JP3751548B2 - Master pellet and its molded body - Google Patents
Master pellet and its molded body Download PDFInfo
- Publication number
- JP3751548B2 JP3751548B2 JP2001276920A JP2001276920A JP3751548B2 JP 3751548 B2 JP3751548 B2 JP 3751548B2 JP 2001276920 A JP2001276920 A JP 2001276920A JP 2001276920 A JP2001276920 A JP 2001276920A JP 3751548 B2 JP3751548 B2 JP 3751548B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- resin particles
- particles
- master pellet
- master
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Processes Of Treating Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、基材樹脂に異形樹脂粒子を配合してなるマスターペレットおよび、このマスターペレットからなる成形体に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、照明器具カバー、レンズ、導光板、ビデオディスク、プロジェクションテレビ用スクリーンなどの光学用部品、化粧品容器、自動販売機の前面板、看板、商品ディスプレイ、卓上容器などにポリカーボネート樹脂、ポリスチレン樹脂、アクリル樹脂などの熱可塑性樹脂が用いられている。これらの用途において、その意匠性など商品価値を高めるために、透明熱可塑性樹脂に光拡散性物質を添加することが行われている。
【0003】
光拡散性物質としては、ガラス、炭酸カルシウム、シリカなどの無機粒子、あるいはアクリル樹脂、ポリスチレン等の樹脂粒子が用いられている。しかし、無機粒子を用いた場合、均一に分散させることが難しく、また、光の透過性を顕著に低下させるという問題がある。一方、樹脂粒子を用いた場合、熱可塑性樹脂との親和性がよく均一に分散しやすいことや、屈折率が基材樹脂のものと近いため、添加量を多くしても光の透過性を低下させず、好適に用いられる。ところが、樹脂粒子を用いた場合でも、プロジェクションテレビ用スクリーン等に関して高まる要求(光線透過特性を維持しつつ、光拡散性に優れる)にはまだ満足できるものではない。
【0004】
そこで、本発明では、光拡散性に優れ、かつ従来より全光線透過率の低下が少ない成形体およびこれを製造するためのマスターペレットを得ることを課題とする。
【0005】
【課題を解決するための手段】
本発明者は、前記のような課題を解決すべく鋭意研究した結果、基材樹脂に、特定の形状を有する異形樹脂粒子を配合することにより、良好な光拡散性と光線透過特性を有するマスターペレットが得られることを見出し、本発明を完成するに至った。
【0006】
本発明によれば、基材樹脂に、二つの曲面または一つの曲面と一つの平面とで形成され、両面の間に境界線を有し、この境界を横方向としたときの側面図において、横方向の最大粒子径をD、縦方向の最大高さをdとしたとき式:
0.05≦d/D≦0.8 (I)
を満たす異形樹脂粒子を配合したマスターペレット、およびこのマスターペレットからなる成形体が提供される。
【0007】
【発明の実施の形態】
本発明において基材樹脂に配合される異形樹脂粒子は、二つの曲面または一つの曲面と一つの平面とから形成され、両面の間に境界線を有する。
なお、ここでいう曲面および平面は、通常、欠けや窪みなどの無い均一な面であるが、本発明の効果が認められる範囲であれば、欠けや窪みなどの不均一な部分が僅かに存在しても構わない。
【0008】
また、境界線は、電子顕微鏡写真などで異形樹脂粒子を観察したときに確認できるものである。すなわち、SEM写真上において異形樹脂粒子のコントラストが異なり、境界線として認められる部分である。なお、その部分の幅は、粒子の最大高さの1/10程度以下であり、より詳しくは1/20程度以下である。境界線が部分的に欠けて全体として不連続なものであっても、本発明の効果を奏する限り、本発明の境界線とする。
【0009】
本発明における異形樹脂粒子は、二つの面からなり、少なくとも一方の面が曲面であるから、通常の円板状粒子や偏平状粒子、板状粒子には見られない特性、例えば光散乱性などの光学特性や、滑り性などの摩擦特性を有している。また、もう一方の面が平面あるいは曲率半径が大きい曲面であるから、通常の球状粒子には無い特性、例えば、優れた耐脱落性をも有している。
【0010】
本発明における異形樹脂粒子は、樹脂粒子を形成する二つの面の境界線を横方向とすると、この境界線を上から見た平面図は、通常、円形または略円形である。そして、この境界線を挟んで両側に位置する二つの面の形状によって、本発明における異形樹脂粒子の形状は次の三つのタイプに大別される。
【0011】
すなわち、境界線を横方向として、異形樹脂粒子を側面から見たとき、一つの凸面が境界線を挟んで上方に現れ、もう一つの凸面が境界線を挟んで下方に現れるタイプ(以下、「タイプA」という:図1参照)、一つの平面が境界線と一致し、一つの凸面が境界線の上方または下方に現れるタイプ(以下、「タイプB」という:図2参照)、および一つの凸面と一つの凹面とが、共に境界線を挟んで同一方向、例えば下方に現れるタイプ(以下、「タイプC」という:図3参照)の三つに大別される。
【0012】
本発明における異形樹脂粒子は、境界線を横方向としたときの側面図において、横方向の最大粒子径をDとし、縦方向の最大高さをdとすると、次の式を満たすものが好ましい。
0.05≦d/D≦0.8 (I)
0.1μm≦D≦500μm (II)
【0013】
そして、本発明のマスターペレットおよび成形体が優れた光学特性(ヘイズ、拡散性等)を示すためには、異形樹脂粒子の境界線から各面までの最大距離をそれぞれaおよびbとすると、次の式を満たすものがより好ましい。
0.3≦d/D≦0.8 (III)
0≦a/b≦0.3 (IV)
(ただし、0≦a<b)
【0014】
上記目的のためには、次の式を満たすものがさらに好ましい。
0.4≦d/D≦0.6 (III')
0≦a/b≦0.2 (IV')
(ただし、0≦a<b)
【0015】
また、本発明のマスターペレットおよび成形体がより優れた光学特性(ヘイズ、拡散性)を示すためには、タイプAの異形樹脂粒子であって、次の式を満たすものが好ましい。
0.05≦d/D≦0.8 (I)
0.3≦a/b≦1 (V)
(ただし、0<a≦b)
【0016】
上記目的のためには、次の式を満たすものがさらに好ましい。
0.2≦d/D≦0.5 (I’)
0.4≦a/b≦1 (V')
(ただし、0<a≦b)
【0017】
なお、上記のD、d、aおよびbの各数値は、本発明における異形樹脂粒子を電子顕微鏡または光学顕微鏡で観察して、あるいはそれらの画像解析手法により測定もしくは算出して得たものであり、その平均は数平均値を意味する。
【0018】
本発明における異形樹脂粒子を構成する材料としては、特に限定されないが、例えばポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン樹脂、(メタ)アクリル酸エステル−スチレン共重合樹脂、ポリエステル系樹脂、シリコーン系樹脂、ポリオレフィン系樹脂等が挙げられる。
なお、異形樹脂粒子は架橋していても架橋していなくてもよいが、耐溶剤性が要求される場合には、架橋している方が好ましい。また、異形樹脂粒子は、例えば紫外線吸収剤、熱安定剤、着色剤などの添加剤を微量含んでいてもかまわない。
【0019】
異形樹脂粒子の製造方法としては、特に限定されないが、例えば懸濁重合、乳化重合などが挙げられる。
異形樹脂粒子の製造方法の詳細については、後記の製造例が参照されるべきである。
【0020】
上記の異形樹脂粒子が配合される基材樹脂としては、通常の熱可塑性樹脂であれば特に限定されないが、例えば(メタ)アクリル樹脂、(メタ)アクリル酸アルキル−スチレン共重合樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂などが挙げられる。特に透明性が求められる場合には(メタ)アクリル樹脂、(メタ)アクリル酸アルキル−スチレン共重合樹脂、ポリカーボネート樹脂、ポリエステル樹脂がよい。これらの基材樹脂は、それぞれ単独で、または2種以上を組合わせて用いることができる。
なお、基材樹脂は、紫外線吸収剤、熱安定剤、着色剤、フィラー等の添加剤を微量含んでいてもかまわない。
【0021】
本発明のマスターペレットは、異形樹脂粒子と基材樹脂とを溶融混練して、押出成形、射出成形等の成形方法により製造される。
マスターペレットにおける異形樹脂粒子の配合割合は、特に限定されないが、0.1〜60重量%程度、好ましくは0.3〜30重量%程度、さらに好ましくは0.4〜10重量%程度である。配合割合が60重量%を上回ると、マスターペレットの製造が難しくなるため好ましくない。また、0.1重量%を下回ると、本発明の効果が低下するので好ましくない。
【0022】
本発明の成形体は、上記のようにして得られるマスターペレットを、例えば押出成形、射出成形またはプレス成形することにより製造される。また、その際に基材樹脂を新たに添加してもよい。基材樹脂の添加量は最終的に得られる成形体に含まれる異形樹脂粒子の配合割合が0.1〜60重量%程度となるように添加するのがよい。なお、成形時には、例えば紫外線吸収剤、熱安定剤、着色剤、フィラー等の添加剤を微量添加してもよい。
【0023】
本発明のマスターペレットおよび成形体は、3種類の異形樹脂粒子(タイプA、タイプB、タイプC)のうち、いずれか一つ、または2種以上を組合わせて配合したものである。また、本発明の効果を阻害しない範囲において、本発明における異形樹脂粒子に加えて、真球状の樹脂粒子や無機粒子を配合してもよい。ただし、その場合には本発明における異形樹脂粒子を加えることによって得られる効果が減じられる可能性があるので、その点に留意しなければならない。
【0024】
【実施例】
以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例により限定されるものではない。
【0025】
製造例1
水200gに対し、懸濁安定剤として複分解法でピロリン酸マグネシウム5gを生成させた分散媒を、500mlセパラブルフラスコに入れ、これに界面活性剤としてラウリル硫酸ナトリウム0.04g、水溶性の重合禁止剤として亜硝酸ナトリウム0.02gを溶解させた。
これとは別に、スチレン90g、ジビニルベンゼン9g、液状化合物としてジメチルポリシロキサン[25℃における粘度:1000cSt]10g、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)0.5gを均一に混合溶解してなるモノマー組成物を調製した。
【0026】
モノマー組成物を上記分散媒に加えて、ホモミキサー(IKA社製 ULUTRA TURRAX T−25)にて8000rpmで約10秒間攪拌して微分散し、モノマー組成物の液滴の直径を15μmに調整した。上記のセパラブルフラスコに攪拌翼、温度計および還流冷却器を取り付け、窒素置換後、60℃の恒温水槽中に設置した。セパラブルフラスコ内を攪拌速度200rpmで攪拌を継続させ、モノマー組成物を微分散させた分散液の温度が60℃になってから、10時間懸濁重合を行った。
【0027】
次いで、反応液を冷却し、スラリーのpHが2程度になるまで塩酸を添加して懸濁安定剤を分解した。濾紙を用いたブフナー漏斗で樹脂粒子を吸引濾過し、1.2リットルのイオン交換水で洗浄し、懸濁安定剤を除去した。吸引濾過後の脱水ケーキを乾燥した後、シクロヘキサンに分散させ、吸引濾過を数回繰り返して、目的の異形樹脂粒子(タイプB)を得た。
この樹脂粒子の形状のパラメータを表1に示す。
【0028】
なお、異形樹脂粒子の形状のパラメータは、電子顕微鏡写真の中から樹脂粒子50個を任意に選び、粒子の直径を計測して、数平均の中心粒子径を算出し、さらに、中心粒子径の上下30%範囲に属する樹脂粒子20個について、境界線を横方向にしたときの粒子の横方向の最大粒子径D、粒子の縦方向の最大高さd、境界線から各面への最大距離aおよびbを測定し、d/Dおよびa/bの平均値を算出して得た。
【0029】
製造例2
スチレンを72gに、ジビニルベンゼンを8gに、ジメチルポリシロキサン(25℃における粘度:1000cSt)を20gに変更した以外は、製造例1と同様にして異形樹脂粒子(タイプA)を得た。
この樹脂粒子の形状のパラメータを表1に示す。
【0030】
製造例3
スチレンを83.7gに、ジビニルベンゼンを9.3gに、ジメチルポリシロキサン(25℃における粘度:1000cSt)を8gに変更した以外は、製造例1と同様にして異形樹脂粒子(タイプC)を得た。
この樹脂粒子の形状のパラメータを表1に示す。
【0031】
比較製造例1
攪拌機および温度計を備えた重合器に、ラウリル硫酸ナトリウム0.05gを溶解させた脱イオン水500gを入れ、第三リン酸カルシウム50gを分散させた。これに予め調製しておいた、スチレン85g、ジビニルベンゼン15gに過酸化ベンゾイル0.5gおよびアゾビスイソブチロニトリル0.5gを溶解させた混合液を入れて、T.Kホモミキサー(特殊機化工業株式会社製)により分散し、液滴を15μm程度に調整した。次に、重合器を65℃に加熱して攪拌しながら懸濁重合を行った後、冷却した。懸濁液を濾過、洗浄した後、乾燥して真球状樹脂粒子を得た。
この樹脂粒子の形状のパラメータを表1に示す。
【0032】
実施例1
製造例2で得られた異形樹脂粒子(タイプA)を、メタクリル酸メチル樹脂(住友化学株式会社製MG−5)100重量部に対して0.5重量部添加し、ブレンド後、押出機に供給してマスターペレットを得た。
このペレットを射出成形機に供給して射出成形し、長さ100mm、幅50mm、厚さ2mmの光拡散板を得た。
【0033】
この光拡散板の光拡散性および光透過性を、自動変角光度計(株式会社村上色彩研究所製「GP−200」)を用いて、試料となる成形板に垂直に平行光線を入射したときの角度依存性を測定し、0°(正面)方向の透過光強度を100として、0°〜90°の各角度の相対透過光強度を測定することにより評価した。この測定データを図4に示す。また、全光線透過率およびヘイズを、ヘイズメーター(日本電色株式会社製「NDH−2000」JIS K7105に準拠)により、それぞれ測定した。その測定データを表2に示す。
【0034】
実施例2
製造例1で得られた異形樹脂粒子(タイプB)を用いた以外は、実施例1と同様にして光拡散板を得た。この光拡散板の全光線透過率およびヘイズの測定データを表2に示す。
【0035】
実施例3
製造例3で得られた異形樹脂粒子(タイプC)を用いた以外は、実施例1と同様にして光拡散板を得た。この光拡散板の全光線透過率およびヘイズの測定データを表2に示す。
【0036】
実施例4
製造例1および製造例2で得られた異形樹脂粒子(タイプBとタイプA)を1:1で混合して用いた以外は、実施例1と同様にして光拡散板を得た。この光拡散板の全光線透過率およびヘイズの測定データを表2に示す。
【0037】
実施例5
製造例1で得られた異形樹脂粒子(タイプB)および比較製造例1で得られた真球状粒子を7:3で混合して用いた以外は、実施例1と同様にして光拡散板を得た。この光拡散板の全光線透過率およびヘイズの測定データを表2に示す。
【0038】
比較例1
比較製造例1で得られた樹脂粒子(真球状)を用いた以外は、実施例1と同様にして光拡散板を得た。この光拡散板の自動変角光度計による測定データを図4に、全光線透過率およびヘイズの測定データを表2に示す。
【0039】
図4より明らかなように、タイプAの異形樹脂粒子を用いた光拡散板(実施例1)は、ほぼ同粒径の真球状粒子を用いたもの(比較例1)と比較して高角度領域での透過光度が高く、結果として光拡散性に優れていることが分かる。また、表2から、全光線透過率はほぼ同じであり、ヘイズが若干高くなっていることから、光透過性を維持しながら光拡散性に優れていることが分かる。
【0040】
また、表2から、タイプB(実施例2)、タイプC(実施例3)の異形樹脂粒子を用いた光拡散板についても同様に、全光線透過率は比較例1とほぼ同じでありながらヘイズが高くなっていることから、光透過性を維持しながら光拡散性に優れていることが分かる。
【0041】
【表1】
【0042】
【表2】
【0043】
【発明の効果】
本発明のマスターペレットを用いた成形体は、光線透過特性を維持しつつ、光拡散性に優れているため、照明器具カバー、導光板、プロジェクションテレビ用スクリーンなど、高い光拡散性および光透過性を要求される分野で特に有効である。
【図面の簡単な説明】
【図1】タイプAに分類される異形樹脂粒子の側面図である。
【図2】タイプBに分類される異形樹脂粒子の側面図である。
【図3】タイプCに分類される異形樹脂粒子の側面図である。
【図4】自動変角光度計で測定した光拡散性データの比較を表すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a master pellet obtained by blending irregularly shaped resin particles with a base resin, and a molded body made of the master pellet.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, optical parts such as lighting fixture covers, lenses, light guide plates, video discs, projection TV screens, cosmetic containers, vending machine front plates, signboards, product displays, tabletop containers, etc. polycarbonate resin, polystyrene resin, acrylic Thermoplastic resins such as resins are used. In these applications, a light diffusing substance is added to a transparent thermoplastic resin in order to increase commercial value such as design.
[0003]
As the light diffusing substance, inorganic particles such as glass, calcium carbonate, and silica, or resin particles such as acrylic resin and polystyrene are used. However, when inorganic particles are used, there is a problem that it is difficult to uniformly disperse and the light transmittance is remarkably lowered. On the other hand, when resin particles are used, they have good affinity with thermoplastic resins and are easy to disperse uniformly, and the refractive index is close to that of the base resin. It is preferably used without lowering. However, even when resin particles are used, it is still unsatisfactory to meet the increasing demand for projection television screens (maintaining light transmission characteristics and excellent light diffusibility).
[0004]
Therefore, an object of the present invention is to obtain a molded article that is excellent in light diffusibility and has a lower total light transmittance than the conventional one and a master pellet for producing the molded article.
[0005]
[Means for Solving the Problems]
As a result of earnest research to solve the above-mentioned problems, the present inventor has found that a master having good light diffusibility and light transmission characteristics can be obtained by blending irregular shaped resin particles having a specific shape with the base resin. The inventors have found that pellets can be obtained and have completed the present invention.
[0006]
According to the present invention, the base resin is formed of two curved surfaces or one curved surface and one flat surface, and has a boundary line between both surfaces, and in the side view when this boundary is a lateral direction, When the maximum particle diameter in the horizontal direction is D and the maximum height in the vertical direction is d, the formula:
0.05 ≦ d / D ≦ 0.8 (I)
The master pellet which mix | blended the irregular-shaped resin particle which satisfy | fills, and the molded object which consists of this master pellet are provided.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the deformed resin particles blended in the base resin are formed of two curved surfaces or one curved surface and one flat surface, and have a boundary line between both surfaces.
Note that the curved surface and the flat surface here are usually uniform surfaces having no chippings or dents, but within a range where the effect of the present invention is recognized, there are a few nonuniform portions such as chips and dents. It doesn't matter.
[0008]
The boundary line can be confirmed when the irregular shaped resin particles are observed with an electron micrograph or the like. In other words, the contrast of the irregularly shaped resin particles is different on the SEM photograph and is a portion recognized as a boundary line. The width of the portion is about 1/10 or less of the maximum height of the particles, and more specifically about 1/20 or less. Even if the boundary line is partially missing and discontinuous as a whole, the boundary line of the present invention is used as long as the effect of the present invention is exhibited.
[0009]
The irregular shaped resin particles in the present invention are composed of two surfaces, and at least one surface is a curved surface. Therefore, characteristics that are not found in ordinary disk-like particles, flat particles, plate-like particles, such as light scattering properties, etc. It has friction characteristics such as optical characteristics and slipperiness. In addition, since the other surface is a flat surface or a curved surface having a large radius of curvature, it has characteristics not found in ordinary spherical particles, for example, excellent drop-off resistance.
[0010]
If the boundary line between the two surfaces forming the resin particle is defined as the horizontal direction, the plan view of the irregular resin particle in the present invention viewed from above is usually circular or substantially circular. And the shape of the irregular shaped resin particle in this invention is divided roughly into the following three types by the shape of two surfaces located on both sides across this boundary line.
[0011]
That is, when the deformed resin particles are viewed from the side with the boundary line in the horizontal direction, one convex surface appears above the boundary line, and the other convex surface appears below the boundary line (hereinafter, “ "Type A": see Fig. 1), a type in which one plane coincides with the boundary line, and one convex surface appears above or below the boundary line (hereinafter referred to as "Type B": see Fig. 2), and one A convex surface and a single concave surface are roughly divided into three types (hereinafter referred to as “type C”: see FIG. 3) that appear in the same direction, for example, below, with a boundary line in between.
[0012]
In the side view when the boundary line is in the horizontal direction, the irregular shaped resin particles in the present invention preferably satisfy the following formula where D is the maximum particle diameter in the horizontal direction and d is the maximum height in the vertical direction. .
0.05 ≦ d / D ≦ 0.8 (I)
0.1 μm ≦ D ≦ 500 μm (II)
[0013]
And in order for the master pellet of this invention and a molded object to show the outstanding optical characteristics (haze, diffusivity, etc.), when the maximum distance from the boundary line of a deformed resin particle to each surface is set to a and b, respectively, Those satisfying the formula are more preferable.
0.3 ≦ d / D ≦ 0.8 (III)
0 ≦ a / b ≦ 0.3 (IV)
(However, 0 ≦ a <b)
[0014]
For the above purpose, those satisfying the following formula are more preferable.
0.4 ≦ d / D ≦ 0.6 (III ′)
0 ≦ a / b ≦ 0.2 (IV ′)
(However, 0 ≦ a <b)
[0015]
Moreover, in order for the master pellet and the molded body of the present invention to exhibit more excellent optical properties (haze, diffusibility), it is preferable that the type A deformed resin particles satisfy the following formula.
0.05 ≦ d / D ≦ 0.8 (I)
0.3 ≦ a / b ≦ 1 (V)
(However, 0 <a ≦ b)
[0016]
For the above purpose, those satisfying the following formula are more preferable.
0.2 ≦ d / D ≦ 0.5 (I ′)
0.4 ≦ a / b ≦ 1 (V ′)
(However, 0 <a ≦ b)
[0017]
In addition, each numerical value of said D, d, a, and b was obtained by observing the irregular-shaped resin particle in this invention with an electron microscope or an optical microscope, or measuring or calculating by those image analysis methods. The average means the number average value.
[0018]
Although it does not specifically limit as a material which comprises the irregular shape resin particle in this invention, For example, a poly (meth) acrylic acid ester-type resin, a polystyrene resin, (meth) acrylic acid ester-styrene copolymer resin, a polyester-type resin, a silicone type Examples thereof include resins and polyolefin resins.
The deformed resin particles may or may not be crosslinked, but are preferably crosslinked when solvent resistance is required. The irregular shaped resin particles may contain a trace amount of additives such as an ultraviolet absorber, a heat stabilizer, and a colorant.
[0019]
The method for producing the irregular shaped resin particles is not particularly limited, and examples thereof include suspension polymerization and emulsion polymerization.
For details of the method for producing irregular shaped resin particles, the following production examples should be referred to.
[0020]
The base resin into which the irregular resin particles are blended is not particularly limited as long as it is a normal thermoplastic resin. For example, (meth) acrylic resin, (meth) acrylic acid alkyl-styrene copolymer resin, polycarbonate resin, A polyester resin, a polyethylene resin, a polypropylene resin, a polystyrene resin, etc. are mentioned. In particular, when transparency is required, (meth) acrylic resin, (meth) alkyl acrylate-styrene copolymer resin, polycarbonate resin, and polyester resin are preferable. These base resins can be used alone or in combination of two or more.
The base resin may contain a trace amount of additives such as an ultraviolet absorber, a heat stabilizer, a colorant, and a filler.
[0021]
The master pellet of the present invention is produced by melt-kneading irregular shaped resin particles and a base resin, and by a molding method such as extrusion molding or injection molding.
The blending ratio of the irregular shaped resin particles in the master pellet is not particularly limited, but is about 0.1 to 60% by weight, preferably about 0.3 to 30% by weight, and more preferably about 0.4 to 10% by weight. If the blending ratio exceeds 60% by weight, it is not preferable because it becomes difficult to produce master pellets. On the other hand, if it is less than 0.1% by weight, the effect of the present invention is lowered, which is not preferable.
[0022]
The molded body of the present invention is produced by, for example, extrusion molding, injection molding or press molding of the master pellet obtained as described above. At that time, a base resin may be newly added. The addition amount of the base resin is preferably added so that the blending ratio of the deformed resin particles contained in the finally obtained molded product is about 0.1 to 60% by weight. At the time of molding, for example, a trace amount of additives such as an ultraviolet absorber, a heat stabilizer, a colorant, and a filler may be added.
[0023]
The master pellet and the molded product of the present invention are those obtained by blending any one of three types of irregularly shaped resin particles (type A, type B, type C), or a combination of two or more. Moreover, in the range which does not inhibit the effect of this invention, in addition to the irregular shaped resin particle in this invention, you may mix | blend a true spherical resin particle and an inorganic particle. However, in that case, the effect obtained by adding the irregular shaped resin particles in the present invention may be reduced, so that it should be noted.
[0024]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited by these Examples.
[0025]
Production Example 1
A dispersion medium in which 5 g of magnesium pyrophosphate is produced as a suspension stabilizer for 200 g of water by a metathesis method is placed in a 500 ml separable flask, 0.04 g of sodium lauryl sulfate as a surfactant, and water-soluble polymerization prohibited As an agent, 0.02 g of sodium nitrite was dissolved.
Separately, 90 g of styrene, 9 g of divinylbenzene, 10 g of dimethylpolysiloxane [viscosity at 25 ° C .: 1000 cSt] as a liquid compound, 0.5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) as a polymerization initiator A monomer composition prepared by uniformly mixing and dissolving was prepared.
[0026]
The monomer composition was added to the above dispersion medium and finely dispersed by stirring at 8000 rpm for about 10 seconds with a homomixer (ULKA TURRAX T-25 manufactured by IKA), and the droplet diameter of the monomer composition was adjusted to 15 μm. . A stirring blade, a thermometer, and a reflux condenser were attached to the above separable flask, and after replacing with nitrogen, the flask was placed in a constant temperature water bath at 60 ° C. In the separable flask, stirring was continued at a stirring speed of 200 rpm, and suspension polymerization was performed for 10 hours after the temperature of the dispersion liquid in which the monomer composition was finely dispersed reached 60 ° C.
[0027]
Next, the reaction solution was cooled, and hydrochloric acid was added until the pH of the slurry reached about 2, thereby decomposing the suspension stabilizer. The resin particles were suction filtered with a Buchner funnel using filter paper and washed with 1.2 liters of ion exchange water to remove the suspension stabilizer. The dehydrated cake after suction filtration was dried and then dispersed in cyclohexane, and suction filtration was repeated several times to obtain the desired deformed resin particles (type B).
Table 1 shows parameters of the shape of the resin particles.
[0028]
In addition, the parameter of the shape of the irregular shaped resin particles is arbitrarily selected from 50 resin particles from the electron micrograph, the diameter of the particles is measured, the number average center particle diameter is calculated, and the center particle diameter For 20 resin particles belonging to the upper and lower 30% ranges, the maximum particle diameter D in the horizontal direction when the boundary line is set in the horizontal direction, the maximum height d in the vertical direction of the particle, and the maximum distance from the boundary line to each surface A and b were measured, and average values of d / D and a / b were calculated.
[0029]
Production Example 2
Modified resin particles (type A) were obtained in the same manner as in Production Example 1, except that styrene was changed to 72 g, divinylbenzene was changed to 8 g, and dimethylpolysiloxane (viscosity at 25 ° C .: 1000 cSt) was changed to 20 g.
Table 1 shows parameters of the shape of the resin particles.
[0030]
Production Example 3
Modified resin particles (type C) were obtained in the same manner as in Production Example 1, except that styrene was changed to 83.7 g, divinylbenzene was changed to 9.3 g, and dimethylpolysiloxane (viscosity at 25 ° C .: 1000 cSt) was changed to 8 g. It was.
Table 1 shows parameters of the shape of the resin particles.
[0031]
Comparative production example 1
A polymerization vessel equipped with a stirrer and a thermometer was charged with 500 g of deionized water in which 0.05 g of sodium lauryl sulfate was dissolved, and 50 g of tricalcium phosphate was dispersed therein. Into this was added a mixed solution prepared by dissolving 0.5 g of benzoyl peroxide and 0.5 g of azobisisobutyronitrile in 85 g of styrene and 15 g of divinylbenzene. The liquid was dispersed by a K homomixer (manufactured by Tokushu Kika Kogyo Co., Ltd.) and the droplets were adjusted to about 15 μm. Next, the polymerization reactor was heated to 65 ° C. and subjected to suspension polymerization while stirring, and then cooled. The suspension was filtered, washed, and dried to obtain true spherical resin particles.
Table 1 shows parameters of the shape of the resin particles.
[0032]
Example 1
0.5 parts by weight of the irregularly shaped resin particles (type A) obtained in Production Example 2 are added to 100 parts by weight of methyl methacrylate resin (MG-5 manufactured by Sumitomo Chemical Co., Ltd.), and after blending, are added to the extruder. Feeding to obtain master pellets.
The pellets were supplied to an injection molding machine and injection molded to obtain a light diffusing plate having a length of 100 mm, a width of 50 mm, and a thickness of 2 mm.
[0033]
The light diffusibility and light transmittance of this light diffusing plate were measured by using an automatic variable angle photometer ("GP-200" manufactured by Murakami Color Research Laboratory Co., Ltd.), and parallel rays were incident on the molding plate as a sample vertically. The angle dependency was measured, and the relative transmitted light intensity at each angle of 0 ° to 90 ° was measured with the transmitted light intensity in the 0 ° (front) direction as 100. This measurement data is shown in FIG. Further, the total light transmittance and haze were measured by a haze meter (based on “NDH-2000” JIS K7105 manufactured by Nippon Denshoku Co., Ltd.). The measured data are shown in Table 2.
[0034]
Example 2
A light diffusing plate was obtained in the same manner as in Example 1 except that the irregular shaped resin particles (type B) obtained in Production Example 1 were used. Table 2 shows measurement data of total light transmittance and haze of this light diffusion plate.
[0035]
Example 3
A light diffusing plate was obtained in the same manner as in Example 1 except that the irregular shaped resin particles (type C) obtained in Production Example 3 were used. Table 2 shows measurement data of total light transmittance and haze of this light diffusion plate.
[0036]
Example 4
A light diffusing plate was obtained in the same manner as in Example 1 except that the odd-shaped resin particles (type B and type A) obtained in Production Example 1 and Production Example 2 were mixed at a ratio of 1: 1. Table 2 shows measurement data of total light transmittance and haze of this light diffusion plate.
[0037]
Example 5
A light diffusing plate was prepared in the same manner as in Example 1 except that the irregular shaped resin particles (type B) obtained in Production Example 1 and the true spherical particles obtained in Comparative Production Example 1 were mixed at 7: 3. Obtained. Table 2 shows measurement data of total light transmittance and haze of this light diffusion plate.
[0038]
Comparative Example 1
A light diffusing plate was obtained in the same manner as in Example 1 except that the resin particles (true spherical shape) obtained in Comparative Production Example 1 were used. FIG. 4 shows measurement data of this light diffusion plate by an automatic variable angle photometer, and Table 2 shows measurement data of total light transmittance and haze.
[0039]
As is clear from FIG. 4, the light diffusion plate (Example 1) using the irregularly shaped resin particles of type A has a higher angle than that using the true spherical particles having substantially the same particle diameter (Comparative Example 1). It can be seen that the transmitted light intensity in the region is high, and as a result, the light diffusibility is excellent. Moreover, it can be seen from Table 2 that the total light transmittance is almost the same and the haze is slightly high, so that the light diffusibility is excellent while maintaining the light transmittance.
[0040]
Further, from Table 2, the light transmittance using the irregular shaped resin particles of type B (Example 2) and type C (Example 3) is similar to that of Comparative Example 1 in the same manner. Since the haze is high, it can be seen that the light diffusibility is excellent while maintaining the light transmittance.
[0041]
[Table 1]
[0042]
[Table 2]
[0043]
【The invention's effect】
Since the molded body using the master pellet of the present invention is excellent in light diffusibility while maintaining light transmission characteristics, it has high light diffusibility and light transmittance such as a lighting fixture cover, a light guide plate, and a projection television screen. It is particularly effective in the field where it is required.
[Brief description of the drawings]
FIG. 1 is a side view of deformed resin particles classified into type A. FIG.
FIG. 2 is a side view of deformed resin particles classified into type B.
FIG. 3 is a side view of deformed resin particles classified into type C.
FIG. 4 is a graph showing a comparison of light diffusivity data measured with an automatic goniophotometer.
Claims (7)
0.05≦d/D≦0.8 (I)
を満たす異形樹脂粒子を配合したマスターペレット。In the base resin, it is formed with two curved surfaces or one curved surface and one flat surface, and has a boundary line between both surfaces. Where D is the maximum height in the vertical direction and d is the formula:
0.05 ≦ d / D ≦ 0.8 (I)
Master pellets blended with irregular shaped resin particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276920A JP3751548B2 (en) | 2001-09-12 | 2001-09-12 | Master pellet and its molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001276920A JP3751548B2 (en) | 2001-09-12 | 2001-09-12 | Master pellet and its molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003082112A JP2003082112A (en) | 2003-03-19 |
JP3751548B2 true JP3751548B2 (en) | 2006-03-01 |
Family
ID=19101546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001276920A Expired - Fee Related JP3751548B2 (en) | 2001-09-12 | 2001-09-12 | Master pellet and its molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3751548B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7514523B2 (en) * | 2006-01-05 | 2009-04-07 | Sabic Innovative Plastics Ip B.V. | Polycarbonate compositions and articles formed therefrom, with matte surfaces and high light transmissions |
-
2001
- 2001-09-12 JP JP2001276920A patent/JP3751548B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003082112A (en) | 2003-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI386448B (en) | Light-scattering compositions | |
JP4002320B2 (en) | Silica composite resin particles and production method thereof | |
JPH07234304A (en) | Light diffusion plate | |
JPH0790167A (en) | Light-diffusing resin composition | |
EP1245637B1 (en) | Light-diffusing resin composition | |
JP2667878B2 (en) | Light diffusing plastic | |
JP3478973B2 (en) | Light diffusion sheet | |
JP3507713B2 (en) | Light diffusing resin composition | |
JPWO2009051256A1 (en) | Light diffusing agent | |
JP3751548B2 (en) | Master pellet and its molded body | |
JP2007153959A (en) | Resin composition for light-diffusing plate and light-diffusing plate | |
JP2667876B2 (en) | Light diffusing plastic | |
CN102245684B (en) | Method for preparing a transparent polymer material including mineral nanoparticles with a shape factor strictly higher than 1.0 | |
JPH04328148A (en) | Light-diffusing sheet-like article | |
JPH1067829A (en) | Microparticle suitable for light-diffusing plastic | |
JPH05302006A (en) | Light-diffusing methacrylate resin | |
US4963624A (en) | Process for producing light-diffusing methacrylic resin article | |
JPH05179054A (en) | Light-diffusing agent and resin composition containing light-diffusing agent | |
KR100682755B1 (en) | Thermoplastic-resin additive for matting and thermoplastic resin composition containing the same | |
JP4970451B2 (en) | Light diffusion resin composition and light diffusion plate | |
JPH1067828A (en) | Microparticle suitable for light-diffusing plastic | |
JPH03294348A (en) | Photo-diffusible methacrylic resin composition | |
TW201439168A (en) | Aggregated composite resin particles, and composition containing said particles | |
JP2006160980A (en) | Light-diffusive resin composition | |
JP2003082114A (en) | Light-diffusing molding and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051004 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051129 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3751548 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091216 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101216 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111216 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121216 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131216 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |