JP3751732B2 - Combustion control method of regenerative burner in melting and holding furnace - Google Patents

Combustion control method of regenerative burner in melting and holding furnace Download PDF

Info

Publication number
JP3751732B2
JP3751732B2 JP36866997A JP36866997A JP3751732B2 JP 3751732 B2 JP3751732 B2 JP 3751732B2 JP 36866997 A JP36866997 A JP 36866997A JP 36866997 A JP36866997 A JP 36866997A JP 3751732 B2 JP3751732 B2 JP 3751732B2
Authority
JP
Japan
Prior art keywords
combustion
burner
heat storage
melting
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36866997A
Other languages
Japanese (ja)
Other versions
JPH11193920A (en
Inventor
己一 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROZAI KOGYO KAISHA, LTD.
Original Assignee
ROZAI KOGYO KAISHA, LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ROZAI KOGYO KAISHA, LTD. filed Critical ROZAI KOGYO KAISHA, LTD.
Priority to JP36866997A priority Critical patent/JP3751732B2/en
Publication of JPH11193920A publication Critical patent/JPH11193920A/en
Application granted granted Critical
Publication of JP3751732B2 publication Critical patent/JP3751732B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱体を介してバーナへの燃焼用空気の供給およびバーナからの燃焼ガスの排出を行なう溶解保持炉におけるリジェネレイティブバーナシステムの燃焼制御方法に関するもので、更に詳しくは、フラックス処理による蓄熱体の目づまりを防止するリジェネレイティブバーナの燃焼制御方法に関するものである。
【0002】
【従来の技術】
近時、溶解保持炉の燃焼装置として、高い熱交換効率が得られると共に、大幅なNOxの発生を抑制し、省エネルギーに富む燃焼システムとして、蓄熱体を利用して廃熱を回収し、燃焼用空気を予熱するリジェネレイティブバーナシステムが多く採用されてきている。
【0003】
そのリジェネレイティブバーナシステムは、バーナと蓄熱体とを組み合わせたバーナ装置を炉内に少なくとも一対配設し、一方のバーナの燃焼時には、該燃焼バーナに対して燃焼空気を蓄熱体を介して供給して燃焼空気を蓄熱体の蓄熱で熱し、他方の非燃焼バーナでは、炉内の排ガスを蓄熱体を介して吸引して蓄熱体で熱交換することにより蓄熱し、次の燃焼時に蓄熱体で燃焼空気を加熱するようにして交互に切替燃焼するものである。
【0004】
このリジェネレイティブバーナシステムで用いられる蓄熱体は、蓄熱室内に適度の圧力損失を有するように間隙を存して収納されていて、外気の燃焼空気と炉内の排ガスがその間隙を通過する時に蓄熱体に当り、高温排ガスの熱量を効果的に燃焼空気に伝えるようになっている。
【0005】
このリジェネレイティブバーナシステムを溶解保持炉の燃焼装置として使用しているが、例えば、アルミのインゴットを溶解する場合、インゴットが溶湯になった時に、品質良好なスラブやビレットを得るため、フラックスを添加して溶湯アルミの不純物分離を行なっている。
【0006】
【発明が解決しようとする課題】
しかしながら、溶湯にフラックスを添加すると、フラックスの粉末が飛散して交番燃焼しているバーナの非燃焼バーナ側から吸引されて、蓄熱室に吸いこまれ、蓄熱体に付着して目づまりが短期間で生じた。
【0007】
目づまりが生じると、空気の流路が狭くなり、流通しにくくなって圧力損失が大きくなり、バーナ燃焼量の低下と熱交換が悪く蓄熱効果が低下するので、蓄熱体を取り出して付着物を取り除くか、あるいは新規なものに交換しなければならず、その度に炉を止めているため連続運転ができず、作業効率が非常に悪いと言う問題点があった。
【0008】
本発明は上記の問題を解決することを課題として研究開発されたもので、溶湯へのフラックス処理時に、バーナを全燃焼させて蓄熱室内へのフラックス粉末の侵入を防止して、蓄熱体の目づまりをなくして、作業能率および運転効率のよい溶解保持炉におけるリジェネレイティブバーナの燃焼制御方法を提供するものである。
【0009】
【課題を解決するための手段】
上記の課題を解決し、その目的を達成する手段として、本発明では、少なくとも一対のリジェネレイティブバーナが配設され、そのリジェネレイティブバーナを交互に燃焼させ、燃焼排ガスを非燃焼側の蓄熱体を介して排出させる一方、燃焼側のバーナで燃焼用空気を蓄熱体を介して供給するリジェネレイティブバーナ装置によって溶解材料を溶解させる溶解保持炉において、溶湯のフラックス処理の残粉影響時に、交番燃焼から全バーナ連続燃焼に切り替え、フラックス処理終了後、再昇温全バーナ連続燃焼、保持1/2バーナ連続燃焼、保持交番燃焼のいずれかを選択できることを特徴とするリジェネレイティブバーナの燃焼制御方法を開発し、採用した。
【0010】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面に基づいて説明すれば、1は溶解保持炉本体で、長さ方向の両側壁面に前後左右で一対をなす2組のリジェネレイティブバーナ2、2,3、3が取り付けられており、炉天井面に排ガス制御弁4が設けられている。
【0011】
このリジェネレイティブバーナ2、3は、図3に示すように、下方部にアルミナボール等の蓄熱体5が収容される蓄熱室6が設けられており、その底面には蓄熱体5の外径より小さな網目の金網7が張設されている。この蓄熱室6にはアルミナボール等の蓄熱体5が多数充填されていて、それぞれのアルミナボール等の蓄熱体5は点接触している。
【0012】
8は蓄熱室6の一側面の下端部に開口した蓄熱体取出口で、その蓄熱体取出口8に蓋体9が嵌合されている。この蓋体9には内面側に断熱材10が貼着されていて、外面側にコ字状の把手11が取り付けられている。
【0013】
12は蓄熱室の底面部と連結する外気の燃焼用空気の供給と炉内の排ガス放出を兼用する傾斜ダクトで、底面が一方から他方に向かって傾斜する傾斜面12aに形成されていて、その一側の下端部に開口部13が設けられ、その開口部13に開閉蓋14が取り付けられている。
【0014】
以上の構成からなる溶解保持炉における溶解サイクルを図4のフローチャートで説明する。左側が通常燃焼モード、右側がフラックス処理モードを示している。まず、ステップS1で前後左右の一方ずつのバーナ2、3,2、3を交互に燃焼させて蓄熱体5の予熱を行い、予め設定された温度800℃に達したかをステップS2で測定し、800℃達した場合は次のステップS3に進み、800℃に達していない場合は、さらにステップS1に戻して蓄熱体予熱交番燃焼を行なう。
【0015】
ステップS3では前後左右の一方ずつのバーナ2、3,2、3を交互に燃焼させてアルミインゴットが溶解するまで交番燃焼を行い、アルミインゴットが溶け落ち終了したかを目視によってステップS4で確認し、完全に溶湯になったのを確認してステップS5またはステップS6に進む。インゴットの塊が残っていればステップS3に戻し、再度溶解交番燃焼が行なわれる。ここまでの溶解サイクルは、通常燃焼モードとフラックス処理モードは何ら変わることがなく同じであり、この先から通常燃焼モードとフラックス処理モードの溶解サイクルが異なる。
【0016】
すなわち、通常燃焼モードの場合は、ステップS5で前後左右の一方ずつのバーナ2、3,2、3で保持の交番燃焼を行つて溶湯温度を調整し、鋳造機に出湯して燃焼終了かをステップS11で確認して、YESならばステップS12で燃料供給停止を行い、燃焼終了となるが、NOならばステップS3の溶解交番燃焼を行なう。
【0017】
一方、フラックス処理モードの場合は、アルミインゴットが完全に溶湯になると、造塊した時のスラブやビレットの品質を良くするために、ステップS6でフラツクス処理が30〜40分かけて行われる。その時に、図2Aに示すように、後部の一方のバーナ2と前部の一方のバーナ3の燃焼から、図2Bに示すように、後部の両方のバーナ2、2および前部の両方のバーナ3、3の全バーナを連続燃焼に切り替え排ガスを排ガス制御弁4から放出してフラックスの粉末が蓄熱室6内に入るのを防止して蓄熱体5に付着するのを阻止する。そしてステップS7でフラックス処理を終了する。
【0018】
ステップS7でのフラックス処理が終了すると、ステップS8の全バーナ2、2,3、3の連続燃焼の再昇温またはステップS9のバーナ2、2または3、3だけの1/2バーナ連続燃焼の保持あるいはステップS10のバーナ2、2,3、3の交番燃焼の保持のいずれかを選択する。
【0019】
すなわち、フラックス処理に長い時間がかかり湯温が出湯温度以下の場合、ステップS8の全バーナ連続燃焼の再昇温を選び、湯温が出湯温度を保っていると、ステップS9の1/2バーナ連続燃焼を選び、また、フラックスの残粉が皆無が確認できた場合、ステップS10の交番燃焼の保持を選択する。
【0020】
ステップS8の全バーナ連続燃焼の再昇温、ステップS9の1/2バーナ連続燃焼、ステップS10の交番燃焼の保持のいずれかを行なって溶湯温度を調整し、鋳造機に出湯し、それぞれステップS11で燃焼終了かを確認して終了ならばステップS12で燃料供給停止が行われ燃焼終了となる。ステップS11で終了できないときは、それぞれステップS3の溶解交番燃焼(再チャージ)を行なう。
【0021】
なお、前述の実施の形態においては、溶解保持炉の両側壁面の前後左右に、リジェネレイティブバーナ2、2,3、3を2個ずつ設けたもので説明したが、これに限定されるものでなく、その配置位置および配置数については自由に設定することができる。
【0022】
【発明の効果】
以上説明したように、本発明は、少なくとも一対のリジェネレイティブバーナが配設され、そのリジェネレイティブバーナを交互に燃焼させ、燃焼排ガスを非燃焼側の蓄熱体を介して排出させる一方、燃焼側のバーナで燃焼用空気を蓄熱体を介して供給する蓄熱バーナ装置によって溶解材料を溶解させる溶解保持炉において、溶湯のフラックス処理の残粉影響時に、交番燃焼から全バーナ連続燃焼に切り替え、フラックス処理終了後、再昇温全バーナ連続燃焼、保持1/2バーナ連続燃焼、保持交番燃焼のいずれかを選択できることを特徴とするリジェネレイティブバーナの燃焼制御方法に係るものであるから、次のような効果を奏するものである。
【0023】
フラックス処理時の蓄熱室へのフラックス粉末の侵入が防止されて蓄熱体に付着することなく、目づまりが無くなり、蓄熱体の交換頻度は大幅に減少し、長期の安定操業とリジェネレイティブバーナの高性能が維持でき、連続運転が可能となり、作業能率、運転効率を大幅に向上できる。
【0024】
また、フラックス処理終了後、再昇温全バーナ連続燃焼、保持1/2バーナ連続燃焼、保持交番燃焼のいずれかを選択できるから、その時の湯温に見合った燃焼ができ、安定した湯温を保持できると共に、効率の良い燃焼ができ、省エネルギー効果を得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す縦断面図である。
【図2】溶解保持炉の交番燃焼と全燃焼を示す簡略平面図である。
【図3】本発明のリジェネレイティブバーナ部の拡大縦断面図である。
【図4】本発明の溶解サイクルのフローチャートである。
【符号の説明】
1 溶解保持炉
2 リジェネレイティブバーナ
3 リジェネレイティブバーナ
5 蓄熱体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combustion control method for a regenerative burner system in a melting and holding furnace that supplies combustion air to a burner through a heat storage body and discharges combustion gas from the burner. The present invention relates to a combustion control method for a regenerative burner that prevents clogging of a heat accumulator due to heat.
[0002]
[Prior art]
Recently, high heat exchange efficiency can be obtained as a combustion device for melting and holding furnaces, and generation of waste heat can be recovered using a heat storage body as a combustion system that suppresses significant NOx generation and is energy-saving. Many regenerative burner systems that preheat air have been adopted.
[0003]
In the regenerative burner system, at least a pair of burner devices in which a burner and a heat storage body are combined are arranged in a furnace, and when one burner is combusted, combustion air is supplied to the combustion burner via the heat storage body. In the other non-burning burner, heat is stored by sucking the exhaust gas in the furnace through the heat storage body and exchanging heat with the heat storage body. The combustion is alternately switched and burned as the combustion air is heated.
[0004]
The regenerator burner used in this regenerative burner system is stored in the heat storage chamber with a gap so as to have an appropriate pressure loss, and when the outside combustion air and the exhaust gas in the furnace pass through the gap. It hits the heat accumulator and effectively conveys the amount of heat of the high-temperature exhaust gas to the combustion air.
[0005]
This regenerative burner system is used as a combustion device for melting and holding furnaces.For example, when melting an aluminum ingot, when the ingot becomes molten metal, a flux is used to obtain a good quality slab and billet. It is added to separate impurities from molten aluminum.
[0006]
[Problems to be solved by the invention]
However, when flux is added to the molten metal, the powder of the flux is scattered and sucked from the non-burning burner side of the alternating burner, sucked into the heat storage chamber, adheres to the heat storage body, and clogging occurs in a short period of time. It was.
[0007]
When clogging occurs, the air flow path becomes narrow, it becomes difficult to circulate, pressure loss increases, burner combustion amount decreases and heat exchange deteriorates and the heat storage effect decreases, so take out the heat storage body and remove deposits Or, it must be replaced with a new one, and since the furnace was stopped each time, there was a problem that continuous operation was impossible and work efficiency was very poor.
[0008]
The present invention has been researched and developed to solve the above-mentioned problems, and during the flux treatment to the molten metal, the burner is completely burned to prevent the flux powder from entering the heat storage chamber, and the heat storage body is The present invention provides a combustion control method for a regenerative burner in a melting and holding furnace that eliminates clogging and has high work efficiency and operation efficiency.
[0009]
[Means for Solving the Problems]
As means for solving the above-mentioned problems and achieving the object, in the present invention, at least a pair of regenerative burners is disposed, the regenerative burners are alternately burned, and the combustion exhaust gas is stored on the non-combustion side. In the melting and holding furnace in which the molten material is melted by the regenerative burner device that discharges through the body and the combustion side burner is supplied by the combustion side burner through the heat storage body, at the time of residual powder influence of the flux treatment of the molten metal, Combustion of regenerative burner characterized in that switching from alternating combustion to all burner continuous combustion is possible, and after the flux treatment is completed, reheated all burner continuous combustion, holding 1/2 burner continuous combustion, or holding alternating combustion can be selected. A control method was developed and adopted.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings. Reference numeral 1 denotes a melting and holding furnace body, and two sets of regenerative burners 2, 2, which form a pair of front and rear and left and right walls on both sides in the length direction. , 3 and 3 are provided, and an exhaust gas control valve 4 is provided on the furnace ceiling surface.
[0011]
As shown in FIG. 3, the regenerative burners 2 and 3 are provided with a heat storage chamber 6 in which a heat storage body 5 such as an alumina ball is accommodated in a lower portion, and an outer diameter of the heat storage body 5 on a bottom surface thereof. A smaller wire mesh 7 is stretched. The heat storage chamber 6 is filled with a large number of heat storage bodies 5 such as alumina balls, and the respective heat storage bodies 5 such as alumina balls are in point contact.
[0012]
Reference numeral 8 denotes a heat storage body outlet opening at the lower end of one side surface of the heat storage chamber 6, and a lid 9 is fitted to the heat storage body outlet 8. A heat insulating material 10 is adhered to the inner surface side of the lid body 9, and a U-shaped handle 11 is attached to the outer surface side.
[0013]
12 is an inclined duct that combines the supply of external combustion air to the bottom surface of the heat storage chamber and the exhaust gas discharge in the furnace, and the bottom surface is formed on an inclined surface 12a inclined from one to the other. An opening 13 is provided at the lower end on one side, and an opening / closing lid 14 is attached to the opening 13.
[0014]
A melting cycle in the melting and holding furnace having the above configuration will be described with reference to the flowchart of FIG. The left side shows the normal combustion mode, and the right side shows the flux processing mode. First, in step S1, one of the front, rear, left and right burners 2, 3, 2, 3 is alternately burned to preheat the heat storage body 5, and it is measured in step S2 whether the preset temperature reaches 800 ° C. When the temperature reaches 800 ° C., the process proceeds to the next step S3. When the temperature does not reach 800 ° C., the process returns to step S1 to perform the regenerator preheating alternating combustion.
[0015]
In step S3, the burners 2, 3, 2, and 3 are burned alternately in the front, rear, left, and right directions, and alternating combustion is performed until the aluminum ingot is melted. It is visually confirmed in step S4 whether the aluminum ingot has been melted down. After confirming that the molten metal is completely formed, the process proceeds to step S5 or step S6. If the ingot lump remains, the process returns to step S3, and melting alternating combustion is performed again. The melting cycle so far is the same without any change in the normal combustion mode and the flux processing mode, and the melting cycle in the normal combustion mode and the flux processing mode is different from this point onward.
[0016]
That is, in the normal combustion mode, in step S5, one of the front, rear, left and right burners 2, 3, 2, and 3 performs alternating combustion held to adjust the molten metal temperature, and the molten metal is discharged to the casting machine to determine whether the combustion is finished. In step S11, if YES, the fuel supply is stopped in step S12 and the combustion is terminated. If NO, the melting alternating combustion in step S3 is performed.
[0017]
On the other hand, in the flux processing mode, when the aluminum ingot is completely melted, in order to improve the quality of the slab or billet when it is agglomerated, the flux processing is performed for 30 to 40 minutes in step S6. At that time, from the combustion of one burner 2 at the rear and one burner 3 at the front, as shown in FIG. 2A, both burners 2, 2 at the rear and both burners, as shown in FIG. 2B. All the burners 3 and 3 are switched to continuous combustion, and the exhaust gas is discharged from the exhaust gas control valve 4 to prevent the flux powder from entering the heat storage chamber 6 and to adhere to the heat storage body 5. And a flux process is complete | finished by step S7.
[0018]
When the flux process in step S7 is completed, the reheating of all the burners 2, 2, 3, and 3 in step S8 is repeated, or the 1/2 burner continuous combustion of only burner 2, 2, or 3, and 3 in step S9. Either holding or holding the alternating combustion of the burners 2, 2, 3, and 3 in step S10 is selected.
[0019]
That is, if it takes a long time for the flux treatment and the hot water temperature is equal to or lower than the tapping temperature, the re-heating of all burner continuous combustion in step S8 is selected, and if the hot water temperature keeps the tapping temperature, 1/2 burner continuous in step S9. If combustion is selected, and if there is no residual powder of flux, retention of alternating combustion in step S10 is selected.
[0020]
The temperature of the molten metal is adjusted by performing any one of the reheating of all burner continuous combustion in step S8, the 1/2 burner continuous combustion in step S9, and the alternating combustion holding in step S10, and the molten metal is discharged to the casting machine. In step S12, the fuel supply is stopped and the combustion ends. If the process cannot be completed in step S11, the melt alternate combustion (recharge) in step S3 is performed.
[0021]
In the above-described embodiment, two regenerative burners 2, 2, 3, and 3 are provided on the front, rear, left, and right sides of the side walls of the melting and holding furnace. However, the present invention is not limited to this. Instead, the arrangement position and the number of arrangements can be freely set.
[0022]
【The invention's effect】
As described above, the present invention is provided with at least a pair of regenerative burners, alternately burning the regenerative burners, and exhausting the combustion exhaust gas through the non-combustion side heat accumulator, In the melting and holding furnace where the molten material is melted by the heat storage burner device that supplies combustion air via the heat storage body with the burner on the side, switching from alternating combustion to all burner continuous combustion when the residual powder is affected by the flux treatment of the melt Since the regenerative burner combustion control method is characterized by being able to select any one of re-heated full burner continuous combustion, holding 1/2 burner continuous combustion, and holding alternating combustion after the processing is completed, The effect is exhibited.
[0023]
Intrusion of flux powder into the heat storage chamber during flux treatment is prevented and it does not adhere to the heat storage body, eliminating clogging, and the frequency of replacement of the heat storage body is greatly reduced, long-term stable operation and high regenerative burner Performance can be maintained, continuous operation is possible, and work efficiency and operation efficiency can be greatly improved.
[0024]
In addition, after finishing the flux treatment, any one of re-heated full burner continuous combustion, holding 1/2 burner continuous combustion, and holding alternating combustion can be selected. While being able to hold | maintain, efficient combustion can be performed and the energy saving effect is acquired.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an example of an embodiment of the present invention.
FIG. 2 is a simplified plan view showing alternating combustion and total combustion in a melting and holding furnace.
FIG. 3 is an enlarged longitudinal sectional view of a regenerative burner portion of the present invention.
FIG. 4 is a flow chart of the dissolution cycle of the present invention.
[Explanation of symbols]
1 Melting and holding furnace 2 Regenerative burner 3 Regenerative burner 5 Thermal storage

Claims (1)

少なくとも一対のリジェネレイティブバーナが配設され、そのリジェネレイティブバーナを交互に燃焼させ、燃焼排ガスを非燃焼側の蓄熱体を介して排出させる一方、燃焼側のバーナで燃焼用空気を蓄熱体を介して供給するリジェネレイティブバーナ装置によって溶解材料を溶解させる溶解保持炉において、溶湯のフラックス処理の残粉影響時に、交番燃焼から全バーナ連続燃焼に切り替え、フラックス処理終了後、再昇温全バーナ連続燃焼、保持1/2バーナ連続燃焼、保持交番燃焼のいずれかを選択できることを特徴とする溶解保持炉におけるリジェネレイティブバーナの燃焼制御方法。At least a pair of regenerative burners are disposed, and the regenerative burners are alternately burned to discharge the combustion exhaust gas through the non-combustion side heat storage body, while combustion air is stored in the heat storage body by the combustion side burner. In a melting and holding furnace that melts the melted material with a regenerative burner device that is supplied via a gas, when the residual powder is affected by the flux treatment of the molten metal, the combustion is switched from alternating combustion to all burner continuous combustion. A combustion control method for a regenerative burner in a melting and holding furnace, wherein any one of burner continuous combustion, holding 1/2 burner continuous combustion, and holding alternating combustion can be selected.
JP36866997A 1997-12-26 1997-12-26 Combustion control method of regenerative burner in melting and holding furnace Expired - Fee Related JP3751732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36866997A JP3751732B2 (en) 1997-12-26 1997-12-26 Combustion control method of regenerative burner in melting and holding furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36866997A JP3751732B2 (en) 1997-12-26 1997-12-26 Combustion control method of regenerative burner in melting and holding furnace

Publications (2)

Publication Number Publication Date
JPH11193920A JPH11193920A (en) 1999-07-21
JP3751732B2 true JP3751732B2 (en) 2006-03-01

Family

ID=18492434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36866997A Expired - Fee Related JP3751732B2 (en) 1997-12-26 1997-12-26 Combustion control method of regenerative burner in melting and holding furnace

Country Status (1)

Country Link
JP (1) JP3751732B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5167015B2 (en) * 2008-07-30 2013-03-21 三建産業株式会社 Regenerative burner combustion control method

Also Published As

Publication number Publication date
JPH11193920A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
CN105423750A (en) Aluminum melting furnace
JP3751732B2 (en) Combustion control method of regenerative burner in melting and holding furnace
JP3267140B2 (en) Heating furnace, combustion control method thereof, and combustion control device
JP4112650B2 (en) A method for glass furnace conversion utilizing combustion with oxygen.
JP2598619Y2 (en) Thermal storage type alternating combustion device
JPH032334A (en) Metal melt holding furnace
JPH0953114A (en) Method for controlling combustion in heating furnace
JP3608692B2 (en) Crucible furnace
JP2001141367A (en) Copper melting shaft furnace
JP3396922B2 (en) Continuous heating furnace and combustion method thereof
JP3611770B2 (en) Regenerative burner
JP3340287B2 (en) Thermal storage of thermal storage burner
CN205939111U (en) Heat accumulating type burning device
JP3680252B2 (en) How to use a regenerative burner
JP3106042B2 (en) How to preheat scrap
JPH09243056A (en) Heat accumulation switching burner
JPH07120171A (en) Method of operating heating oven including heat storage alternate combustion burner system
JP2919725B2 (en) How to heat and clean the tundish
JP3375310B2 (en) Regenerative burner
JP3617169B2 (en) Temperature control method for furnace equipped with heat storage combustion device
CN211926497U (en) Gas crucible furnace
JPH11223467A (en) Ceramic burning furnace
JP2896297B2 (en) Heat cleaning method for vacuum degassing tank
JPH09303752A (en) Melting-disposing device for incombustible
JP3305492B2 (en) Melting furnace apparatus for granular material and melting furnace combustion method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051101

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees