音波振動体及び細孔板、更には超音波装置の形態により7k〜5000kHzに変えることが好ましい。
【0038】
本発明は、図1及び図2の超音波振動体から連接する細孔板により超音波装置に限定されず、他二方式に置き換えることが可能である。例えば、図3によるランジバン方式、図4によるネブライザ方式の霧化超音波装置を用いることもできる。
【0039】
ランジバン方式は、超音波振動体52に細孔板はなく、細孔板50として別に固定されて超音波振動体52と分離しており、分離している間隙に油膜保水56が注入される。超音波振動子53と超音波振動体52は一体となっており共振構造体を有している。超音波振動体52が振動すると油膜保水56が振動し固定細孔板50の細孔より油膜保水56が流出して油膜付着水霧59を発生する。
【0040】
ネブライザ方式は、保液槽61の底面に超音波振動体62があり、超音波振動体62に細孔板はなく、油膜保水63の面に細孔板60として固定されている。底面に位置する超音波振動体62が振動すると、油膜保水面が共振により振動し、油膜保水63が噴き出し、細孔板60の細孔を通って霧化66される。
【0041】
【発明の効果】
本発明は、以上のごとく、定量供給される水そして油の供給を受け、保液部材上の保水面又は保液槽内の保水面に油膜を形成させて油膜保水を生成し、超音波装置により粒子径バラツキのきわめて少ない油膜付着水霧を生成させ、更に二重噴出口を有するノズルを用いることにより噴射対象であるきわめて狭い空隙を有する潤滑冷却部位へ正確に集中的に噴射でき、また、油膜が薄くなる分だけ油量も少なくできる。
【0042】
かくして、潤滑冷却効果を向上させるだけでなく、経済的に優れ、油で周囲を汚すことが少なく環境面でも改善が図られる。
【図面の簡単な説明】
【図1】本発明の一実施形態装置の構成図である。
【図2】図1装置の霧化超音波装置の詳細図である。
【図3】図1装置の霧化超音波装置に適用可能な他の方式として、ランジバン方式を用いた例である。
【図4】図1装置の霧化超音波装置に適用可能なさらに他の方式として、ネブライザ方式を用いた例である。
【符号の説明】
1 定量液供給装置
11 定量水供給装置
14 貯槽
15 流量調整弁
21 定量油供給装置
24 貯槽
25 流量調整弁
30 超音波装置
31 水送出管
32 油送出管
33a 細孔板
34 保液部材
35 保液槽
40 ノズル装置
41 内ノズル
42 外ノズル
43 送気管
50 固定細孔板
54 保液槽
60 固定細孔板
61 保液槽
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of lubrication and cooling, and particularly relates to a lubrication and cooling device that sprays an oil film-attached water mist onto a blade in order to improve the effect of lubrication and cooling of the blade when cutting a metal material. .
[0002]
[Prior art]
While low pollution is strongly demanded, it is desirable that the amount of oil used is small and the effect is great in the lubrication and cooling between the blade and the workpiece during cutting. Therefore, recently, it has been proposed and widely practiced to spray an oil film formed on the surface of water droplets onto a cutting site, lubricate mainly with oil, and cool with moisture.
[0003]
As a method of forming the oil film-attached water mist, for example, there is one disclosed in JP 2000-218466. According to this method, an oil mist is generated by compressed air using the spraying principle, and the oil mist adheres to the surface of the water mist to form an oil film.
[0004]
The oil film adhering water mist generated by the method of the mist spray principle is relatively large and heavy with a water mist particle size of 100 to 700 μm. Therefore, even if the lubrication cooling site is located far away, it is concentrated by its inertia. Since the amount of oil that can be sprayed accurately and adheres to form an oil film is about 1 / 100th of water, the generation of oil smoke due to frictional heat such as cutting is relatively small.
[0005]
On the other hand, since the fine particles have a strong property of penetrating into the fine voids, the particle size of the oil film-attached water mist has been reduced.
[0006]
[Problems to be solved by the invention]
As described above, the purpose of reducing the size of the water mist particles attached to the oil film is not only to promote low pollution, but also to precisely match the fine gaps in the predetermined part between the blade and the workpiece during cutting in the lubrication and cooling field. The oil film adhesion water mist is to penetrate.
[0007]
However, the particle size of oil mist and water mist generated by the principle of spraying using compressed air in the above-described known method differs in the state of occurrence of atomization depending on the operating conditions such as pressure and flow rate of the compressed air flow. Even if the variation of the conditions is small, a large difference appears in the diameter of the generated particles.
[0008]
In particular, the oil atomization by the known method is greatly influenced by the viscosity of the oil, and the particle size difference is also large. Those having a large oil particle diameter that circulates through the conducting tube have the disadvantage that they adhere to the conducting tube wall or sag, and the oil cannot be efficiently attached to the water mist.
[0009]
In order to make up for such drawbacks, other known examples, for example, in Japanese Patent Laid-Open No. 2001-150294, in order to make the oil adhere to the water mist efficiently, the dripping oil is collected, a bypass passage is provided, and the squeezing is performed again. A method is used in which an oil mist layer is formed by re-atomizing with air to form a fine oil mist and then adhering to the water mist. In this measure, a double or triple re-oil atomization method is also proposed. However, even with this method, even if the oil atomization efficiency by the recovery of oil as a whole can be improved, the problem of water mist and variation in the diameter of the oil mist cannot be basically solved.
[0010]
Therefore, the variation in the diameter of the water mist does not reach the predetermined part intensively by spreading and reaching the spray area when the oil mist adhering to the oil film is ejected from the nozzle. The excessively adhered oil film leaves the problem of producing oily smoke.
[0011]
In view of such circumstances, the present invention generates a water mist and an oil mist having a very small diameter with almost no variation in diameter, and can accurately spray an oil film-attached water mist to a predetermined portion, even if the oil consumption is small. An object of the present invention is to provide an apparatus having an excellent lubrication and cooling effect.
[0012]
[Means for Solving the Problems]
The lubrication and cooling device of the present invention includes a metering liquid supply device that forms an oil film-attached water mist from water and oil, and quantifies water and oil at a predetermined ratio in order to eject the water mist from the nozzle. An ultrasonic device that generates ultrasonic mist by applying ultrasonic waves to the fixed amount of water and oil received from the supply device, the ultrasonic device is connected to a nozzle, and the ultrasonic device is A liquid retaining member that co-impregnates and holds water and oil or a liquid retaining tank that co-stores and a pore plate in which micropores of a predetermined diameter are formed, and the pore plate is in the liquid retaining member or the liquid retaining member The ultrasonic vibrator that is in contact with the coexisting liquid in the tank and is connected to the pore plate or the ultrasonic vibrator that is not connected to the pore plate is adapted to receive ultrasonic waves from the ultrasonic generator. It is a feature. Thus, the water film-attached water mist formed by receiving ultrasonic waves of water and oil at a predetermined ratio is ejected from the nozzle and lubricates and cools a predetermined portion. In the above ultrasonic apparatus, the diameter of a large number of fine holes formed in the pore plate is determined corresponding to the particle diameter in order to determine a desired atomized particle diameter.
[0013]
In the present invention, the metering liquid supply device has a metered water supply device for metering water and a metering oil supply device for metering oil, and both feeding devices are connected to the ultrasonic device. Can do.
[0015]
It is desired that the oil film-attached water mist provides the optimum lubrication cooling effect with a minimum amount. To that end, the injection amount can be adjusted and set to the optimum value, and it must be kept constant. And each of the metered oil supply devices include a storage tank capable of replenishing water and oil from the outside, an air supply pipe for sending pressurized air to the storage tank, a delivery pipe for sending water and oil from the storage tank, and a delivery pipe It is desirable to have a regulating valve for the flow rate provided so that water and oil can be metered from the delivery pipe continuously or intermittently.
[0016]
In the present invention, in order to more accurately concentrate and inject the oil film adhering water mist even when the lubrication cooling part is at a far position, the nozzle device has a double jet outlet formed by the inner and outer nozzles, It is desirable that the inner nozzle communicates with a pipe from the ultrasonic device, and a pressurized air supply pipe is connected to the other outer nozzle. Further, it is desirable that the flow inside the inner and outer nozzles is a linear flow or a swirl flow. In particular, the swirl flow prevents a countercurrent action when the flow velocity of the oil film adhering water mist collides with a predetermined portion.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0018]
The lubrication cooling device according to the first embodiment shown in FIG. 1 includes a metered liquid supply device 1, an ultrasonic device 30, and a nozzle device 40. Furthermore, the fixed amount supply device 1 includes a fixed amount water supply device 11 and a fixed amount oil supply device 21.
[0019]
The metered water supply device 11 and the metered oil supply device 21 are branched from an air supply pipe 2 connected to a pressure supply source (not shown) and connected to respective pneumatic controllers 12, 22 and an air supply pipe. 13, 23, storage tanks 14 and 24, and flow control valves 15 and 25 are connected. The air pressure controllers 12 and 22 give water and oil in the storage tanks 14 and 24, respectively, using air pressure controlled at a constant pressure that is always appropriate. The storage tanks 14 and 24 have a capacity for storing a predetermined amount of water and oil, respectively, and are sealed to the outside except that they communicate with the air supply pipes 13 and 23. Each can be replenished. The flow rate adjusting valves 15 and 25 can adjust the flow rates of water and oil, respectively, but can also be shut off.
[0020]
The flow rate adjusting valves 15 and 25 of the quantitative water supply device 11 and the quantitative oil supply device 21 communicate with the liquid delivery pipes 31 and 32, respectively, and the downstream end outlets of the liquid supply pipes 31 and 32 are the liquid retaining member 34 of the ultrasonic device 30 or The liquid holding tank 35 is faced, and water and oil at a constant flow rate are supplied to the liquid holding member 34 and / or the liquid holding tank.
[0021]
When the constant flow rate water and the constant flow rate oil are sequentially supplied to the liquid holding member 34 and the liquid holding tank 35 via the liquid delivery pipes 31 and 32, the liquid holding member 34 coexists with the impregnation or liquid holding tank 35. Water and oil coexisting with each other (hereinafter referred to as “liquid retention”) coexist in the same space so as to adhere to the surface of the water due to the difference in specific gravity and surface tension between water and oil.
[0022]
There are three types of ultrasonic devices applicable to the present invention: a pore plate type connected from an ultrasonic vibrating body, a Langeban type, and a nebulizer type. In this embodiment, a thin type connected from the ultrasonic vibrating body is used. A description will be given using a form of a hole plate system.
[0023]
As shown in FIG. 2, the ultrasonic device 30 includes an ultrasonic oscillator 37, an ultrasonic vibrator 36, an ultrasonic vibrator 33 connected to the ultrasonic vibrator, and a thin piece connected from the ultrasonic vibrator 33. It has a hole plate 33a, a liquid retaining member 34, and a liquid retaining tank 35.
[0024]
The ultrasonic oscillator 37 can oscillate at a frequency in the range of, for example, 70 k to 2000 kHz, and the ultrasonic vibrator 36 and the ultrasonic vibrator 33 and the pore plate 33a connected to the ultrasonic vibrator 36 within the above frequency. The pore plate 33a is excited by the resonance frequency. The pore plate 33a is lightly in contact with the liquid retaining member 34 or the liquid retaining tank 35, and in this embodiment, a large number of pores having a pore diameter of about 100 μm are formed through the pore plate 33a. Has been.
[0025]
The ultrasonic vibrator 36 of the ultrasonic device 30 and the ultrasonic vibrator 33 and the pore plate 33a and the liquid retaining member 34 or the liquid retaining tank 35 connected to the ultrasonic vibrator 36 are respectively pressurized air. The atomizing air supply pipe 38 is connected to the nozzle device 40 via a pipe 39.
[0026]
The nozzle device 40 forms a double jet outlet having an inner nozzle 41 and an outer nozzle 42, both nozzles 41, 42 are arranged concentrically, and the jet flow from both nozzles 41, 42 is concentric at the outlet. It is positioned to join together. The inner nozzle 41 is connected to a pipe 39 from the atomizing air supply pipe 38, and the outer nozzle 42 is connected to an air supply pipe 43 connected to a pressurized air supply source (not shown). In the nozzles 41 and 42, the pipe 39 and the air supply pipe 43 are connected with a tangential component to the nozzle so that the flow in the inside forms a linear flow or a swirling flow, or a spiral surface is formed on the inner surface. It is preferable to provide it.
[0027]
In the apparatus of this embodiment, the oil film adhering water mist for lubricating cooling is generated as follows.
[0028]
{Circle around (1)} The storage tanks 14 and 24 are replenished so that, for example, water and oil sufficient for the daily use amount are retained. The air pressure controllers 12 and 22 and the flow rate adjusting valves 15 and 25 are adjusted in opening degree so that the flow rates of water and oil per unit time correspond to predetermined lubrication cooling conditions.
[0029]
(2) Air from the pressurized air supply source flows through the supply pipes 13 and 23 and pressurizes the water and oil in the storage tanks 14 and 24.
[0030]
{Circle around (3)} The water and oil sent out from the storage tanks 14, 24 by pressurization in the storage tank are constant flow water from the liquid delivery pipe 31 and constant flow oil from the liquid delivery pipe 32. Or, it is brought to the liquid retaining tank 35, and the oil retained in the liquid retaining member 34 is sequentially added to the surface of the water retaining (impregnated or stored water) by adding oil supplied to the water impregnated or stored in the liquid retaining tank 35. An oil film is formed to generate oil film water retention.
[0031]
(4) The ultrasonic vibrator 33 vibrates due to ultrasonic vibration from the ultrasonic vibrator 36. On the other hand, the pore plate 33 a connected to the ultrasonic vibrator 33 is in contact with the oil film water retained in the liquid retaining member 34 or the oil film water retained in the liquid retaining tank 35. An infinite number of fine holes are formed in the fine plate hole 33a. When the fine plate 33a vibrates, the oil film water impregnated in the liquid retaining member 34 or the oil film water retained in the liquid retention tank 35 becomes the fine plate. Atomized through countless fine holes 33a. The atomized water mist is discharged with an oil film attached. The released oil film-attached water mist is almost equal to the fine diameter of the pores, and there is almost no variation in the particle diameter. That is, the particle size is about 100 μm.
[0032]
(5) The oil film-attached water mist is ejected from the inner nozzle 41 of the nozzle device 40 through the pipe 39. This jet flow forms a sharp and thin beam along the inner surface of the inner nozzle 41 under the Coanda effect and maintains it as it is to reach a predetermined site far away. In this embodiment, the oil film itself is very thin, but the effect of water mist is great because its mass is relatively large. At that time, the jet air flow from the outer nozzle 42 escorts the jet flow from the inner nozzle 41 from the air resistance to promote the above effect. In particular, if the jet flow from both nozzles 41 and 42 is a swirl flow, it is possible to prevent the countercurrent action of the flow velocity that occurs when the flow velocity of the oil film-attached water mist collides with a predetermined site, effectively Let oil film adhesion water mist act on a predetermined part.
[0033]
In the apparatus of this embodiment, when an air flow is supplied under a pressure of 0.1 to 0.3 MPa and a flow rate of 30 to 100 NL / min, the oil film adhering water mist is a distance of 100 mm or more from the tip of the inner nozzle 41 due to the Coanda effect. Inject up to. Further, the diameter of the flux of the oil film adhering water mist to be jetted is converged within 5 mm if the nozzle is the optimum outflow type.
[0034]
In addition, in the atomization method based on the principle of atomization using the conventional compressed air, the oil film adhesion water mist particle diameter varies in the range of 100 to 700 μm, but in the atomization method using the ultrasonic wave of the present invention, atomization is performed. The particle diameter is almost uniform with little variation.
[0035]
In the present embodiment, when the oil film-attached water mist to be used is set to 100 μm, the amount of liquid used is compared by both methods under the same cutting conditions. .When the amount used is 1 liter, the atomization method of the present invention using ultrasonic waves is 7.5 liters of water and 0.075 liters of oil, and there is little variation in particle diameter, and mixing of water mist and oil mist Efficiency increases as there is no process.
[0036]
In the present invention, the pore diameter of the pore plate 33a is 100 μm, but this is a preferred example, and 50 to 100 μm, and even 30 to 600 μm can be used.
[0037]
In the present embodiment, the ultrasonic vibrator vibrates at a frequency of 70 k to 2000 kHz. This is 7 k depending on the viscosity state of the oil, the ultrasonic vibrator and the pore plate, and the form of the ultrasonic device. It is preferable to change to ˜5000 kHz.
[0038]
The present invention is not limited to the ultrasonic device by the pore plate connected from the ultrasonic vibrator of FIGS. 1 and 2, and can be replaced by other two methods. For example, the nebulizer type atomizing ultrasonic apparatus shown in FIG. 3 and the nebulizer type shown in FIG. 3 can be used.
[0039]
In the Langevin method, the ultrasonic vibrating body 52 does not have a pore plate, but is separately fixed as the pore plate 50 and separated from the ultrasonic vibrating body 52, and the oil film water retention 56 is injected into the separated gap. The ultrasonic vibrator 53 and the ultrasonic vibrator 52 are integrated and have a resonance structure. When the ultrasonic vibrator 52 vibrates, the oil film water retention 56 vibrates, and the oil film water retention 56 flows out from the pores of the fixed pore plate 50 to generate the oil film adhesion water mist 59.
[0040]
In the nebulizer system, the ultrasonic vibrating body 62 is provided on the bottom surface of the liquid holding tank 61, the ultrasonic vibrating body 62 has no pore plate, and is fixed to the surface of the oil film water retaining 63 as the pore plate 60. When the ultrasonic vibrating body 62 located on the bottom surface vibrates, the oil film water retaining surface vibrates due to resonance, and the oil film water retaining water 63 ejects and is atomized 66 through the pores of the pore plate 60.
[0041]
【The invention's effect】
As described above, the present invention receives supply of water and oil that are supplied in a fixed amount, forms an oil film on the water retaining surface on the liquid retaining member or the water retaining surface in the liquid retaining tank, and generates oil film water retaining. Can generate an oil film adhering water mist with extremely small particle size variation, and by using a nozzle having a double jet outlet, it can be accurately and intensively injected to a lubrication cooling site having a very narrow gap, which is an injection target, The amount of oil can be reduced as the oil film becomes thinner.
[0042]
Thus, not only the lubrication and cooling effect is improved, but also economically superior, the surroundings are less polluted with oil, and the environment can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an apparatus according to an embodiment of the present invention.
2 is a detailed view of the atomizing ultrasonic device of the apparatus of FIG. 1. FIG.
3 is an example using a Langeban method as another method applicable to the atomizing ultrasonic device of FIG. 1; FIG.
4 is an example using a nebulizer system as yet another system applicable to the atomizing ultrasonic apparatus of FIG. 1. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fixed_quantity | quantitative_solution supply apparatus 11 Fixed_quantity | quantitative_assay water supply apparatus 14 Storage tank 15 Flow rate adjustment valve 21 Fixed quantity oil supply apparatus 24 Storage tank 25 Flow rate adjustment valve 30 Ultrasonic apparatus 31 Water delivery pipe 32 Oil delivery pipe 33a Porous plate 34 Liquid retention member 35 Liquid retention Tank 40 Nozzle device 41 Inner nozzle 42 Outer nozzle 43 Air supply pipe 50 Fixed pore plate 54 Liquid retaining tank 60 Fixed pore plate 61 Liquid retaining tank

Claims (4)

水と油とから油膜付着水霧を形成し、これをノズルから噴出する潤滑冷却装置において、水と油とを所定比率で定量供給する定量液供給装置と、該定量液供給装置から受けた定量の水と油に超音波を印加して油膜付着水霧を発生せしめる超音波装置とを有し、該超音波装置がノズルに接続されてされており、該超音波装置は、水と油を共存含浸保持する保液部材もしくは共存貯留する保液槽と、所定径の微細孔が形成された細孔板とを有し、該細孔板が上記保液部材にもしくは保液槽内の共存液に接触し、上記細孔板に連接する超音波振動体もしくは該細孔板を連接しない超音波振動体が超音波発生装置からの超音波を受けるようになっていることを特徴とする潤滑冷却装置。In a lubrication and cooling device that forms an oil film-attached water mist from water and oil and ejects this from a nozzle, a quantitative liquid supply device that quantitatively supplies water and oil at a predetermined ratio, and a quantitative value received from the quantitative liquid supply device An ultrasonic device that applies ultrasonic waves to water and oil to generate an oil film-attached water mist, and the ultrasonic device is connected to a nozzle, and the ultrasonic device supplies water and oil. A liquid retaining member for coexisting impregnation or a liquid retaining tank for coexisting storage and a pore plate in which micropores of a predetermined diameter are formed, and the pore plate coexists in the liquid retaining member or in the fluid retaining tank. Lubrication characterized in that an ultrasonic vibrator that is in contact with the liquid and is connected to the pore plate or an ultrasonic vibrator that is not connected to the pore plate is adapted to receive ultrasonic waves from an ultrasonic generator. Cooling system. 定量液供給装置は、水を定量供給する定量水供給装置と、油を定量供給する定量油供給装置とを有し、両供給装置が超音波装置に接続いることとする請求項1に記載の潤滑冷却装置。  The metering liquid supply device has a metered water supply device for metering water, and a metering oil supply device for metering oil, both of which are connected to an ultrasonic device. Lubrication cooling device. 定量水供給装置と定量油供給装置のそれぞれは、外部から水そして油のそれぞれを補給できる貯槽と、該貯槽へ加圧空気を送り込む給気管と、貯槽から水そして油を送出する送出管と、該送出管に設けられた流量の調整弁とを有し、水そして油のそれぞれを連続的又は断続的に送出管から定量供給できることとする請求項2に記載の潤滑冷却装置。  Each of the metered water supply device and the metered oil supply device includes a storage tank that can replenish water and oil from the outside, an air supply pipe that sends pressurized air to the storage tank, a delivery pipe that sends water and oil from the storage tank, The lubrication cooling apparatus according to claim 2, further comprising a flow rate adjusting valve provided in the delivery pipe, wherein each of water and oil can be supplied from the delivery pipe in a continuous or intermittent manner. ノズル装置は内外ノズルが二重噴出口を形成し、一方のノズルが超音波装置に連通し、他方のノズルには加圧空気送気管が接続されていることとする請求項1に記載の潤滑冷却装置。  The lubrication according to claim 1, wherein the nozzle device has inner and outer nozzles forming a double jet port, one nozzle communicates with the ultrasonic device, and the other nozzle is connected with a pressurized air feed pipe. Cooling system.
JP2001373017A 2001-12-06 2001-12-06 Lubrication cooling system Expired - Lifetime JP3754359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001373017A JP3754359B2 (en) 2001-12-06 2001-12-06 Lubrication cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001373017A JP3754359B2 (en) 2001-12-06 2001-12-06 Lubrication cooling system

Publications (2)

Publication Number Publication Date
JP2003170332A JP2003170332A (en) 2003-06-17
JP3754359B2 true JP3754359B2 (en) 2006-03-08

Family

ID=19181802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001373017A Expired - Lifetime JP3754359B2 (en) 2001-12-06 2001-12-06 Lubrication cooling system

Country Status (1)

Country Link
JP (1) JP3754359B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722447A (en) * 2014-01-10 2014-04-16 上海金兆节能科技有限公司 Oil water gas three-phase energy-saving minimal quantity lubrication system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619009B2 (en) * 2004-02-10 2011-01-26 株式会社安永 Oil mist generator
JP4626750B2 (en) * 2004-09-14 2011-02-09 いすゞ自動車株式会社 Mist supply method and mist supply device
JP4626749B2 (en) * 2004-09-14 2011-02-09 いすゞ自動車株式会社 Mist generator
WO2006041411A1 (en) * 2004-10-13 2006-04-20 Advanced Systems Automation Limited Cooling and lubrication system
JP2006224217A (en) * 2005-02-16 2006-08-31 Showa Denko Kk Cutting tool, surface cutting method of aluminum ingot, and manufacturing method of surface cut aluminum ingot
JP5098359B2 (en) * 2007-02-23 2012-12-12 独立行政法人産業技術総合研究所 Ultrasonic fog generation method and apparatus
KR101300691B1 (en) * 2011-04-21 2013-08-26 스마트엔지니어링(주) An ultrasonic generator cutting fluid application system
WO2014065443A1 (en) * 2012-10-23 2014-05-01 스마트엔지니어링(주) Cutting oil jet apparatus using ultrasonic generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103722447A (en) * 2014-01-10 2014-04-16 上海金兆节能科技有限公司 Oil water gas three-phase energy-saving minimal quantity lubrication system
CN103722447B (en) * 2014-01-10 2016-02-03 上海金兆节能科技有限公司 Oil-water-gas three-phase energy saving micro lubricating system

Also Published As

Publication number Publication date
JP2003170332A (en) 2003-06-17

Similar Documents

Publication Publication Date Title
US6540153B1 (en) Methods and apparatus for dispensing liquids as an atomized spray
US6629646B1 (en) Droplet ejector with oscillating tapered aperture
CA2374232C (en) Method for producing an aerosol
US4413784A (en) Constant-output atomizer
EP2195055B1 (en) Ultrasonic atomizing nozzle with variable fan-spray feature
JP3754359B2 (en) Lubrication cooling system
US20080054091A1 (en) Ultrasonic atomization and/or seperation system
US20070063072A1 (en) Device and procedure for the pneumatic atomization of liquids through an implosive gas flow
JPH0421550B2 (en)
CA2480290A1 (en) Method and apparatus for atomizing liquids having minimal droplet size
JPH10502570A (en) Liquid spray device and method
JP4017522B2 (en) Aerosol generating apparatus and method
JP3754348B2 (en) Lubrication cooling system
JP2017515595A (en) Aerosolization engine for pharmaceutical solution delivery
KR20010086280A (en) Liquid atomization method and system
JPH09220495A (en) Fluid injection nozzle
JP2017520392A (en) Mist and atomization systems and methods
JPH10296582A (en) Ultra low volume cutting oil supplying method and device therefor
KR20220167580A (en) Ultrasonic minimum quantity lubrication device with controllable oil droplet size
CN110464927A (en) A kind of atomization system based on flow focusing technology
EP0239395A2 (en) Ultrasonic atomizing apparatus
US20080142616A1 (en) Method of Producing a Directed Spray
Khmelev et al. Spray Shape Formation at Ultrasonic Spraying Process
JP2008229455A (en) Atomizer
JPH06210200A (en) Spray gun cap

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3754359

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

EXPY Cancellation because of completion of term