JP3754313B2 - Reaction prevention method and reaction suppression method during sandwich structure production - Google Patents

Reaction prevention method and reaction suppression method during sandwich structure production Download PDF

Info

Publication number
JP3754313B2
JP3754313B2 JP2001100439A JP2001100439A JP3754313B2 JP 3754313 B2 JP3754313 B2 JP 3754313B2 JP 2001100439 A JP2001100439 A JP 2001100439A JP 2001100439 A JP2001100439 A JP 2001100439A JP 3754313 B2 JP3754313 B2 JP 3754313B2
Authority
JP
Japan
Prior art keywords
reaction
core
sandwich structure
resin
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001100439A
Other languages
Japanese (ja)
Other versions
JP2002292743A (en
Inventor
淳 後藤
一洋 西
さやか 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2001100439A priority Critical patent/JP3754313B2/en
Publication of JP2002292743A publication Critical patent/JP2002292743A/en
Application granted granted Critical
Publication of JP3754313B2 publication Critical patent/JP3754313B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主として航空機に用いるサンドイッチ構造体の製造時における反応防止方法、反応抑制方法に関する。
【0002】
【従来の技術】
従来より航空機の機体構造材としては、一般的に図13に示すようにノーメックス、アルミ、GFRP等より成るハニカムコア30を、2枚の複合材面板31で挾み、フィルム接着材32を介在して接着結合したサンドイッチ構造体33が使用されている。また、一部には、ポリメタクリルイミド発泡材をコアとするサンドイッチ構造体も使用されている。これらのサンドイッチ構造体は、主に厚肉が必要な動翼類(補助翼、フラップ、昇降舵、スポイラー等)、ドア、点検口のカバーおよびレドーム等に使用されていて、機体構造重量に占める割合は多くないが、機体表面積については広い割合を占めている。
【0003】
従来のハニカムコアを使用したサンドイッチ構造体は、以下に述べる数多くの問題点があった。
1)サンドイッチ構造体は、オートクレーブ中での成形中のハニカムのセル壁以外の部分は加圧されないので、図13のA部拡大図である図14に示すように複合材面板31内の気泡34が残留して強度が低く、航空機の繰り返し使用中に樹脂層35に微小な亀裂36が発生することが多い。
2)航空機が地上と成層圏を往復する間に、大きな気圧と気温(1気圧、プラス40℃から1/10気圧、マイナス54℃)の変動を受け、複合材面板31に生じた亀裂36を通じて外気がハニカムコア30の内部に出入りする。
3)外部からハニカムコア30の内部に進入した大気の中に含まれていた湿気が、航空機の上昇による気圧・気温の変化により、ハニカムコア30の内部で凝結し、水滴37として残留する。この過程の繰り返しによりハニカムコア30の内部に次第に水分が蓄積され、機体構造重量が増大する。その重量増加は、ボーイング747クラスの大型旅客機では数100Kgにも達するといわれている。
4)このハニカムコア30の内部の水分は高空で凍結し、その体積膨張によりハニカムコア30と複合材面板31の接着接合を破壊して複合材面板31を剥離させる。その結果、構造強度が低下し、飛行安全性が損なわれるという大きな問題が発生する。
従って、複合材サンドイッチ構造体は軽量かつ高剛性であるという理由で、従来の航空機では機体構造材として多用されてきたが、徐々に金属構造体に置換されつつあるのが現状である。
【0004】
このような問題を解決するために、ハニカムコアを発泡プラスチックに置き換えたサンドイッチ構造体も提案された。この場合に発泡コアに独立気泡を含むものを採用すれば、
ハニカムコアで問題となったコア内部への湿気の進入を防ぐことができるという利点がある。これは、従来のハニカムコアサンドイッチ構造体の改良となる魅力的な提案であった。この場合には、複合材面板の成形とコアとのサンドイッチ化を同一工程で行うため、その温度と圧力に耐えるコアが必要であることから、ポリメタクリルイミド発泡材がコアとして使用された。しかし、このポリメタクリルイミド発泡材コアにも以下のような問題点があった。
1)吸湿により強度が大幅に低下する。
2)運用中の吸湿による変形、体積収縮が生じ、これらに基づく面積との剥離が発生した。
3)面板との接合強度が弱く、工具の落下や雹との衝突による衝撃にて、面板が剥離する。
4)室温・大気中の放置でも、早く多量に吸湿してしまうため、シビアな保管条件が要求されると共に、使用前の乾燥処理が必要となることから、その取り扱いには費用と手間がかかる。
5)室温での変形性能が極めて低く、部品形状の成形用の型に沿わせることがことができず、型とコアを高温に保持した後に成形を行う必要がある。
6)これは、専用の治具/設備と手間を必要とすると共に、設備内の高温の状態で成形型に沿わせるため、基本的には成形型に正確に沿ったかどうかを確認することができず、不具合が発生する場合があり、コアの成形コストを引き上げる要因となっている。
【0005】
さらに、上記ポリメタクリルイミド発泡材をコアとするサンドイッチ構造体の欠点を改良するため、ポリエーテルイミド発泡材が検討された。ポリエーテルイミド発泡材は、ポリメタクリルイミド発泡材と比較して図15に示すように吸湿量が小さいばかりでなく、
吸湿による特性劣化が無いため、厳密な保管条件の管理や脱湿処理等の作業も全く不要である。また、ポリエーテルイミド発泡材は、独立気泡から成るものであり、サンドイッチ構造体のコアとしても浸水が無いこと、及び重量や強度特性もほぼポリメタクリルイミド発泡材と同等であることから、サンドイッチ構造体用のコアとして適しているものと考えられる。
【0006】
上記のように利点の多いポリエーテルイミド発泡材であるが、これをコアにしたサンドイッチ構造体の図16に示す製造工程において、未硬化の樹脂との反応に問題点があった。FRP製面板とポリエーテルイミド発泡材コアをサンドイッチ化するにおいて、FRP製面板が先工程で硬化されている場合にはフィルム接着剤等の接着剤を装着した状態でサンドイッチ化され、FRP製面板を同一工程で硬化する場合にはプリプレグに含まれる樹脂そのものが接着剤の役割を果たし、温度と圧力をかけることによりサンドイッチ化される。また、一体にてコア成形できない形状に対しては、コアを分割し、樹脂製の接着剤にて分割コア同士を接着組み立てする必要がある。
【0007】
上記の作業において、図17のaに示すように、ポリエーテルイミド発泡材コア40とプリプレグ41を接触させた状態でプリプレグ41中の樹脂の硬化又は接着のための温度と圧力をかけると、ポリエーテルイミド発泡材コア40とプリプレグ41中の樹脂が反応し、ポリエーテルイミド発泡材コア40が溶け、図17のbに示すようにポリエーテルイミド発泡材コア40の厚みが大きく縮むと共に、ソリッドの型に合わせた面42以外の面は不規則な軽い凹凸43を持った表面となる。この反応は、120℃以上の温度で起り、
温度が高い程反応が激しくなる。また、圧力についてもコア40とプリプレグ41中の樹脂との接触面積が大きくなることから、圧力が高いほど反応が激しくなる。当然、反応が激しいほどコア40が溶ける厚さが大きくなる。実際の部品では、同一工程の高温・高圧時の成形でも、部品が形状を持つことにより内部で温度や圧力勾配が発生し、部位によって温度・圧力を受ける条件が異なる。また、成形装置の変更等により加熱方式が変わることでも同様なこととなる。従って、化学反応に起因するコア40が減厚する現象を、実部品の製造時に予測することは困難であると共に、部品全体の厚みを当初の要求通りに整えることは不可能である。また、そのコア40が溶けた部分は、ポリエーテルイミド樹脂と接着剤又はプリプレグ中の樹脂から成る緻密な密度の高い反応樹脂層44が形成されることから、その部分が周囲とは異なる特性を持つこととなり、この特性は部品として概して不利に働く。
【0008】
【発明が解決しようとする課題】
そこで本発明は、従来のポリエーテルイミド発泡材コアとFRP製面板とより成るサンドイッチ構造体の製造時における上記問題点を解決することのできる反応防止方法、反応抑制方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明のサンドイッチ構造体製造時の反応防止方法の1つは、ポリエーテルイミド樹脂発泡材コアの両面に、FRP製面板を接着するサンドイッチ構造体の製造時において、ポリエーテルイミド樹脂発泡材コアとFRP製面板を接着する熱硬化性樹脂系接着剤との反応を防止する樹脂膜を形成することを特徴とするものである。
【0010】
本発明のサンドイッチ構造体製造時の反応防止方法の他の1つは、ポリエーテルイミド樹脂発泡材コアの両面に、未硬化の繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合するサンドイッチ構造体の製造時において、ポリエーテルイミド樹脂発泡材コアと未硬化の繊維強化熱硬化性樹脂プリプレグ面板中の樹脂との反応を防止する樹脂膜を形成することを特徴とするものである。
【0011】
本発明のサンドイッチ構造体製造時の反応防止方法のさらに他の1つは、上記2つの反応防止方法のいずれかにおいて、ポリエーテルイミド樹脂発泡材コアが分割コアとなされ、その各分割コアと各分割コアの間に配した熱硬化性樹脂系接着剤との反応を防止する樹脂膜を形成することを特徴とするものである。
【0012】
本発明のサンドイッチ構造体製造時の反応抑制方法は、ポリエーテルイミド樹脂発泡材コアの両面に、120℃以上の硬化温度を必要とする未硬化の繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合するサンドイッチ構造体製造時において、前記プリプレグ面板の樹脂とコアとの反応及びコアのクリープ変形を抑制するために、プリプレグの硬化反応がほぼ終了してプリプレグの粘度がほぼ一定となった後はそれまでかけていた成形圧力を開放し、圧力をかけずに成形することを特徴とするものである。
【0013】
【発明の実施の形態】
本発明のサンドイッチ構造体製造時の反応防止方法の実施形態を説明する。その前にサンドイッチ構造体の製造について説明する。図1に示すようにポリエーテルイミド樹脂発泡材より成る平板のコア1の両面に、FRPよりなる面板2を接着して、サンドイッチ構造体3を作るか、図2に示すようにポリエーテルイミド樹脂発泡材より成る平板のコア1の両面に、未硬化繊維強化熱硬化性樹脂プリプレグ面板2′を配し、これを加熱硬化成形して接合し、サンドイッチ構造体3を作る。これらのサンドイッチ構造体3は平板であるが、曲面板のサンドイッチ構造体は次のように作る。図3のaに示すようにポリエーテルイミド樹脂発泡材を曲面板に加工してコア1となし、次にこのコア1の両面に図3のbに示すように夫々同じ曲面に成形したFRP製面板2を接着して曲面サンドイッチ構造体3′を作るか、又はコア1の両面に図3のcに示すように未硬化繊維強化熱硬化性樹脂プリプレグ面板2′を配し、これを加熱硬化成形して接合し、曲面サンドイッチ構造体3′を作る。
【0014】
この曲面サンドイッチ構造体3′の製造方法において、曲面板のコア1の加工方法には、2つの方法がある。その1つは成形加工である。コア1の成形は、ポリエーテルイミド樹脂発泡材に温度と圧力を負荷することによって行う。従って、上下の型のマッチドダイ方式でも成形できるが、型費を安くできることから図4に示すように三次元の曲面成形用型治具5の型面6に所要厚のポリエーテルイミド樹脂発泡材の平板7を載せ、その上から変形性のある樹脂フィルム8を覆い、曲面成形用型治具5の基板9上に装着したシール材10にてシールして設置し、樹脂フィルム8内に温度と圧力を負荷する方法が好ましい。
この方法では圧力を特別に制御することなく、樹脂フィルム8に装備した口金11から単純に図示せぬ真空ポンプ等にて樹脂フィルム8内を吸引する圧力を、ポリエーテルイミド樹脂発泡材の平板7に負荷することにより、このポリエーテルイミド樹脂発泡材の平板7をある程度曲面成形用型治具5の型面6に沿わせた状態で、図5に示す170℃〜210℃の温度を、温度が高い側では数分、温度が低い側では数時間かけることにより、図6に示すように熱可塑性材料であるポリエーテルイミド発泡材の平板7に型面6に沿った永久変形を与えて三次元の曲面板のコア1に成形加工できる。この成形加工における温度測定は、図4に示すようにポリエーテルイミド樹脂発泡材の平板7の表裏に設置した複数個の熱電対12によって行われる。
【0015】
曲面板のコア1の加工方法の他の1つは、機械加工である。この機械加工は、図7のaに示すポリエーテルイミド樹脂発泡材のブロック13の上面を機械加工して、図7のbに示すように三次元の曲面14を形成し、次にこの曲面14に沿って所要厚となるようにポリエーテルイミド樹脂発泡材のブロック13の下面を機械加工して、図7のcに示すように三次元の曲面15を形成して、三次元の曲面板のコア1を得るものである。
【0016】
曲面サンドイッチ構造体を作る他の方法について説明する。上記の曲面サンドイッチ構造体を作る方法は、比較的大きな曲率を持つ曲面サンドイッチ構造体を作るのに適するものである。ところで、航空機の翼端等の小さな曲率を持つ曲面サンドイッチ構造体を作る場合は、ポリエーテルイミド樹脂発泡材の優れた機械加工性に着目して、コアの曲面を機械加工により形成すると共にその曲面に面板を接着して曲面サンドイッチ構造体を作る。
即ち、先ず図8のaに示すようにポリエーテルイミド樹脂発泡材のブロック16の一側を機械加工して、図8のbに示すように曲率の小さな三次元の曲面17を形成し、次にこの曲面17に、図8のcに示すように同じ曲面形状に成形したFRP製面板18を接着するか、又は未硬化繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合し、
次いで前記ポリエーテルイミド樹脂発泡材のブロック16の他側を、前記三次元の曲面17に沿って所要厚となるように機械加工して、図8のdに示すように三次元の曲面19を形成しコア20と成し、然る後所要厚となったコア20の内側の三次元の曲面19に、図8のeに示すように同じ曲面形状に成形したFRP製面板21を接着するか、又は未硬化繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合し、曲面サンドイッチ構造体22を得る。
【0017】
以上述べたサンドイッチ構造体の製造方法の各々においては、ポリエーテルイミド樹脂発泡材コアとFRP製面板を接着する熱硬化性樹脂系接着材とが反応したり、ポリエーテ ルイミド樹脂発泡材コアと未硬化繊維強化樹脂プリプレグ中の樹脂とが反応したりして
コアの寸法が図17のbに示すように大きく縮む(例えば180℃×1kg/fcm2の2時間で2mm、150℃×1kg/fcm2
の3時間で1mm)。そこで本発明は、ポリエーテルイミド樹脂発泡材コアとFRP製面板の熱硬化性樹脂系接着剤との接触、ポリエーテルイミド樹脂発泡材コアと未硬化繊維強化熱硬化性樹脂プリプレグ面板中の樹脂との接触、さらにはポリエーテルイミド樹脂発泡材コアが分割コアとなされ、その各分割コアと各分割コアの間に配した熱硬化性樹脂系接着剤との接触を遮断すべく予め図9に示すようにポリエーテルイミド樹脂発泡材コア1の表面に反応防止用樹脂膜23を形成する。この反応防止用樹脂膜23を形成する樹脂を選択するポイントは、反応が120℃以上の温度で圧力が高いほど激しいことから、以下の通りである。
1)120℃までの温度で硬化する樹脂を選択する。
2)FRP製面板の接着剤やプリプレグ中の樹脂の硬化温度に耐用できること。
3)航空機用途のサンドイッチ構造体を製造するのであるから、軽量で薄く処理できること。
4)サンドイッチ構造体として必要な特性を阻害しないこと。
5)施工が容易であること。
また、ポリエーテルイミド樹脂発泡材コアの表面に出ている気泡を埋め、表面を平滑に仕上げるためには、この反応防止用の樹脂の中に、気泡径に対応する固形物(フィラー)を入れるとよい。その場合には、中空の粉体(シリカ等のマイクロバルーン)や、カーボンブラック等の軽量粉を用いることが望ましい。また、このフィラーにより反応防止用樹脂膜23に色を付けることができ、酸化チタンを用いた場合には白、カーボンブラックを用いた場合には黒色化でき、従って、フィラーを選択することにより反応防止用樹脂膜23の色を変えることが可能である。
実施例として、下記の3点によりコア1の表面へ反応防止用樹脂膜23を施した。いずれも軽量で施工が容易なものである。
1)刷毛塗りや、ディッピング、スプレー処理が可能な液状の120℃硬化系のエポキシプイマー
2)それにMgOとTiO2粉体化した金属酸化物粉
3)120℃硬化型エポキシ系フィルム接着剤(緑色になる)
そして図10のaに示すように反応防止用樹脂膜23を施したコア1と未硬化繊維強化熱硬化性樹脂プリプレグ面板24とのサンドイッチ化及び熱硬化性樹脂系接着剤25によるコア1同士の接着処理を行ったところ、図10のbに示すように反応によるコア1の縮みが防止されてサンドイッチ構造体26が得られた。
【0018】
また、上記の各サンドイッチ構造体製造時において、予め反応によるポリエーテルイミド樹脂発泡材コアの板厚減をラフに見込みサンドイッチ化する場合、本発明は、加熱硬化成形により接合する未硬化繊維強化熱硬化性樹脂プリプレグの種類によっては、約150℃以上の高温では、圧力をかけずに成形する。図11に熱硬化性のシアネート樹脂プリプレグの粘弾性測定結果を示す。この図11で判るように150℃で数時間ホールドすれば、熱硬化性樹脂の硬化反応によりプリプレグの粘度が上昇し、一定時間経過後にはほぼ粘度が一定となり、硬化反応が終了することが判る。硬化反応が終了するまでは、プリプレグの形状保持及び内部の気泡発生・残留を防ぐためにプリプレグに対し加圧が必要となる。硬化反応の終了後、FRPの耐熱性(=Tg:ガラス転移点温度)を最終的に確保するために、さらに150℃以上で一定時間ホールドする処理(ポストキュア)を行う。コアは高温であるほどプリプレグ面板の樹脂と反応しやすく、また加圧による変形を生じやすいため、このポストキュアの際には、コアと樹脂との反応及びコアの圧縮クリープ変形を助長する作用のある圧力をかけない状態で行った方がよくて、それによりコアの変形に伴う成形品の形状変化を防ぐことができる。このように、樹脂の粘弾性曲線からプリプレグの熱硬化性樹脂の硬化に必要となる120℃以上のホールド温度及びホールド時間の関係を調べ、粘度がほぼ一定となり硬化がほぼ完了した後は圧力をかけることを終了する。
このシアネート樹脂プリプレグの面板とポリエーテルイミド樹脂発泡材コアのサンドイッチ化の成形条件は図12のようになる。ただし、150℃から180℃加熱への移行時に必ずしも冷却する必要はない。
【0019】
【発明の効果】
以上の説明で判るように本発明のサンドイッチ構造体製造時の反応防止方法は、サンドイッチ構造体の製造時、ポリエーテルイミド樹脂発泡材コアの表面に反応を防止する樹脂膜を形成するので、ポリエーテルイミド樹脂発泡材コアとFRP製面板を接着する熱硬化性樹脂系接着剤との反応、ポリエーテルイミド樹脂発泡材コアと未硬化繊維強化熱硬化性樹脂プリプレグ面板中の樹脂との反応、ポリエーテルイミド樹脂発泡材コアが分割コアとなされ、その各分割コアと各分割コアとの間に配した熱硬化性樹脂系接着剤との反応が防止されて、反応によりポリエーテルイミド樹脂発泡材コアの寸法が縮むのを防止できて、寸法精度の高いサンドイッチ構造体を得ることができる。
【0020】
また、本発明のサンドイッチ構造体製造時の反応抑制方法は、ポリエーテルイミド樹脂発泡材コアの両面に、120℃以上の硬化温度を必要とする未硬化の繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合すサンドイッチ構造体の製造時において、プリプレグの硬化反応がほぼ終了してプリプレグの粘度がほぼ一定となった後はそれまでかけていた成形圧力を開放し圧力をかけずに成形するので、前記プリプレグ面板の樹脂とコアとの反応及びコアのクリープ変形が抑制され、形状が変化することがないので、寸法精度の高いサンドイッチ構造体を得ることができる。
【図面の簡単な説明】
【図1】 平板のサンドイッチ構造体の製造方法の一例を示す図である。
【図2】 平板のサンドイッチ構造体の製造方法の他の例を示す図である。
【図3】 a,b,cは曲面サンドイッチ構造体の製造方法の1つを示す工程図である。
【図4】 図3の曲面サンドイッチ構造体の製造方法において、ポリエーテルイミド樹脂発泡材を曲面板のコアに加工する方法の1つである成形加工方法を示す図である。
【図5】 ポリエーテルイミド樹脂発泡材を曲面板のコアに成形する条件を示す図である。
【図6】 図4の成形加工方法と図5の成形条件により曲面板のコアを成形した状態を示す図である。
【図7】 a,b,cは図3の曲面サンドイッチ構造体の製造方法において、ポリエーテルイミド樹脂発泡材を曲面板のコアに加工する方法の他の1つである機械加工方法の工程を示す図である。
【図8】 a〜eは曲面サンドイッチ構造体の製造方法の他の1つを示す工程図である。
【図9】 本発明の曲面サンドイッチ構造体製造時における反応防止方法の説明図である。
【図10】 aは図9の反応防止方法において、反応防止用樹脂膜を形成したコアとプリプレグとのサンドイッチ化及び接着剤によるコア同士の接着処理前の状態を示す概念図、bは接着処理後の状態を示す概念図である。
【図11】 シアネート樹脂のプリプレグの粘弾性測定結果を示す図である。
【図12】 熱硬化性のシアネート樹脂プリプレグとポリエーテルイミド樹脂発泡材コアのサンドイッチ化の成形条件を示す図である。
【図13】 従来のハニカムコアサンドイッチ構造体の概要を示す図である。
【図14】 図13のA部拡大断面図である。
【図15】 ポリエーテルイミド発泡材とポリメタクリルイミド発泡材の吸湿特性を示す図である。
【図16】 ポリエーテルイミド発泡材をコアとしたサンドイッチ構造体の製造工程を示すフロー図である。
【図17】 aはポリエーテルイミド発泡材とプリプレグを接触させたサンドイッチ構造体成形前の状態を示す概念図、bは成形後の状態を示す概念図である。
【符号の説明】
1,20 ポリエーテルイミド樹脂発泡材コア
2,,18,21 FRP製面板
2′,24 未硬化繊維強化熱硬化性樹脂プリプレグ面板
3,26 平板のサンドイッチ構造体
3′,22 曲面サンドイッチ構造体
5 曲面成形用型治具
6 型面
7 ポリエーテルイミド樹脂発泡材の平板
8 樹脂フィルム
9 曲面成形用型治具の基板
10 シール材
11 口金
12 熱電対
13,16 ポリエーテルイミド樹脂発泡材のブロック
14,15,17,19 三次元の曲面
23 反応防止用樹脂膜
24 未硬化の繊維強化熱硬化性樹脂プリプレグ面板
25 熱硬化性樹脂系接着剤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction prevention method and a reaction suppression method at the time of manufacturing a sandwich structure mainly used for an aircraft.
[0002]
[Prior art]
Conventionally, as an aircraft fuselage structural material, a honeycomb core 30 made of Nomex, aluminum, GFRP or the like is generally sandwiched between two composite face plates 31 and a film adhesive 32 is interposed as shown in FIG. A sandwich structure 33 bonded and bonded together is used. In some cases, a sandwich structure having a polymethacrylimide foam material as a core is also used. These sandwich structures are mainly used for moving blades (auxiliary wings, flaps, elevators, spoilers, etc.), doors, inspection port covers, and radomes that require thick walls, and occupy the weight of the fuselage structure. Although the proportion is not large, it occupies a large proportion of the airframe surface area.
[0003]
A conventional sandwich structure using a honeycomb core has many problems described below.
1) Since the sandwich structure is not pressurized except for the cell walls of the honeycomb being formed in the autoclave, the bubbles 34 in the composite faceplate 31 are shown in FIG. Residue is low and the strength is low, and the resin layer 35 often has minute cracks 36 during repeated use of the aircraft.
2) While the aircraft travels back and forth between the ground and the stratosphere, the outside air is subject to large air pressure and temperature fluctuations (1 atm, plus 40 ° C. to 1/10 atm, minus 54 ° C.) and through the crack 36 formed in the composite faceplate 31. Enters and exits the inside of the honeycomb core 30.
3) Moisture contained in the air that has entered the inside of the honeycomb core 30 from the outside condenses inside the honeycomb core 30 due to changes in atmospheric pressure and temperature due to the rise of the aircraft, and remains as water droplets 37. By repeating this process, moisture gradually accumulates inside the honeycomb core 30 and the body structure weight increases. The increase in weight is said to reach several hundred kilograms for large passenger aircraft of the Boeing 747 class.
4) The moisture inside the honeycomb core 30 freezes in the high sky, and the volume expansion causes the adhesive bonding between the honeycomb core 30 and the composite face plate 31 to be broken and the composite face plate 31 is peeled off. As a result, there arises a big problem that the structural strength is lowered and the flight safety is impaired.
Therefore, the composite sandwich structure has been widely used as a fuselage structure material in the conventional aircraft because it is lightweight and highly rigid, but it is gradually being replaced with a metal structure.
[0004]
In order to solve such problems, a sandwich structure in which the honeycomb core is replaced with foamed plastic has also been proposed. In this case, if a foam core containing closed cells is used,
There is an advantage that moisture can be prevented from entering into the core, which is a problem with the honeycomb core. This was an attractive proposal to improve the conventional honeycomb core sandwich structure. In this case, since the composite face plate is molded and the core is sandwiched in the same process, a core that can withstand the temperature and pressure is required, and therefore, a polymethacrylimide foam material was used as the core. However, this polymethacrylimide foam core has the following problems.
1) The strength is greatly reduced by moisture absorption.
2) Deformation and volume shrinkage due to moisture absorption during operation occurred, and peeling from the area based on these occurred.
3) The bonding strength with the face plate is weak, and the face plate peels off due to the impact of dropping the tool or colliding with the heel.
4) Because it absorbs a large amount of moisture quickly even if left in the room temperature / atmosphere, severe storage conditions are required and a drying process before use is required. .
5) Deformation performance at room temperature is extremely low and cannot be adapted to a mold for molding a part shape, and it is necessary to perform molding after holding the mold and the core at a high temperature.
6) This requires special jigs / equipment and labor, and is to follow the mold at a high temperature in the equipment. This may not be possible and may cause problems, which increases the core molding cost.
[0005]
Furthermore, in order to improve the defect of the sandwich structure having the polymethacrylimide foam material as a core, a polyetherimide foam material has been studied. The polyetherimide foam material not only has a small amount of moisture absorption as shown in FIG. 15 compared with the polymethacrylimide foam material,
Since there is no deterioration in characteristics due to moisture absorption, operations such as strict storage condition management and dehumidification are unnecessary. In addition, the polyetherimide foam material is composed of closed cells, and since there is no water immersion as the core of the sandwich structure, and the weight and strength characteristics are almost the same as the polymethacrylamide foam material, the sandwich structure It is considered suitable as a body core.
[0006]
Although the polyetherimide foam material has many advantages as described above, there is a problem in the reaction with the uncured resin in the manufacturing process shown in FIG. 16 of the sandwich structure having the core. When the FRP face plate and the polyetherimide foam core are sandwiched, if the FRP face plate is hardened in the previous process, it is sandwiched with an adhesive such as a film adhesive, and the FRP face plate is When cured in the same process, the resin itself contained in the prepreg serves as an adhesive and is sandwiched by applying temperature and pressure. Further, for a shape that cannot be integrally molded with a core, it is necessary to divide the core and assemble the divided cores with a resin adhesive.
[0007]
In the above operation, as shown in FIG. 17a, when the temperature and pressure for curing or bonding the resin in the prepreg 41 is applied in a state where the polyetherimide foam core 40 and the prepreg 41 are in contact, The etherimide foam core 40 reacts with the resin in the prepreg 41, the polyetherimide foam core 40 melts, and the thickness of the polyetherimide foam core 40 is greatly reduced as shown in FIG. The surface other than the surface 42 matched with the mold is a surface having irregular light irregularities 43. This reaction occurs at a temperature of 120 ° C. or higher,
The higher the temperature, the more intense the reaction. Moreover, since the contact area between the core 40 and the resin in the prepreg 41 also increases, the reaction becomes more intense as the pressure increases. Of course, the thicker the reaction, the greater the thickness at which the core 40 melts. In actual parts, even when molding at high temperature and high pressure in the same process, due to the shape of the parts, temperature and pressure gradients are generated inside, and conditions for receiving temperature and pressure differ depending on the part. The same applies if the heating method is changed by changing the molding apparatus or the like. Therefore, it is difficult to predict the thickness reduction of the core 40 due to a chemical reaction at the time of manufacturing an actual part, and it is impossible to adjust the thickness of the entire part as originally required. Further, the portion where the core 40 is melted is formed with a dense and dense reaction resin layer 44 made of a polyetherimide resin and an adhesive or a resin in the prepreg. This property is generally disadvantageous as a component.
[0008]
[Problems to be solved by the invention]
Therefore, the present invention intends to provide a reaction prevention method and a reaction suppression method capable of solving the above-described problems in the production of a sandwich structure comprising a conventional polyetherimide foam core and an FRP faceplate. is there.
[0009]
[Means for Solving the Problems]
One of the methods for preventing reaction at the time of manufacturing the sandwich structure of the present invention for solving the above-mentioned problem is that when manufacturing a sandwich structure in which FRP face plates are bonded to both sides of a polyetherimide resin foam core, A resin film for preventing a reaction between the etherimide resin foam core and the thermosetting resin-based adhesive that bonds the FRP face plate is formed.
[0010]
Another method of preventing the reaction during the production of the sandwich structure of the present invention is to join uncured fiber-reinforced thermosetting resin prepreg faceplates on both sides of the polyetherimide resin foam core and heat-curing and bonding them. When the sandwich structure is manufactured, a resin film is formed which prevents reaction between the polyetherimide resin foam core and the resin in the uncured fiber-reinforced thermosetting resin prepreg face plate. .
[0011]
Still another one of the reaction prevention methods at the time of manufacturing the sandwich structure of the present invention is that, in any one of the two reaction prevention methods, the polyetherimide resin foam core is formed as a split core, A resin film that prevents reaction with a thermosetting resin-based adhesive disposed between the split cores is formed.
[0012]
In the method for suppressing reaction during the production of the sandwich structure of the present invention, an uncured fiber reinforced thermosetting resin prepreg face plate that requires a curing temperature of 120 ° C. or higher is disposed on both sides of the polyetherimide resin foam core and heated. At the time of manufacturing the sandwich structure to be cured and bonded, in order to suppress the reaction between the resin of the prepreg face plate and the core and the creep deformation of the core, the curing reaction of the prepreg is almost finished and the viscosity of the prepreg is substantially constant. Then, the molding pressure applied so far is released, and molding is performed without applying pressure.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the reaction preventing method at the time of manufacturing the sandwich structure of the present invention will be described. Before that, the production of the sandwich structure will be described. As shown in FIG. 1, a sandwich structure 3 is formed by adhering a face plate 2 made of FRP to both sides of a flat core 1 made of a polyetherimide resin foam material, or a polyetherimide resin as shown in FIG. on both sides of the flat plate core 1 made of foamed material, arranged uncured fiber reinforced thermosetting resin prepreg faceplate 2 ', joined this heat curing molded to produce a sandwich structure 3. These sandwich structures 3 are flat plates, but a curved plate sandwich structure is made as follows. As shown in FIG. 3a, a polyetherimide resin foamed material is processed into a curved plate to form a core 1, and then both sides of the core 1 are formed into the same curved surface as shown in FIG. 3b. 'or making, or uncured fiber reinforced thermosetting resin prepreg faceplate 2, as shown in c of FIG. 3 on both sides of the core 1' by bonding a face plate 2 curved sandwich structures 3 arranged, heating the Cured and joined to form a curved sandwich structure 3 ′.
[0014]
In the method of manufacturing the curved sandwich structure 3 ′, there are two methods for processing the core 1 of the curved plate. One of them is molding. The core 1 is molded by applying temperature and pressure to the polyetherimide resin foam. Therefore, although the upper and lower molds can be molded by the matched die method, since the mold cost can be reduced, a polyetherimide resin foam material having a required thickness is formed on the mold surface 6 of the three-dimensional curved mold jig 5 as shown in FIG. A flat plate 7 is placed, a deformable resin film 8 is covered on the flat plate 7, and sealed with a sealing material 10 mounted on the substrate 9 of the curved surface forming jig 5. A method of applying pressure is preferred.
In this method, the pressure in the resin film 8 is simply sucked from the base 11 mounted on the resin film 8 by a vacuum pump (not shown) without specially controlling the pressure. 5 to a temperature of 170 ° C. to 210 ° C. shown in FIG. 5 in a state where the flat plate 7 of the polyetherimide resin foam material is fitted to the mold surface 6 of the curved surface forming mold jig 5 to some extent. By taking several minutes on the higher side and several hours on the lower temperature side, the flat plate 7 of the polyetherimide foam material, which is a thermoplastic material, is subjected to permanent deformation along the mold surface 6 as shown in FIG. It can be molded into the core 1 of the original curved plate. The temperature measurement in this molding process is performed by a plurality of thermocouples 12 installed on the front and back of the flat plate 7 of the polyetherimide resin foam material as shown in FIG.
[0015]
Another method of processing the core 1 of the curved plate is machining. In this machining, the upper surface of the block 13 of the polyetherimide resin foam shown in FIG. 7a is machined to form a three-dimensional curved surface 14 as shown in FIG. Then, the lower surface of the block 13 of the polyetherimide resin foam material is machined so as to have a required thickness along the line 3 to form a three-dimensional curved surface 15 as shown in FIG. The core 1 is obtained.
[0016]
Another method for producing a curved sandwich structure will be described. The above method for producing a curved sandwich structure is suitable for producing a curved sandwich structure having a relatively large curvature. By the way, when making a curved sandwich structure with a small curvature, such as a wing tip of an aircraft, paying attention to the excellent machinability of the polyetherimide resin foam, the curved surface of the core is formed by machining and the curved surface Glue the face plate to make a curved sandwich structure.
That is, first, one side of the polyetherimide resin foam block 16 is machined as shown in FIG. 8a to form a three-dimensional curved surface 17 having a small curvature as shown in FIG. to this curved surface 17, or bonded, or a fiber-reinforced thermosetting resin prepreg faceplate uncured arranged heat curing molding to bonding the FRP-made surface plate 18 so molded into the same curved shape as shown in c of FIG. 8 And
Next, the other side of the block 16 of the polyetherimide resin foam material is machined so as to have a required thickness along the three-dimensional curved surface 17, and a three-dimensional curved surface 19 is formed as shown in FIG. Whether the FRP face plate 21 formed into the same curved surface shape as shown in FIG. 8e is bonded to the three-dimensional curved surface 19 inside the core 20 that is formed and then has the required thickness. , or by joining heat curing molding arranged fiber-reinforced thermosetting resin prepreg faceplate uncured obtain curved sandwich structure 22.
[0017]
Or mentioned in each of the manufacturing method of the sandwich structure was, or react with the thermosetting resin adhesive for bonding the polyetherimide resin foam core and an FRP faceplate, polyether Ruimido resin foam core and uncured and the resin of the fiber-reinforced resin in the prepreg is or react,
The size of the core is greatly reduced as shown in FIG. 17b (for example, 2 mm at 180 ° C. × 1 kg / fcm 2 for 2 hours, 150 ° C. × 1 kg / fcm 2
1 mm in 3 hours). The present invention, contact between the polyetherimide resin foam core and an FRP faceplate of the thermosetting resin-based adhesive, a polyether imide resin foam core and uncured resin of the fiber reinforced thermosetting resin prepreg faceplate in contact with, more polyetherimide resin foam core made and divided core, in order to cut off contact between the core segments and thermosetting resin-based adhesive placed between the divided cores, in advance 9 As shown in FIG. 2, a reaction preventing resin film 23 is formed on the surface of the polyetherimide resin foam core 1. The point of selecting a resin for forming the reaction preventing resin film 23 is as follows because the reaction is more intense as the pressure is higher at a temperature of 120 ° C. or higher.
1) Select a resin that cures at temperatures up to 120 ° C.
2) It can withstand the curing temperature of the FRP face plate adhesive and the resin in the prepreg.
3) Since sandwich structures for aircraft use are manufactured, they must be light and thin.
4) Do not impede the properties required as a sandwich structure.
5) Easy to install.
In addition, in order to fill the air bubbles coming out on the surface of the polyetherimide resin foam core and finish the surface smoothly, a solid substance (filler) corresponding to the air bubble diameter is put into the reaction preventing resin. Good. In that case, it is desirable to use a hollow powder (microballoon such as silica) or a lightweight powder such as carbon black. Moreover, the resin film 23 for reaction prevention can be colored by this filler, and when titanium oxide is used, it can be white, and when carbon black is used, it can be blackened. It is possible to change the color of the prevention resin film 23.
As an example, a reaction preventing resin film 23 was applied to the surface of the core 1 by the following three points. Both are lightweight and easy to install.
1) brushing and, dipping, Epokishipu la timer 2 of 120 ° C. curing system of the spray processing is possible liquid) it MgO and metal oxide powder 3 of TiO 2 was powdered) 120 ° C. curable epoxy film adhesive (Goes green)
The core 1 together by sandwich reduction and thermosetting resin-based adhesive 25 between the core 1 and the fiber-reinforced thermosetting resin prepreg faceplate 24 of uncured subjected to reaction for preventing the resin film 23 as shown in a of FIG. 10 As shown in FIG. 10b, the shrinkage of the core 1 due to the reaction was prevented, and a sandwich structure 26 was obtained.
[0018]
In addition, when manufacturing each of the sandwich structures described above, if the thickness of the polyetherimide resin foam core due to the reaction is roughly estimated to be sandwiched in advance, the present invention is a non-hardened fiber reinforced joint bonded by thermosetting . Depending on the type of thermosetting resin prepreg, molding is performed without applying pressure at a high temperature of about 150 ° C. or higher. FIG. 11 shows the viscoelasticity measurement results of the thermosetting cyanate resin prepreg. As can be seen from FIG. 11, when held at 150 ° C. for several hours , the viscosity of the prepreg rises due to the curing reaction of the thermosetting resin, and after a certain period of time, the viscosity becomes substantially constant and the curing reaction is completed. . Until the curing reaction is completed, it is necessary to pressurize the prepreg in order to maintain the shape of the prepreg and to prevent the generation and remaining of internal bubbles. After the completion of the curing reaction, in order to finally secure the heat resistance (= Tg: glass transition temperature) of the FRP, a treatment (post cure) is further performed at 150 ° C. or higher for a predetermined time. The higher the temperature of the core, the more easily it reacts with the resin of the prepreg face plate, and more likely to be deformed by pressurization. It is better to carry out in a state where a certain pressure is not applied, thereby preventing a change in the shape of the molded product accompanying the deformation of the core. In this way, the relationship between the hold temperature and hold time of 120 ° C. or higher necessary for curing the thermosetting resin of the prepreg is examined from the viscoelastic curve of the resin, and after the viscosity is almost constant and the curing is almost completed , the pressure is End the call.
The molding conditions for sandwiching the cyanate resin prepreg face plate and the polyetherimide resin foam core are as shown in FIG. However, it is not always necessary to cool at the time of transition from 150 ° C. to 180 ° C. heating.
[0019]
【The invention's effect】
As can be seen from the above description, the method for preventing reaction at the time of manufacturing the sandwich structure of the present invention forms a resin film for preventing reaction on the surface of the polyetherimide resin foam core at the time of manufacturing the sandwich structure. reaction of the polyether imide resin foam core and a reaction of the thermosetting resin-based adhesive for bonding the FRP-made faceplate, polyetherimide resin foam core and uncured resin of the fiber reinforced thermosetting resin prepreg faceplate in, polyetherimide resin foam core is made a split core, the reaction is prevented between the thermosetting resin-based adhesive placed between the respective divided cores and the core segments, polyether imide resin foam material by reacting A core structure can be prevented from shrinking, and a sandwich structure with high dimensional accuracy can be obtained.
[0020]
In addition, the method for suppressing a reaction during the production of the sandwich structure of the present invention has an uncured fiber reinforced thermosetting resin prepreg faceplate that requires a curing temperature of 120 ° C. or higher on both sides of a polyetherimide resin foam core. during production of the heat curing molded to sandwich structure you joined, after the prepreg curing reaction substantially completed by the viscosity of the prepreg was substantially constant is pressured to open the molding pressure that has been applied until then Therefore, the reaction between the resin of the prepreg face plate and the core and the creep deformation of the core are suppressed, and the shape does not change, so that a sandwich structure with high dimensional accuracy can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of a method for producing a flat sandwich structure.
FIG. 2 is a view showing another example of a method for producing a flat sandwich structure.
FIGS. 3A to 3C are process diagrams showing one method for producing a curved sandwich structure. FIGS.
4 is a diagram showing a molding method that is one of methods for processing a polyetherimide resin foam into a core of a curved plate in the method of manufacturing the curved sandwich structure of FIG. 3. FIG.
FIG. 5 is a diagram showing conditions for molding a polyetherimide resin foam material on the core of a curved plate.
6 is a view showing a state where a core of a curved plate is formed by the forming method of FIG. 4 and the forming conditions of FIG. 5;
FIGS. 7A and 7B are diagrams showing a process of a machining method, which is another method of processing a polyetherimide resin foam into a core of a curved plate in the method of manufacturing the curved sandwich structure of FIG. 3; FIG.
FIGS. 8A to 8E are process diagrams showing another method for manufacturing a curved sandwich structure. FIGS.
FIG. 9 is an explanatory view of a reaction preventing method when manufacturing the curved sandwich structure of the present invention.
FIG. 10A is a conceptual diagram showing a state before sandwiching a core and a prepreg formed with a reaction preventing resin film and an adhesive treatment between cores with an adhesive in the reaction prevention method of FIG. 9, and b is an adhesion treatment. It is a key map showing the latter state.
FIG. 11 is a diagram showing the viscoelasticity measurement results of a prepreg of a cyanate resin.
FIG. 12 is a view showing molding conditions for sandwiching a thermosetting cyanate resin prepreg and a polyetherimide resin foam core.
Fig. 13 is a diagram showing an outline of a conventional honeycomb core sandwich structure.
14 is an enlarged cross-sectional view of a part A in FIG.
FIG. 15 is a diagram showing moisture absorption characteristics of a polyetherimide foam material and a polymethacrylimide foam material.
FIG. 16 is a flowchart showing a manufacturing process of a sandwich structure having a polyetherimide foam material as a core.
FIG. 17 is a conceptual diagram showing a state before molding a sandwich structure in which a polyetherimide foam material and a prepreg are in contact with each other, and b is a conceptual diagram showing a state after molding.
[Explanation of symbols]
1,20 polyetherimide resin foam core 2,, 18, 21 FRP made faceplate 2 ', 24 uncured fiber reinforced thermosetting resin prepreg faceplate 3, 26 flat sandwich structure 3', 22 curved sandwich structure DESCRIPTION OF SYMBOLS 5 Curved mold jig 6 Mold surface 7 Polyetherimide resin foam flat plate 8 Resin film 9 Curved mold jig board 10 Sealing material 11 Base 12 Thermocouple 13, 16 Block of polyetherimide resin foam 14, 15, 17, 19 Three-dimensional curved surface 23 Reaction prevention resin film
24 Uncured fiber reinforced thermosetting resin prepreg face plate 25 Thermosetting resin adhesive

Claims (4)

ポリエーテルイミド樹脂発泡材コアの両面に、FRP製面板を接着するサンドイッチ構造体の製造時において、ポリエーテルイミド樹脂発泡材コアとFRP製面板を接着する熱硬化性樹脂系接着剤との反応を防止する樹脂膜を形成することを特徴とするサンドイッチ構造体製造時の反応防止方法。When manufacturing a sandwich structure in which FRP face plates are bonded to both sides of a polyetherimide resin foam core, the reaction between the thermosetting resin adhesive that bonds the polyetherimide resin foam core and the FRP face plate is performed. A method for preventing a reaction when manufacturing a sandwich structure, comprising forming a resin film to prevent. ポリエーテルイミド樹脂発泡材コアの両面に、未硬化の繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合するサンドイッチ構造体の製造時において、ポリエーテルイミド樹脂発泡材コアと未硬化の繊維強化熱硬化性樹脂プリプレグ面板中の樹脂との反応を防止する樹脂膜を形成することを特徴とするサンドイッチ構造体製造時の反応防止方法。When manufacturing a sandwich structure in which uncured fiber-reinforced thermosetting resin prepreg faceplates are placed on both sides of a polyetherimide resin foam core and heat-cured and bonded, the polyetherimide resin foam core and uncured A method for preventing a reaction at the time of manufacturing a sandwich structure, comprising forming a resin film for preventing a reaction with a resin in a fiber reinforced thermosetting resin prepreg face plate. 請求項1又は2記載のサンドイッチ構造体製造時の反応防止方法において、ポリエーテルイミド樹脂発泡材コアが分割コアとなされ、その各分割コアと各分割コアの間に配した熱硬化性樹脂系接着剤との反応を防止する樹脂膜を形成することを特徴とするサンドイッチ構造体製造時の反応防止方法。3. The method for preventing reaction at the time of manufacturing a sandwich structure according to claim 1 or 2, wherein the polyetherimide resin foam core is a split core, and the thermosetting resin adhesive disposed between each split core and each split core. A method for preventing reaction at the time of manufacturing a sandwich structure, comprising forming a resin film for preventing reaction with an agent. ポリエーテルイミド樹脂発泡材コアの両面に、120℃以上の硬化温度を必要とする未硬化の繊維強化熱硬化性樹脂プリプレグ面板を配し加熱硬化成形して接合するサンドイッチ構造体製造時において、前記プリプレグ面板の樹脂とコアとの反応及びコアのクリープ変形を抑制するために、プリプレグの硬化反応がほぼ終了してプリプレグの粘度がほぼ一定となった後はそれまでかけていた成形圧力を開放し、圧力をかけずに成形することを特徴とするサンドイッチ構造体製造時の反応抑制方法。At the time of manufacturing a sandwich structure in which an uncured fiber reinforced thermosetting resin prepreg face plate that requires a curing temperature of 120 ° C. or higher is disposed on both sides of the polyetherimide resin foam core, and thermosetting molding is performed, In order to suppress the reaction between the resin and the core of the prepreg face plate and the creep deformation of the core, after the prepreg curing reaction is almost finished and the viscosity of the prepreg becomes almost constant, the molding pressure applied so far is released. A method for suppressing a reaction at the time of manufacturing a sandwich structure, characterized by molding without applying pressure.
JP2001100439A 2001-03-30 2001-03-30 Reaction prevention method and reaction suppression method during sandwich structure production Expired - Fee Related JP3754313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001100439A JP3754313B2 (en) 2001-03-30 2001-03-30 Reaction prevention method and reaction suppression method during sandwich structure production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001100439A JP3754313B2 (en) 2001-03-30 2001-03-30 Reaction prevention method and reaction suppression method during sandwich structure production

Publications (2)

Publication Number Publication Date
JP2002292743A JP2002292743A (en) 2002-10-09
JP3754313B2 true JP3754313B2 (en) 2006-03-08

Family

ID=18953881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001100439A Expired - Fee Related JP3754313B2 (en) 2001-03-30 2001-03-30 Reaction prevention method and reaction suppression method during sandwich structure production

Country Status (1)

Country Link
JP (1) JP3754313B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826976B2 (en) 2019-03-08 2023-11-28 Ihi Aerospace Co., Ltd. FRP molding system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11826976B2 (en) 2019-03-08 2023-11-28 Ihi Aerospace Co., Ltd. FRP molding system and method

Also Published As

Publication number Publication date
JP2002292743A (en) 2002-10-09

Similar Documents

Publication Publication Date Title
EP1415782B1 (en) Method for producing upsized frp member
US10464239B2 (en) System for manufacturing monolithic structures using expanding internal tools
US6117376A (en) Method of making foam-filled composite products
US5042968A (en) Propeller blade subassembly and method for making a propeller blade subassembly
US4169749A (en) Method of making a hollow airfoil
US10343761B2 (en) Repair method of repair target portion, repaired product, and repair apparatus
US8894903B2 (en) Method for the manufacture of a fiber-reinforced component
US10780616B2 (en) Methods of forming composite structures
US8088317B1 (en) Partially automated fabrication of composite parts
US6918985B2 (en) Method for making a radome
CN106184744B (en) A kind of manufacturing method of the bionical Insect wings of light-high-strength
EP2735415A1 (en) Composite material of fiber-reinforced resin and weight-saving core, and method and apparatus for producing same
CN110561792B (en) Low-cost composite material large cabin integral forming method
EP2727697B1 (en) Method of stabilizing honeycomb core using pourable structural foam
JP2002225210A (en) Composite sandwich structure and method of producing and repairing the same
JP2003048223A (en) Frp manufacturing method
JP3754313B2 (en) Reaction prevention method and reaction suppression method during sandwich structure production
US6780488B2 (en) Liquid molded hollow cell core composite articles
JPH0521069B2 (en)
JPH04316845A (en) Method for molding composite material blade shape
JP3482525B2 (en) Method of manufacturing curved sandwich structure
EP1795332A1 (en) Hollow cell core composite articles molded with liquid resin and method of fabrication
CN115091819B (en) Fiber metal laminate with embedded optical fiber sensor and forming and curing integrated method thereof
US11964441B2 (en) Composite part with additively manufactured sub-structure
CN108215440B (en) Manufacturing method of stepped or hollow honeycomb sandwich structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20010330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041221

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Ref document number: 3754313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees