JP3751122B2 - Cleaving method - Google Patents

Cleaving method Download PDF

Info

Publication number
JP3751122B2
JP3751122B2 JP16847897A JP16847897A JP3751122B2 JP 3751122 B2 JP3751122 B2 JP 3751122B2 JP 16847897 A JP16847897 A JP 16847897A JP 16847897 A JP16847897 A JP 16847897A JP 3751122 B2 JP3751122 B2 JP 3751122B2
Authority
JP
Japan
Prior art keywords
heat source
cleaving
processing
laser beam
main heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16847897A
Other languages
Japanese (ja)
Other versions
JPH1110375A (en
Inventor
英毅 森田
俊裕 沖山
秀幸 白浜
克之 光武
英信 大仁田
知宏 末永
耕一 木下
俊一 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Nagasaki Prefectural Government
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Nagasaki Prefectural Government
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, Nagasaki Prefectural Government, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP16847897A priority Critical patent/JP3751122B2/en
Publication of JPH1110375A publication Critical patent/JPH1110375A/en
Application granted granted Critical
Publication of JP3751122B2 publication Critical patent/JP3751122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガラス、セラミックスあるいは半導体ウエハ等の脆性材料にレーザビーム等の熱源を印加することにより発生する熱応力を利用して、その材料を割断する割断加工装置に関する。
【0002】
【従来の技術】
材料を分離加工する技術として、スクライバあるいはレーザ溶断等が挙げられるが、これらの加工では、切断時においてカレット(屑)、溶融解痕及びマイクロクラック等が発生するという問題がある。
【0003】
そこで、このような問題点を解消するため、最近では、レーザビーム等の熱源の印加により発生する熱応力を利用して脆性材料を割断する割断加工方法が提案されている。
【0004】
この加工方法は、脆性材料に予め亀裂を作成しておき、その亀裂先端に局所的に熱源を印加して熱応力を発生させるとともに、熱源の移動により亀裂を成長させて材料を分離する技術で、この方法によれば、亀裂を成長させるといった性質上、切りしろや、パーティクルが発生しないことから、上記した従来の加工法の問題点を解決することができるといった特徴がある。
【0005】
【発明が解決しようとする課題】
ところで、脆性材料の割断加工方法は、上記したように、加工材料に予め発生させた亀裂先端の前方にレーザビーム等の熱源を印加して、その熱源中心と周辺との間に発生する温度勾配により生じる集中応力で亀裂を成長させてゆく加工法であることから、この加工方法において、割断予定線を挟んだ両側の加工材料の幅が非対称であると、熱の蓄積により熱分布が非対称となって材料表面及び厚み方向における熱応力分布のバランスが崩れる(図1参照)。これにより強い剪断応力が発生し、表面と裏面うねりに差(加工面の断面傾き)が現れる結果、総合的な加工精度が著しく悪くなるという問題がある。
【0006】
本発明はそのような実情に鑑みてなされたもので、割断予定線を挟んだ両側の加工材料の幅が非対称であっても、その材料を高い加工精度のもとに割断することが可能な割断加工方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、材料の加工始点に形成した亀裂を、熱源の印加により発生する熱応力によって成長させつつ、その熱源を割断予定線に沿って移動することにより材料を分離する割断加工法において、図2に例示するように、割断予定線Lを挟んだ両側の幅が非対称な加工材料Wに形成した亀裂CR の先端前方に主熱源(例えばレーザビーム)Aを印加し、この主熱源Aを割断予定線Lに沿って移動させるとともに、その主熱源Aの斜め前方(または側方)に、補助熱源(例えばレーザビーム)Bを追従させて移動することにより、上記亀裂CR の成長を行うことによって特徴づけられる。
【0008】
このように補助熱源Bを付加することで、割断予定線Lに対し加工材料幅が非対称な場合であっても、割断加工を高い加工精度のもとに行うことができる。
すなわち、割断加工実行中において、割断予定線Lに沿って移動させる主熱源Aの斜め前方(または側方)に補助熱源Bを追従させて移動すると、割断予定線Lの周辺に作用する熱分布及び熱応力分布のバランスが、図3に例示するように割断予定線Lの両側で均等となり、これにより表面うねりと裏面うねりの差つまり断面傾きが軽減される結果、総合的な加工精度が向上する。
【0009】
ここで、本発明の割断加工方法において、補助熱源Bの印加面積は、加工速度と出力によって決定され、加工材に残留応力等のダメージを与えない印加面積とする。例えば加工速度10mm/s ,出力10Wの場合、補助熱源Bの径は2mm〜4mmが適当である。
【0010】
主熱源Aと補助熱源Bとの間の距離については、図2に示すように、補助熱源Bの印加位置を主熱源Aに対して斜め前方とする場合、加工予定線と直交方向の距離P1 が2mm〜10mmの範囲、加工予定線方向の距離P2 が2mm〜10mmの範囲であることが適当で、補助熱源Bの主熱源Aの側方(真横)に置く場合、両者の中心間距離が2mm〜10mmの範囲であることが適当である。
【0011】
また、本発明の割断加工方法において、主熱源と補助熱源の位置関係(距離)は、材料端に対する加工位置に応じて調整して、図3に示すように、割断予定線の両側において均等な熱分布及び熱応力分布が得られるようにする。
【0012】
さらに、加工材料に印加する主熱源及び補助熱源の形状は、円形または楕円形とすればよく、またこの場合、熱源形状を楕円として割断加工を実行して、亀裂の成長が割断予定線の加工終点に近づいた時点で、熱源形状を円形にするといった加工法を採用すれば、亀裂を良好な状態で進行させることができるとともに、加工終点時において熱源の印加位置の前方に加わる引張力が軽減され、加工終点付近での加工曲がりを防止することが可能になる。
【0013】
なお、本発明に適用する熱源としては、レーザビームのほか、例えば電子ビーム、電熱ヒータまたは火炎などが挙げられる。
【0014】
【発明の実施の形態】
本発明の実施の形態を、以下、図面に基づいて説明する。
まず、本発明の割断加工方法の実施に使用する装置は、図4に示すように、ガラス材等の加工材料Wを載置する加工テーブル(2軸移動)1と、2台のレーザ発振器2,3と、その各出力レーザビームを加工テーブル1上に置かれた加工材料Wの表面に導く光学系4などによって構成されており、2本のレーザビームA,Bを加工材料Wに同時に照射することができる。そして、加工テーブル1の移動によって、一方のレーザビーム(主熱源)Aを割断予定線Lに沿って移動させることができ、また他方のレーザビーム(補助熱源)Bを、主熱源であるレーザビームAに追従させて移動させることができる。
【0015】
光学系4は、ミラー、集光レンズ並びに絞り(図示せず)等を備え、各レーザ発振器2,3からのレーザビームをそれぞれ個別に集光して、主熱源となるレーザビームAを割断予定線Lに照射し、また補助熱源となるレーザビームBを、レーザビームAの斜め前方(材料端側)の位置に照射するように構成されている。
【0016】
また、この光学系4は、2枚のミラーの位置関係(相対的な角度)も調整可能となっており、その調整により2本のレーザビームAとBの照射位置の位置関係(中心間距離)を変更することができる。
【0017】
次に、加工手順を図4を参照して説明する。
まず、加工材料Wの加工始点aに初期亀裂を発生する。その初期亀裂の作成には、硬質工具を使用して材料端部に切欠きを形成する方法、あるいは加工材料の表面に高出力にレーザビームを集光して孔を加工しこの孔から亀裂を作成する方法等の公知の手法を採用する。
【0018】
次いで、初期亀裂の先端前方で割断予定線L上に、主熱源であるレーザビームAを照射すると同時に、このレーザビームAの斜め前方(材料端側)に、補助熱源であるレーザビームBを照射しつつ、加工テーブル1の移動により、レーザビームAを割断予定線Lに沿って移動し、このレーザビームAに追従させてレーザビームBを割断予定線Lに沿う方向に移動して、亀裂CR を加工始点aから加工終点bに向けて誘導する。なお、このとき、レーザビームAとレーザビームBとの間に距離つまり図1に示したP1 及びP2 は、加工材料Wの材料端に対する加工位置及び各レーザビームA,Bによる印加熱量などを考慮して、割断予定線Lの両側において熱分布及び熱応力分布が均等となるように設定する。
【0019】
そして、以上のように割断加工実行中において、主熱源であるレーザビームAの斜め前方に、補助熱源としてレーザビームBを追従させて移動すると、先の図3に示したように、割断加工線Lの周辺に作用する熱分布及び熱応力分布のバランスが、割断予定線Lを挟んだ両側において均等となり、これにより表面うねりと裏面うねりの差つまり断面傾きが軽減される結果、加工精度が向上する。
【0020】
なお、以上の実施の形態では、補助熱源となるレーザビームBを、主熱源のレーザビームAの斜め前方に照射しているが、その補助用のレーザビームBをレーザビームAの側方(真横)に照射しても、先と同様な作用効果を得ることができる。また、これら二つのレーザビームAとBとの間の位置関係は、亀裂CR の成長状況に応じて、常に良好な状態で亀裂CR が成長するように、割断加工実行中において適宜に変更してもよい。
【0021】
ここで、以上の実施の形態では、主熱源用と補助熱源用の2台のレーザ発振器を用いた例を示しているが、レーザ発振器は1台として、その出力ビームをビームスプリッタ等により分割して、補助熱源用のレーザビームを得るといった方式を採用することも可能である。
【0022】
また、以上の実施の形態においては、主熱源及び補助熱源としてレーザビームを用いているが、これに限られることなく、例えば電子ビーム、電熱ヒータまたは火炎等を用いても本発明は実施可能である。
【0023】
【実施例】
本発明の割断加工方法を実施した例を以下に述べる。

Figure 0003751122
の条件で割断加工を行い、次いで材料に照射する熱源を1本のレーザビームとする以外は上記と同じ条件(通常の加工条件)で割断加工を行った。
【0024】
そして、以上の二つの条件で加工を行った各試料について、それぞれの加工面の傾き(断面傾き)を測定したところ、通常条件による加工の場合、断面傾きが0.5mmであったのに対し、補助熱源を付加した加工の場合、その値が0.1mm以下までに軽減されることが確認できた。
【0025】
このような結果から、本発明の割断加工方法が、加工精度の上で優れた加工法であること、特に、加工材料の縁部を加工する際に有効な加工法であることが分かる。
【0026】
【発明の効果】
以上説明したように、本発明の割断加工方法によれば、割断加工実行中において、割断予定線に沿って移動させる主熱源の斜め前方(または側方)に補助熱源を追従させて移動するので、割断予定線を挟んだ両側の材料幅が非対称な加工材料を加工する場合であっても、割断加工線の両側に作用する熱分布及び熱応力分布のバランスを均等にすることができる。その結果、加工面の断面傾きが従来に比して軽減された加工精度の高い割断加工を実現できる。
【図面の簡単な説明】
【図1】通常の割断加工方法の問題点を示す図で、割断加工予定線を中心とする熱分布曲線と応力分布曲線を併記して示す図
【図2】本発明の割断加工方法の説明図
【図3】本発明の割断加工方法の作用説明図で、割断加工予定線を中心とする熱分布曲線と応力分布曲線を併記して示す図
【図4】本発明の割断加工方法の実施に使用する装置の概略構成を示す図
【符号の説明】
1 加工テーブル
2,3 レーザ発振器
4 光学系
A レーザビーム(主熱源)
B レーザビーム(補助熱源)
W 加工材料
L 割断予定線
CR 亀裂
a 加工始点
b 加工終点[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cleaving apparatus for cleaving a material using a thermal stress generated by applying a heat source such as a laser beam to a brittle material such as glass, ceramics or a semiconductor wafer.
[0002]
[Prior art]
Examples of techniques for separating and processing materials include a scriber or laser fusing. However, in these processes, there is a problem that cullet (debris), melted scars, microcracks, and the like are generated during cutting.
[0003]
In order to solve such problems, recently, a cleaving method for cleaving brittle materials using thermal stress generated by application of a heat source such as a laser beam has been proposed.
[0004]
This processing method is a technique in which a crack is created in a brittle material in advance, a heat source is locally applied to the crack tip to generate thermal stress, and the crack is grown by the movement of the heat source to separate the material. This method is characterized in that the problem of the conventional processing method described above can be solved because no cracks or particles are generated due to the property of growing cracks.
[0005]
[Problems to be solved by the invention]
By the way, as described above, the method for cleaving the brittle material applies a heat source such as a laser beam in front of the crack tip generated in advance in the work material, and generates a temperature gradient between the center of the heat source and the periphery. In this processing method, if the width of the work material on both sides across the planned cutting line is asymmetric, the heat distribution is asymmetric due to heat accumulation. Thus, the balance of the thermal stress distribution in the material surface and the thickness direction is lost (see FIG. 1). As a result, a strong shear stress is generated, and as a result of the difference between the front and back undulations (cross-sectional inclination of the processed surface), there is a problem that the overall processing accuracy is remarkably deteriorated.
[0006]
The present invention has been made in view of such circumstances, and even if the width of the processing material on both sides across the planned cutting line is asymmetric, it is possible to cleave the material with high processing accuracy. The purpose is to provide a cleaving method.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention develops a material by moving a heat source along a planned cutting line while growing a crack formed at a processing start point of the material by a thermal stress generated by application of the heat source. In the cleaving method to be separated, as shown in FIG. 2, a main heat source (for example, a laser beam) A is applied in front of the tip of the crack CR formed in the work material W having asymmetric width on both sides across the planned cutting line L. The main heat source A is moved along the planned cutting line L, and the auxiliary heat source (for example, a laser beam) B is moved to follow the main heat source A diagonally forward (or laterally). Characterized by performing crack CR growth.
[0008]
By adding the auxiliary heat source B in this way, even when the processing material width is asymmetric with respect to the planned cutting line L, the cutting process can be performed with high processing accuracy.
That is, when the auxiliary heat source B is moved following the main cutting heat source A to be moved along the planned cutting line L during the cleaving process, the heat distribution acting around the planned cutting line L is moved. As shown in FIG. 3, the balance of the thermal stress distribution is even on both sides of the cleaving line L, and as a result, the difference between the surface waviness and the back surface waviness, that is, the cross-sectional inclination is reduced, so that overall machining accuracy is improved. To do.
[0009]
Here, in the cleaving method of the present invention, the application area of the auxiliary heat source B is determined by the processing speed and output, and is an application area that does not damage the work material such as residual stress. For example, when the processing speed is 10 mm / s and the output is 10 W, the diameter of the auxiliary heat source B is suitably 2 mm to 4 mm.
[0010]
Regarding the distance between the main heat source A and the auxiliary heat source B, as shown in FIG. 2, when the application position of the auxiliary heat source B is obliquely forward with respect to the main heat source A, the distance P1 in the direction orthogonal to the planned processing line It is appropriate that the distance P2 in the range of 2 mm to 10 mm and the planned processing line direction P2 is in the range of 2 mm to 10 mm. When the auxiliary heat source B is placed on the side (straight side) of the main heat source A, the distance between the centers of the two is A range of 2 mm to 10 mm is appropriate.
[0011]
Further, in the cleaving method of the present invention, the positional relationship (distance) between the main heat source and the auxiliary heat source is adjusted according to the processing position with respect to the material edge, and as shown in FIG. A thermal distribution and a thermal stress distribution are obtained.
[0012]
Furthermore, the shape of the main heat source and the auxiliary heat source applied to the work material may be circular or elliptical. In this case, the crushing process is performed with the heat source shape being an ellipse, and the growth of cracks is processed in the planned fracture line. By adopting a processing method that makes the shape of the heat source circular when approaching the end point, it is possible to advance the crack in a good state and reduce the tensile force applied in front of the application position of the heat source at the end of processing. Accordingly, it is possible to prevent the bending of the machining near the machining end point.
[0013]
In addition to the laser beam, the heat source applied to the present invention includes, for example, an electron beam, an electric heater, or a flame.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, as shown in FIG. 4, an apparatus used for carrying out the cleaving method of the present invention includes a processing table (biaxial movement) 1 on which a processing material W such as a glass material is placed, and two laser oscillators 2. , 3 and an optical system 4 that guides each output laser beam to the surface of the processing material W placed on the processing table 1, and simultaneously irradiates the processing material W with two laser beams A and B. can do. Then, by moving the machining table 1, one laser beam (main heat source) A can be moved along the planned cutting line L, and the other laser beam (auxiliary heat source) B is moved to the laser beam that is the main heat source. It can be moved following A.
[0015]
The optical system 4 includes a mirror, a condensing lens, a diaphragm (not shown), etc., and condenses the laser beams from the laser oscillators 2 and 3 individually, and plans to cleave the laser beam A as a main heat source. It is configured to irradiate the line L and irradiate a laser beam B serving as an auxiliary heat source obliquely forward (on the material end side) of the laser beam A.
[0016]
The optical system 4 can also adjust the positional relationship (relative angle) of the two mirrors, and the positional relationship (distance between the centers) of the irradiation positions of the two laser beams A and B can be adjusted. ) Can be changed.
[0017]
Next, the processing procedure will be described with reference to FIG.
First, an initial crack is generated at the processing start point a of the processing material W. To create the initial crack, a hard tool is used to form a notch at the end of the material, or a laser beam is focused on the surface of the work material at a high output to process the hole, and the crack is formed from this hole. A known method such as a creation method is employed.
[0018]
Next, the laser beam A as the main heat source is irradiated on the planned cutting line L in front of the tip of the initial crack, and at the same time, the laser beam B as the auxiliary heat source is irradiated obliquely forward (on the material end side) of the laser beam A. However, by moving the machining table 1, the laser beam A is moved along the planned cutting line L, the laser beam B is moved in the direction along the planned cutting line L by following the laser beam A, and crack CR Is guided from the machining start point a to the machining end point b. At this time, the distance between the laser beam A and the laser beam B, that is, P1 and P2 shown in FIG. 1, take into consideration the processing position with respect to the material edge of the processing material W and the amount of heat applied by the laser beams A and B. Then, the heat distribution and the thermal stress distribution are set to be uniform on both sides of the planned cutting line L.
[0019]
As described above, when the laser beam B is moved as an auxiliary heat source in an obliquely forward direction of the laser beam A that is the main heat source during the cleaving process, as shown in FIG. The balance of thermal distribution and thermal stress distribution acting around L is even on both sides of the cleaving line L, thereby reducing the difference between the surface waviness and the back surface waviness, that is, the cross-sectional inclination, thereby improving machining accuracy. To do.
[0020]
In the above embodiment, the laser beam B serving as the auxiliary heat source is irradiated obliquely in front of the laser beam A serving as the main heat source. ), The same effects as the above can be obtained. In addition, the positional relationship between these two laser beams A and B is appropriately changed during the cleaving process so that the crack CR always grows in good condition according to the growth condition of the crack CR. Also good.
[0021]
Here, in the above embodiment, an example in which two laser oscillators for the main heat source and the auxiliary heat source are used is shown. However, as one laser oscillator, the output beam is divided by a beam splitter or the like. Thus, it is possible to adopt a method of obtaining a laser beam for an auxiliary heat source.
[0022]
In the above embodiment, the laser beam is used as the main heat source and the auxiliary heat source. However, the present invention is not limited to this. For example, the present invention can be implemented using an electron beam, an electric heater, or a flame. is there.
[0023]
【Example】
The example which implemented the cleaving method of this invention is described below.
Figure 0003751122
The cleaving was performed under the same conditions as described above (normal processing conditions) except that the cleaving was performed under the above conditions, and then the heat source applied to the material was a single laser beam.
[0024]
For each sample processed under the above two conditions, the inclination (cross section inclination) of each processed surface was measured. In the case of processing under normal conditions, the cross section inclination was 0.5 mm. In the case of machining with an auxiliary heat source, it was confirmed that the value was reduced to 0.1 mm or less.
[0025]
From these results, it can be seen that the cleaving method of the present invention is an excellent processing method in terms of processing accuracy, and in particular, is an effective processing method when processing the edge of the processing material.
[0026]
【The invention's effect】
As described above, according to the cleaving method of the present invention, during the cleaving process, the auxiliary heat source moves following the diagonally forward (or lateral) side of the main heat source that is moved along the planned cutting line. Even when processing a material with asymmetric material widths on both sides of the planned cutting line, the balance of the thermal distribution and thermal stress distribution acting on both sides of the cutting line can be made uniform. As a result, it is possible to realize cleaving with high machining accuracy in which the cross-sectional inclination of the machined surface is reduced as compared with the prior art.
[Brief description of the drawings]
FIG. 1 is a diagram showing problems of a normal cleaving method, and shows a heat distribution curve and a stress distribution curve centered on a planned cleaving line. FIG. 2 is an explanation of the cleaving method of the present invention. FIG. 3 is a diagram for explaining the operation of the cleaving method of the present invention, and shows a heat distribution curve and a stress distribution curve centered on the planned cleaving line. FIG. 4 is an implementation of the cleaving method of the present invention. Schematic configuration of the equipment used for the above [Explanation of symbols]
1 Processing table 2, 3 Laser oscillator 4 Optical system A Laser beam (main heat source)
B Laser beam (auxiliary heat source)
W Work material L Planned cutting line CR Crack a Machining start point b Machining end point

Claims (2)

材料の加工始点に形成した亀裂を、熱源の印加により発生する熱応力によって成長させつつ、その熱源を割断予定線に沿って移動することにより材料を分離する割断加工法において、
割断予定線を挟んだ両側の幅が非対称な加工材料に形成した亀裂の先端前方に主熱源を印加し、この主熱源を割断予定線に沿って移動させるとともに、その主熱源の斜め前方または側方に補助熱源を追従させて移動することにより、上記亀裂の成長を行うことを特徴とする割断加工方法。
In the cleaving method of separating the material by moving the heat source along the planned cleaving line while growing the crack formed at the processing start point of the material by the thermal stress generated by the application of the heat source,
A main heat source is applied in front of the tip of the crack formed in the work material with asymmetrical width on both sides across the planned cutting line , and this main heat source is moved along the planned cutting line, and diagonally forward or side of the main heat source. A cleaving method characterized in that the crack grows by moving the auxiliary heat source to follow the direction.
請求項1に記載の割断加工方法において、材料端に対する加工位置に応じて、主熱源と補助熱源の位置関係を調整することを特徴とする割断加工方法。2. The cleaving method according to claim 1, wherein the positional relationship between the main heat source and the auxiliary heat source is adjusted according to a processing position with respect to the material edge.
JP16847897A 1997-06-25 1997-06-25 Cleaving method Expired - Fee Related JP3751122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16847897A JP3751122B2 (en) 1997-06-25 1997-06-25 Cleaving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16847897A JP3751122B2 (en) 1997-06-25 1997-06-25 Cleaving method

Publications (2)

Publication Number Publication Date
JPH1110375A JPH1110375A (en) 1999-01-19
JP3751122B2 true JP3751122B2 (en) 2006-03-01

Family

ID=15868850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16847897A Expired - Fee Related JP3751122B2 (en) 1997-06-25 1997-06-25 Cleaving method

Country Status (1)

Country Link
JP (1) JP3751122B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626590B1 (en) 1998-12-08 2003-09-30 Nippon Telegraph And Telephone Corporation Optical communication network
KR100634750B1 (en) * 1999-12-07 2006-10-16 삼성전자주식회사 Laser cutting equipment
KR100631304B1 (en) * 1999-12-24 2006-10-04 삼성전자주식회사 Apparatus and method for cutting glass plate using laser beam
KR100822198B1 (en) * 2002-06-01 2008-04-16 삼성에스디아이 주식회사 Apparatus and method of splitting non-metallic materials
JP5171186B2 (en) * 2007-09-27 2013-03-27 三星ダイヤモンド工業株式会社 Brittle material substrate cleaving apparatus and cleaving method
JP2010253752A (en) * 2009-04-23 2010-11-11 Lemi Ltd Device and method of cutting brittle material
JP5627201B2 (en) * 2009-06-17 2014-11-19 三星ダイヤモンド工業株式会社 Cleaving method of brittle material substrate
KR20130071417A (en) * 2010-05-14 2013-06-28 아사히 가라스 가부시키가이샤 Cutting method and cutting device

Also Published As

Publication number Publication date
JPH1110375A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP5113462B2 (en) Method for chamfering a brittle material substrate
US6211488B1 (en) Method and apparatus for separating non-metallic substrates utilizing a laser initiated scribe
JP5609870B2 (en) Cleaving method and cleaving apparatus for brittle material substrate, and vehicle window glass obtained by the cleaving method
EP1609559B1 (en) Laser beam machining method
KR100849696B1 (en) Brittle material scribing method and scribing apparatus
TWI380963B (en) Method for processing brittle material substrates
TWI392550B (en) Method for processing brittle material substrates
JP2005019667A (en) Method for dividing semiconductor wafer by utilizing laser beam
JP4256840B2 (en) Laser cutting method and apparatus
JP3751122B2 (en) Cleaving method
WO2013039012A1 (en) Laser machining method and laser machining device
JP3210934B2 (en) How to cut brittle materials
JP2000247671A (en) Method for cutting glass
KR20020045560A (en) Tem sample slicing process
JP2008183599A (en) Method for working workpiece made of highly brittle and non-metallic material, and device therefor
KR102241518B1 (en) Method and equipement of cutting ceramic
JP7055647B2 (en) Cutting method
US6552302B2 (en) Method for correcting surface shape of magnetic head slider and magnetic head slider
JP5894754B2 (en) Laser processing method
JP3751121B2 (en) Cleaving method
JPH1110376A (en) Cutting method
JPH1034364A (en) Brittle material splitting method by plural point heat sources
JP5102557B2 (en) Method for dividing sapphire substrate
TW201713446A (en) Laser processing method, and laser processing device
JP2001026435A (en) Scribing/breaking method of hard brittle plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20031215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees