JP3749929B2 - Ultrasonic inspection apparatus and inspection method using the same - Google Patents

Ultrasonic inspection apparatus and inspection method using the same Download PDF

Info

Publication number
JP3749929B2
JP3749929B2 JP2003206032A JP2003206032A JP3749929B2 JP 3749929 B2 JP3749929 B2 JP 3749929B2 JP 2003206032 A JP2003206032 A JP 2003206032A JP 2003206032 A JP2003206032 A JP 2003206032A JP 3749929 B2 JP3749929 B2 JP 3749929B2
Authority
JP
Japan
Prior art keywords
test body
ultrasonic
transmitter
inspection apparatus
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003206032A
Other languages
Japanese (ja)
Other versions
JP2005055197A (en
Inventor
白井  誠
宏 宮本
重行 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Non Destructive Inspection Co Ltd
Original Assignee
Japan Aerospace Exploration Agency JAXA
Non Destructive Inspection Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA, Non Destructive Inspection Co Ltd filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2003206032A priority Critical patent/JP3749929B2/en
Publication of JP2005055197A publication Critical patent/JP2005055197A/en
Application granted granted Critical
Publication of JP3749929B2 publication Critical patent/JP3749929B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/06Visualisation of the interior, e.g. acoustic microscopy
    • G01N29/0609Display arrangements, e.g. colour displays

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、超音波を用いた複合材料等の剥離検査に用いる超音波検査装置及びこの超音波検査装置を用いた検査方法に関する。さらに詳しくは、送信子から空気を介して試験体に超音波を入射させ、試験体に板波を発生させると共に、前記試験体内から漏洩した超音波を空気を介して受信子で受信することにより試験体の検査を行う超音波検査装置およびこの超音波検査装置を用いた検査方法に関する。
【0002】
【従来の技術】
従来、薄板や圧延ロール等の剥離検査にあっては、特許文献1の如く、一対の送信子と受信子を試験体表面に接触媒質を介して直接接触させるか、あるいは、試験体やセンサーを水中に沈めて検査を行う水浸法等の手法が用いられていた。
【0003】
しかし、ガラス繊維や炭素繊維、アラミド繊維などどプラスチックの複合材料(FRP)の検査にあっては、これら複合材料の表面に接触媒質を塗布したり、複合材料を水中に浸水させたりすると、複合材料内部への液体浸入による強度低下を引き起こすという問題があった。
【0004】
また、従来より行われている一対の送信子及び受信子を有する探触子により試験体表面を走査していた。この場合、試験体内を伝播する板波の伝播方向は一方向のみであるため、走査ピッチを細かく設定しても、剥離部分の位置、形状及び寸法の検出精度を向上させることには限界があった。
【0005】
【特許文献1】
特開2002−236114号公報
【0006】
【発明が解決しようとする課題】
かかる従来の実状に鑑みて、本発明は、試験体を水に浸したり、接触媒質を塗布することなく、複合材料にみられる剥離等の欠陥を迅速且つ精密に識別することが可能な超音波検査装置及びこの超音波検査装置を用いた検査方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る超音波検査装置の特徴構成は、送信子から空気を介して試験体に超音波を入射させ、前記試験体に板波を発生させると共に、前記試験体内から漏洩した超音波を空気を介して受信子で受信することにより試験体の検査を行うものであって、前記送信子及び受信子の対を少なくとも2対以上配置し、前記対をなす送受信子同士を結ぶ線分が平面視で互いに交差するように配置すると共に、前記送信子及び受信子を試験体表面に沿って走査するための走査装置を設け、これら複数の受信子で受信した各受信信号について、座標位置毎に各受信信号に基づいて1つの特徴量を抽出し、座標平面上に合成画像として表示することにある。ここで、「座標位置毎に各受信信号に基づいて1つの特徴量を抽出する」とは、例えば、各部位における異なる受信子の信号値の中から最大値、最小値等の特徴量を抽出することをいう。
【0008】
また、前記複数の送信子及び受信子を前記線分が互いに交差する点を中心として略同一円周上に配置するとよい。さらには、前記対をなす送受信子同士を結ぶ各線分間が順次等角となるように前記送受信子を配置するとよい。ここで、「対をなす送受信子同士を結ぶ線分」とは、平面方向視で対向する一対の送信子及び受信子を結ぶ線分をいう。
【0009】
また、上記特徴構成に加え、前記複数の送信子の全てを収納する第一収納部と、前記複数の受信子の全てを収納する第二収納部とを設け、前記第一収納部と前記第二収納部の間に音響隔離壁を設けるとよい。同特徴構成によれば、隣り合う送信子及び受信子同士のクロストークを防止することができる。
【0011】
上記いずれかの特徴構成において、前記超音波がバースト波であることが望ましい。同特徴によれば、複数の波の繰り返しからなるバースト波を用いることで、試験体中に超音波を確実に入射させ、試験体に板波を効率的に発生させることができる。
【0013】
前記試験体が複合材料又は多層構造体の場合に特に有用である。ここで、多層構造体とは、複数の部材同士を接合してなるものをいう。
【0014】
本発明に係る検査方法の特徴は、上記いずれかの特徴構成を有する超音波検査装置を用いた検査方法であって、送信子から空気を介して試験体に超音波を入射させ、前記試験体に板波を発生させると共に、前記試験体内から漏洩した超音波を空気を介して受信子で受信し、受信信号の振幅変化から試験体内部の剥離を検査することにある。
【0015】
【発明の効果】
このように、上記本発明に係る超音波検査装置及びこれを用いた検査方法の特徴によれば、二方向以上からの信号を合成することで、欠陥の平面位置をより的確に特定できるようになった。その結果、試験体の強度を損なうことなく、試験体内部に生じた剥離等の欠陥の位置、形状及び寸法を迅速且つ精密に検出することが可能となり、検査効率の向上に貢献しうるに至った。
【0016】
本発明の他の目的、構成、効果については、以下の「発明の実施の形態」の欄で明らかになるであろう。
【0017】
【発明の実施の形態】
次に、添付図面を参照しながら、本発明の第一実施形態について説明する。
本実施形態では、試験体100として、図2、4に示すように、発泡コアからなる補強材の表裏両面に炭素強化繊維樹脂(CFRP)からなる複合材料101で挟み込んだものを用いる。そして、このCFRP101と発泡コア102との接合面に生じた剥離部の位置、形状、寸法等を検出する場合を例にとって説明する。
【0018】
図1に示すように、本発明にかかる超音波検査装置1は、大略、互いに同一構造を有する送信子30及び受信子40を収納するセンサーユニット10と、このセンサーユニット10を試験体表面100aに沿って移動させるための走査ユニット20と、これらを駆動させるための駆動ユニット60と、操作・信号処理ユニット70と表示器80とにより構成されている。操作・信号処理ユニット70は、特定機能を実現するためのソフトウェアを組み込んだものである。この操作・信号処理ユニット70により、駆動ユニット60を介して送信子30、受信子40により超音波を送・受信する。そして、その受信波形を操作・信号処理ユニット70で処理し、処理結果を表示器80に表示する。
【0019】
先の駆動ユニット60は、超音波検査装置1を構成する各送信子30から超音波を送信させるためのファンクションジェネレータ61と、複数の受信子40にて受信した超音波を増幅するための複数のプリアンプ62と、走査ユニット20の駆動モーターM1〜M3を駆動させるためのモータードライバ65とを備えている。本実施形態では、ファンクションジェネレータ61は、第一〜第四送信子30a〜dにそれぞれ接続される第一〜第四ファンクションジェネレーター61a〜dにより、プリアンプ62は第一〜第四受信子40a〜dにそれぞれ接続される4つの第一〜第四プリアンプ62a〜dによりそれぞれ構成する。
【0020】
走査ユニット20は、図2に示すように、大略、試験体収納ボックス24と、センサーユニット10を走査させるための走査機構25より構成されている。この走査機構25において、同図紙面垂直方向に配向した一対のY軸ガイド25a,25aが載置されており、一対のY軸スライダー25b,25bが図示しない第一の駆動モーターM1により駆動されて各Y軸ガイド25a上で摺動する。また、一対のY軸スライダー25b,25bに跨る一本のX軸ガイド25cに沿ってX軸スライダー25dが先の第二の駆動モーターM2の駆動により摺動する。Z軸スライダー25fによって、支持棒26に支持されたセンサーユニット10は、X軸スライダー25d上に設けられたZ軸ガイド25eに沿って先の第三の駆動モーターM3によりZ軸方向に駆動する。
【0021】
本実施形態では平板状の試験体100を試験体収納ボックス24の底面上の略水平な載置台24a上に載置する。先のY軸ガイド25a及びX軸ガイド25cは、試験体表面100aないし載置台24aの表面と平行を保って載置される。これら試験体100及び載置台24a上面とほぼ平行を維持しながら、例えば、図5に示す経路Rに沿って走査を行う。
【0022】
操作・信号処理ユニット70におけるモーターコントローラ72は、キーボード等の制御装置73からの入力により起動する。そして、遅延装置63を介して各ファンクションジェネレーター61a〜dから発生させるバースト電圧信号の送信時刻や周期・位相を互いに異ならせることも可能である。本実施形態では、遅延装置63は各チャンネル毎に個別に対応する遅延回路を有している。なお、遅延回路を設ける代わりに、制御装置73からの指示により各チャンネル毎の超音波の発信時刻を個別に異ならせるように遅延装置63を構成することもできる。
【0023】
また、モーターコントローラ72は、モータードライバ65を介して駆動モーターM1〜M3を駆動させると共に、その座標信号を処理装置76に送り込む。
【0024】
各プリアンプ62a〜dで受信された信号は、各チャンネル毎にA/Dコンバーター64でデジタル化された後に各チャンネル毎に処理装置76により座標信号と共に信号処理がなされ、分析結果が例えば図7,8の如く色調表示により表示器80に表示される。
【0025】
次に、超音波センサユニット10の構成について説明する。超音波センサユニット10は、図3,4に示すように、平面方向視円形状の天板15と、この天板15の周縁から垂下する側壁16とに囲まれる収納室11内に、天板15から吊り下げた8本の探触子支持棒17a〜hにより同構成からなる4対の送信子30及び受信子40をそれぞれ取り付ける。そして、対をなす送信子30及び受信子40間で超音波の送受信を行うことにより、試験体100内に板波を発生させ、複合材料101内部の剥離や、この複合材料101と発泡コア102との接合面における剥離を検出する。
【0026】
センサーユニット10内部の収納室11は、図3,4に示すように、音響隔離壁13により第一収納部11aと第二収納部11bに隔離されている。これら複数の送信子30a〜d及び受信子40a〜dは、各送受信子の対毎に送信子30a〜dと受信子40a〜dをセンサーユニットの中心点Cに関して平面方向視で点対称に配置する。すなわち、各送信子30と受信子40の送受信軸を試験体表面100aに投影したとき、その投影した線分L1〜L4が互いにこの中心点Cで交差するように配置するので、中心点Cは交差点でもある。その際、隣り合う送受信間のなす角B1〜B8はすべて約45°の等角としてある。
【0027】
各送信子30a〜dから送信された超音波は、いずれもこの中心点C直下を通過し、中心点Cを挟んだ対称位置にある受信子40a〜dにのみ受信されることとなる。本実施形態では、第一送信子30aと第一受信子40aが、第二送信子30bと第二受信子40bが、第三送信子30aと第三受信子40cが、第四送信子30dと第四受信子40dがそれぞれ対をなす送受信子に該当する。
【0028】
音響隔離壁13は、隣り合う送信子から送信された超音波信号が隣の受信子に受信される(クロストーク)のを防止するためのものである。本実施形態にあっては、第一送信子30aと第四受信子40d、第四送信子30dと第一受信子40dがそれぞれ隣り合う送受信子に該当する。
【0029】
各送信子30は、大略、振動子32を含む送信子本体31と、この送信子本体31を送信子支持柱17に取り付けるための支持アーム57と、この送信子本体31の傾斜を調整する傾斜調整機構55と有する。また、ケーブル33を介して駆動ユニット60からのバースト電圧信号により振動子32を振動させ、試験体100に向けて超音波を送信する。本実施形態では、この振動子32において、発信面の横幅を十分確保することで、試験体100に入射する超音波に指向性を付与してある。
【0030】
傾斜調整機構55は、送信子本体31の側面に取り付けた傾斜調整板54の傾斜調整面54aにスプリングロックピン56のピン先56aを係止させる構成とする。具体的には、傾斜調整ノブ56cによりスプリング56bによる押圧力を調整することにより、送信子取付中心軸Fと試験体表面100aの法線Gとのなす角で与えられる傾斜角θを適宜調整可能な可変送信子として構成する。発明者らの実験により、厚さ6mmのCFRPに板波を発生させるには、傾斜角θとして約14度近傍の角度が適当である旨判明した。なお、他の送信子及び受信子の傾斜角θもすべて同一角度に調整する。
【0031】
次に、本発明に係る超音波検査装置1を用いた検査手順について説明する。先ず、センサーユニット10が試験体表面100aに平行になるようにセンサユニット10を配置する。駆動モーターM1〜M3を駆動させ、図5に示す経路Rの如く、センサーユニット10を試験体表面100aに沿って所定のピッチ間隔毎に移動させる。XY方向に対するスキャン、ステップ間隔は、図4に示す入射・受信点間距離Eの1/100〜1/200程度である。そして、各座標位置において、各送信子から同時に超音波を送信させる。
【0032】
受信子40a〜dで受信した各々の受信信号毎に、受信したバースト波の繰返し周波数に同期した時間幅(ゲート)内での最大振幅値を抽出する。そして、図6(a)〜(d)に示す送信子−受信子位置毎に得られた受信データから、各走査位置毎に得られた最大振幅値を走査マップ上に色調表示することで、図7(a)〜(d)に示すようなCスキャン画像を得ることができる。
【0033】
板波の伝播経路中に剥離部が存在すれば、係る座標位置における最大振幅値は剥離部の影響を反映した値となる。すなわち、伝播経路中に剥離部が存在すれば、係る剥離部にて板波は減衰することから、健全部のみ通過した信号に比べ、振幅値は相対的に低くなる。そのため、係る座標位置の最大振幅値は他の部分の最大振幅値に比べ低い値を示す。
【0034】
このように、対となる送受信子の配置位置によって板波の伝播経路中に剥離部がある場合と存在しない場合が生じる。図7(a)〜(d)に示すように、各受信子40a〜d毎のCスキャン画像にあっては、板波の進行方向に沿った細長形状の低振幅領域が観察される。
【0035】
図8は、図7(a)〜(d)に示す各受信子40a〜d毎の最大振幅値の中から、各々の座標位置毎に最大値を抽出し、それを座標平面上に色調表示したものである。例えば、図7(a)〜(d)の一部のみ低振幅値を示す座標位置にあっては、図8に示す合成画像では振幅値の高い健全部として表示されることとなる。一方、いずれのCスキャン画像にあっても、振幅値の低い剥離部として表示されている座標位置にあっては、合成画像においても振幅値の低い剥離部として表示されることとなる。すなわち、この合成画像にあっては、対象座標直下近傍に剥離部が存在する場合のみ低振幅値を示すこととなる。よって、本実施形態の如く、平面方向視で円状の剥離部を有する試験体100に対する検査の結果得られる合成画像は、剥離部中心を極小値とする円状の振幅分布として表示されることとなる。
【0036】
次に、本発明にかかる超音波検査装置1を用いて試験体100内部の剥離を検出する際の板波の伝播特性について簡単に言及する。複数の送信子30a〜dから送信された超音波が音響結合媒体である空気を介して試験体100内部に入射され、試験体100に板波を発生させる。板波はその一部を外部に漏洩しながら試験体100内を伝播するので、その漏洩した超音波を音響結合媒体である空気を介して受信子40a〜dでそれぞれ受信し、その受信信号の振幅から試験体100内の剥離を検出する。その際、板波の伝播経路に剥離部が存在すると、この板波はこの剥離部において減衰または増幅される。
【0037】
例えば、複合材料と硬質のライニング材との境界面や複合材料内部に剥離部が存在する場合には、その剥離部において板波の伝播条件が変化するため、一般に板波は減衰する。一方、複合材料と軟質ライニング材との間に生じた剥離が存在する場合には、軟質ライニング材に漏洩する成分が減少するため、剥離が存在しない場合に比べ、板波の振幅は相対的に大きくなる。よって、受信子40において受信した超音波の受信振幅の変化を観測することで、試験体100内部の剥離を検出することができる。
【0038】
【実施例】
発明者らは、本発明にかかる超音波検査装置1が複合材料等の剥離検査に有用である旨を実証すべく、図5に示すように、人工剥離D1〜D4を有する試験体100に対して剥離検査試験を行った。試験体100として、厚さ6mmのCFPRと厚さ2mmのゴムよりなるライニング材の二層構造の平板であって、CFRPとライニング材の境界面に第一〜第四人工剥離D1〜D4を有するものを用いた。ここで、第一人工剥離D1は直径20mm、第二人工剥離D2は直径11mm、第三人工剥離D3は直径10mm、第四人工剥離D4は直径16mmとした。また、送信子30及び受信子40の傾斜角θを、超音波の入射・受信点間距離Eが55mm、送信子30及び受信子40と試験体表面100aの距離Hが5mmとなるように調整した。
【0039】
走査を行うに際し、超音波センサユニット10を図5に示す経路Rの如く、試験体表面100aに平行となるように移動させた。その際、スキャン方向Xのピッチ間隔を0.5mm、ステップ方向Yのピッチ間隔を0.5mmとした。
【0040】
本実施例では、各座標位置にて、図6(a)〜(d)に示すように、送信子30及び受信子40の対毎にデータ収集を行った。図7(a)〜(d)は、図6(a)〜(d)に示す走査の結果得られた受信信号の最大振幅値を各座標位置毎に色調表示(Cスキャン画像)したものであり、図8はこれら4つの受信波の最大振幅の中、各々の座標位置毎の最大値を抽出したものを色調表示したものである。図8に示す合成画像の振幅値分布は実際の人工剥離D1〜D4の剥離形状に高精度で一致していることが確かめられた。
【0041】
最後に本発明にかかる超音波検査装置のその他の実施形態の可能性について言及する。なお、以下に示す各実施形態を適宜組み合わせて実施してもよい。
上記実施形態では、複合材料としてCFRPを例にとって説明したが、CFRP以外の複合材料であってもよい。また、必ずしも複合材料に限られず、種々の低密度薄板の剥離検査に適用することも可能である。
【0042】
上記実施形態では、多層構造の試験体100の接合面における剥離を検出する場合を例にとって説明したが、検査対象材料内部における欠陥を検出することも可能である。
【0043】
また、上記実施形態では、試験体100として平板状のものを用いた。しかし、例えば、航空機、自動車、ロケット、人工衛星等の外壁に貼り付けられた複合部材等、平板状のものに限らず、表面が屈曲した種々の形状のものに対しても適用可能である。
【0044】
上記実施形態では、第一収納部11aと第二収納部11bを完全に二分するように音響隔離壁13を設ける場合を例にとって説明した。しかし、送受信子同士のクロストークを阻止できるのであれば、収納部11を完全に二分する場合のみならず、例えば、隣り合う送信子と受信子の近傍部分にのみ設ける場合や、収納室11の中央部にのみ設けることも可能である。
【0045】
上記実施形態では、音響隔離壁13を設ける場合を例にとって説明した。しかし、各送信子30a〜d毎に送信時間を適宜異ならせれば、超音波同士の干渉が起こることもなく、音響隔離壁13を設けずとも、隣り合う送受信子同士のクロストークを防止できる。例えば、図3に示すセンサユニット10にあっては、先ず、第一送信子30a及び第三送信子30cから同時に超音波を送信する。その後、第二送信子30b及び第四送信子30dから同時に超音波を送信するようにすればよい。この場合、第一受信子40aで受信を行う際に隣り合う第四送信子30dから超音波は送信されておらず、同様に、第四受信子40dで受信を行う際に隣り合う第一送信子30aから超音波は送信されていない。よって、これら隣り合う送受信子間でクロストークの問題が生じることもない。
【0046】
上記実施形態では、受信信号の低強度部が欠陥部に相当し、ある位置の全ての角度の受信信号が未だ低強度である場合に、その部位を欠陥部とする合成処理がなされた。しかし、欠陥の性状によっては、受信信号の高強度部が欠陥部に相当し、ある位置の全ての角度の受信信号が高強度である場合に、その部位を欠陥部とする合成処理を行うことも可能である。また、受信信号の最大振幅を求めるほか、平均振幅や積分値を求め、これを基準に各信号処理を行うことも可能である。
【0047】
なお、特許請求の範囲の項に記入した符号は、あくまでも図面との対照を便利にするためのものにすぎず、該記入により本発明は添付図面の構成に限定されるものではない。
【図面の簡単な説明】
【図1】本発明に係る超音波検査装置を含む検査装置のブロック図である。
【図2】走査ユニットの断面図である。
【図3】センサーユニット内部の平面図である。
【図4】図3のA−A線断面図である。
【図5】センサユニットによる走査方向と試験体に設けた人工剥離位置との関係を示す図である。
【図6】本発明にかかる超音波検査装置を用いて行った走査の際に用いる送信子及び受信子の位置関係を示す図である。
【図7】(a)〜(d)はぞれぞれ図5(a)〜(d)の各々の配置の検査配置にて走査を行った得られたCスキャン画像である。
【図8】図7(a)〜(d)に示すCスキャン画像から得られた合成画像である。
【符号の説明】
1:超音波検査装置、10:センサーユニット、11:収納室、11a:第一収納部、11b:第二収納部、13:音響隔離壁、15:天板、16:側壁、17、17a〜h:送受信子支持柱、20:走査ユニット、24:試験体収納ボックス、24a:載置台、25:走査装置、25a:Y軸ガイド、25b:Y軸スライダー、25c:X軸ガイド、25d:X軸スライター、25e:Z軸ガイド、25f:Z軸スライダー、25g:送信ユニット支持棒、30:送信子、30a〜d:第一〜第四送信子、31:送信子本体、32:振動子、33:ケーブル、40:受信子、40a〜d:第一〜第四受信子、41:送信子本体、42:振動子、43:ケーブル、53:送受信子支持ブロック、54:傾斜調整板、54a:傾斜調整面、55:傾斜調整機構、56:スプリングロックピン、56a:ピン先、56b:スプリング、56c:傾斜調整ノブ、57a〜f:第一〜第八支持アーム、60:駆動ユニット、61:ファンクションジェネレーター、61a〜d:第一〜第四ファンクションジェネレーター、62:プリアンプ、62a〜d:第一〜第四プリアンプ、63:遅延装置、64:A/Dコンバーター、65:モータードライバ、70:操作・信号処理ユニット、72:モーターコントローラ、73:制御装置、76:処理装置、80:表示器、S:試験体、101:複合部材(CFRP)、102:補強材(発泡コア)、D1〜4:人工剥離、E:入射・受信点間距離、F:送信子・受信子取付中心軸、G:法線、H:送受信子−試験体表面間距離、M1〜M3:駆動モーター、X:スキャン方向、Y:ステップ方向、θ:傾斜角
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic inspection apparatus used for peeling inspection of a composite material or the like using ultrasonic waves and an inspection method using the ultrasonic inspection apparatus. More specifically, by causing ultrasonic waves to be incident on the test body from the transmitter through the air, generating a plate wave in the test body, and receiving the ultrasonic waves leaking from the test body through the air by the receiver. The present invention relates to an ultrasonic inspection apparatus for inspecting a specimen and an inspection method using the ultrasonic inspection apparatus.
[0002]
[Prior art]
Conventionally, in the peeling inspection of a thin plate, a rolling roll, etc., as in Patent Document 1, a pair of transmitter and receiver are brought into direct contact with the surface of the test body via a contact medium, or the test body and sensor are attached. Techniques such as a water immersion method that submerges and inspects were used.
[0003]
However, in the inspection of plastic composite materials (FRP) such as glass fibers, carbon fibers, and aramid fibers, if a contact medium is applied to the surface of these composite materials or the composite materials are immersed in water, the composite There was a problem of causing a decrease in strength due to liquid intrusion into the material.
[0004]
In addition, the surface of the specimen is scanned by a probe having a pair of transmitter and receiver that has been conventionally used. In this case, since the propagation direction of the plate wave propagating in the specimen is only one direction, there is a limit to improving the detection accuracy of the position, shape and dimensions of the peeled portion even if the scanning pitch is set finely. It was.
[0005]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-236114 [0006]
[Problems to be solved by the invention]
In view of such a conventional situation, the present invention provides an ultrasonic wave that can quickly and accurately identify defects such as delamination found in a composite material without immersing the specimen in water or applying a contact medium. An object is to provide an inspection apparatus and an inspection method using the ultrasonic inspection apparatus.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the ultrasonic inspection apparatus according to the present invention has a characteristic configuration in which ultrasonic waves are incident on a test body through air from a transmitter to generate a plate wave on the test body, and A test body is inspected by receiving ultrasonic waves leaked from the receiver through air, and at least two pairs of the transmitter and the receiver are arranged, and the transmitter / receiver forming the pair The line segments connecting each other are arranged so as to intersect with each other in plan view, and provided with a scanning device for scanning the transmitter and the receiver along the surface of the test body, and each reception received by the plurality of receivers. For the signal, one feature amount is extracted based on each received signal for each coordinate position, and is displayed as a composite image on the coordinate plane. Here, “one feature value is extracted based on each received signal for each coordinate position” means that, for example, feature values such as a maximum value and a minimum value are extracted from signal values of different receivers in each part. To do.
[0008]
The plurality of transmitters and receivers may be arranged on substantially the same circumference with a point where the line segments intersect each other as a center. Furthermore, it is preferable to arrange the transmitter / receiver so that the line segments connecting the paired transmitter / receiver are sequentially equiangular. Here, “a line segment that connects a pair of transmitters and receivers” refers to a line segment that connects a pair of transmitters and receivers facing each other in a plan view.
[0009]
In addition to the above characteristic configuration, a first storage unit that stores all of the plurality of transmitters and a second storage unit that stores all of the plurality of receivers are provided, and the first storage unit and the first storage unit An acoustic isolation wall may be provided between the two storage units. According to the characteristic configuration, crosstalk between adjacent transmitters and receivers can be prevented.
[0011]
In any one of the above-described features, it is desirable that the ultrasonic wave is a burst wave. According to the same feature, by using a burst wave formed by repeating a plurality of waves, an ultrasonic wave can be reliably incident on the test body, and a plate wave can be efficiently generated on the test body.
[0013]
This is particularly useful when the specimen is a composite material or a multilayer structure. Here, the multilayer structure means a structure formed by joining a plurality of members.
[0014]
A characteristic of the inspection method according to the present invention is an inspection method using the ultrasonic inspection apparatus having any one of the above-described characteristic configurations, in which ultrasonic waves are incident on the test body through air from the transmitter, and the test body In addition to generating a plate wave, the ultrasonic wave leaking from the inside of the test body is received by the receiver through the air, and peeling inside the test body is inspected from a change in amplitude of the received signal.
[0015]
【The invention's effect】
As described above, according to the features of the ultrasonic inspection apparatus according to the present invention and the inspection method using the ultrasonic inspection apparatus, the plane position of the defect can be specified more accurately by combining signals from two or more directions. became. As a result, it is possible to quickly and accurately detect the position, shape, and dimensions of defects such as delamination that have occurred inside the specimen without damaging the strength of the specimen, which can contribute to improved inspection efficiency. It was.
[0016]
Other objects, configurations, and effects of the present invention will become apparent in the following “Embodiments of the Invention” section.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Next, a first embodiment of the present invention will be described with reference to the accompanying drawings.
In the present embodiment, as shown in FIGS. 2 and 4, the test body 100 is sandwiched between the front and back surfaces of a reinforcing material made of a foam core with a composite material 101 made of carbon reinforced fiber resin (CFRP). The case where the position, shape, dimension, etc. of the peeled portion generated on the joint surface between the CFRP 101 and the foam core 102 is detected will be described as an example.
[0018]
As shown in FIG. 1, an ultrasonic inspection apparatus 1 according to the present invention generally includes a sensor unit 10 that houses a transmitter 30 and a receiver 40 having the same structure as each other, and the sensor unit 10 is placed on a specimen surface 100a. The scanning unit 20 is configured to move along, a drive unit 60 for driving them, an operation / signal processing unit 70, and a display 80. The operation / signal processing unit 70 incorporates software for realizing a specific function. By the operation / signal processing unit 70, ultrasonic waves are transmitted / received by the transmitter 30 and the receiver 40 via the drive unit 60. The received waveform is processed by the operation / signal processing unit 70, and the processing result is displayed on the display 80.
[0019]
The previous drive unit 60 includes a function generator 61 for transmitting ultrasonic waves from each transmitter 30 constituting the ultrasonic inspection apparatus 1 and a plurality of amplifying ultrasonic waves received by the plurality of receivers 40. A preamplifier 62 and a motor driver 65 for driving the drive motors M1 to M3 of the scanning unit 20 are provided. In the present embodiment, the function generator 61 is connected to the first to fourth transmitters 30a to 30d, respectively, and the preamplifier 62 is connected to the first to fourth receivers 40a to 40d by the first to fourth function generators 61a to 61d. The first to fourth preamplifiers 62a to 62d connected to the first and fourth preamplifiers 62a to 62d, respectively.
[0020]
As shown in FIG. 2, the scanning unit 20 is generally composed of a specimen storage box 24 and a scanning mechanism 25 for scanning the sensor unit 10. In this scanning mechanism 25, a pair of Y-axis guides 25a, 25a oriented in the direction perpendicular to the drawing sheet is placed, and the pair of Y-axis sliders 25b, 25b are driven by a first drive motor M1 (not shown). It slides on each Y-axis guide 25a. In addition, the X-axis slider 25d slides along the single X-axis guide 25c straddling the pair of Y-axis sliders 25b and 25b by the driving of the second drive motor M2. The sensor unit 10 supported by the support rod 26 by the Z-axis slider 25f is driven in the Z-axis direction by the third driving motor M3 along the Z-axis guide 25e provided on the X-axis slider 25d.
[0021]
In this embodiment, the flat test body 100 is placed on a substantially horizontal mounting table 24 a on the bottom surface of the test body storage box 24. The previous Y-axis guide 25a and X-axis guide 25c are placed in parallel with the surface of the test specimen 100a or the mounting table 24a. For example, scanning is performed along a path R shown in FIG. 5 while maintaining substantially parallel to the upper surfaces of the test body 100 and the mounting table 24a.
[0022]
The motor controller 72 in the operation / signal processing unit 70 is activated by an input from a control device 73 such as a keyboard. The transmission time, period, and phase of the burst voltage signals generated from the function generators 61a to 61d via the delay device 63 can be made different from each other. In the present embodiment, the delay device 63 has a delay circuit corresponding to each channel individually. Instead of providing the delay circuit, the delay device 63 can be configured to individually change the transmission time of the ultrasonic wave for each channel according to an instruction from the control device 73.
[0023]
The motor controller 72 drives the drive motors M <b> 1 to M <b> 3 via the motor driver 65 and sends the coordinate signals to the processing device 76.
[0024]
The signals received by the preamplifiers 62a to 62d are digitized by the A / D converter 64 for each channel, and then processed by the processing unit 76 for each channel together with the coordinate signal. As shown in FIG. 8, it is displayed on the display unit 80 by color tone display.
[0025]
Next, the configuration of the ultrasonic sensor unit 10 will be described. As shown in FIGS. 3 and 4, the ultrasonic sensor unit 10 has a top plate in a storage chamber 11 surrounded by a top plate 15 having a circular shape in a plan view and a side wall 16 hanging from the periphery of the top plate 15. Four pairs of transmitters 30 and receivers 40 having the same configuration are attached by eight probe support rods 17a to 17h suspended from 15 respectively. Then, ultrasonic waves are transmitted and received between the transmitter 30 and the receiver 40 that make a pair, thereby generating a plate wave in the test body 100, peeling inside the composite material 101, and the composite material 101 and the foam core 102. Detects peeling at the joint surface.
[0026]
As shown in FIGS. 3 and 4, the storage chamber 11 inside the sensor unit 10 is separated into a first storage portion 11 a and a second storage portion 11 b by an acoustic isolation wall 13. The plurality of transmitters 30a to 30d and receivers 40a to 40d are arranged symmetrically with respect to the center point C of the sensor unit with respect to the center point C of the sensor unit. To do. That is, when the transmission / reception axis of each transmitter 30 and receiver 40 is projected onto the specimen surface 100a, the projected line segments L1 to L4 are arranged so as to intersect each other at the center point C. It is also an intersection. At that time, the angles B1 to B8 formed between adjacent transmission / reception are all equal angles of about 45 °.
[0027]
All the ultrasonic waves transmitted from the transmitters 30a to 30d pass directly below the center point C, and are received only by the receivers 40a to 40d at symmetrical positions with the center point C in between. In the present embodiment, the first transmitter 30a and the first receiver 40a, the second transmitter 30b and the second receiver 40b, the third transmitter 30a and the third receiver 40c, and the fourth transmitter 30d. The fourth receiver 40d corresponds to a transmitter / receiver paired with each other.
[0028]
The acoustic isolation wall 13 is for preventing the ultrasonic signal transmitted from the adjacent transmitter from being received by the adjacent receiver (crosstalk). In the present embodiment, the first transmitter 30a and the fourth receiver 40d, and the fourth transmitter 30d and the first receiver 40d correspond to adjacent transmitter / receivers.
[0029]
Each transmitter 30 generally includes a transmitter main body 31 including a vibrator 32, a support arm 57 for attaching the transmitter main body 31 to the transmitter support column 17, and an inclination for adjusting the inclination of the transmitter main body 31. And an adjustment mechanism 55. Further, the vibrator 32 is vibrated by the burst voltage signal from the drive unit 60 via the cable 33, and ultrasonic waves are transmitted toward the test body 100. In the present embodiment, in this vibrator 32, directivity is imparted to the ultrasonic wave incident on the test body 100 by ensuring a sufficient width of the transmission surface.
[0030]
The inclination adjustment mechanism 55 is configured to lock the pin tip 56a of the spring lock pin 56 on the inclination adjustment surface 54a of the inclination adjustment plate 54 attached to the side surface of the transmitter body 31. Specifically, the inclination angle θ given by the angle formed by the transmitter mounting center axis F and the normal line G of the specimen surface 100a can be appropriately adjusted by adjusting the pressing force by the spring 56b with the inclination adjustment knob 56c. As a variable transmitter. According to experiments by the inventors, it has been found that an angle in the vicinity of about 14 degrees is appropriate as the inclination angle θ in order to generate a plate wave in a CFRP having a thickness of 6 mm. Note that the tilt angles θ of the other transmitters and receivers are all adjusted to the same angle.
[0031]
Next, an inspection procedure using the ultrasonic inspection apparatus 1 according to the present invention will be described. First, the sensor unit 10 is arranged so that the sensor unit 10 is parallel to the specimen surface 100a. The drive motors M1 to M3 are driven, and the sensor unit 10 is moved at predetermined pitch intervals along the specimen surface 100a as shown in the path R shown in FIG. The scan and step interval in the XY direction is about 1/100 to 1/200 of the distance E between the incident and receiving points shown in FIG. Then, at each coordinate position, an ultrasonic wave is transmitted simultaneously from each transmitter.
[0032]
For each received signal received by the receivers 40a to 40d, the maximum amplitude value within the time width (gate) synchronized with the repetition frequency of the received burst wave is extracted. Then, from the received data obtained for each transmitter-receiver position shown in FIGS. 6A to 6D, the maximum amplitude value obtained for each scanning position is displayed in color tone on the scanning map. C-scan images as shown in FIGS. 7A to 7D can be obtained.
[0033]
If there is a peeling portion in the propagation path of the plate wave, the maximum amplitude value at the coordinate position is a value reflecting the influence of the peeling portion. That is, if there is a separation part in the propagation path, the plate wave attenuates at the separation part, so that the amplitude value is relatively lower than the signal that has passed through only the healthy part. For this reason, the maximum amplitude value of the coordinate position is lower than the maximum amplitude value of other portions.
[0034]
In this way, depending on the position of the paired transmitter / receiver, there may be a case where there is a peeling portion in the propagation path of the plate wave and a case where it does not exist. As shown in FIGS. 7A to 7D, in the C scan image for each receiver 40a to 40d, an elongated low-amplitude region along the traveling direction of the plate wave is observed.
[0035]
8 extracts the maximum value for each coordinate position from the maximum amplitude values for each of the receivers 40a to 40d shown in FIGS. 7A to 7D, and displays the extracted color on the coordinate plane. It is a thing. For example, if only a part of FIGS. 7A to 7D is at a coordinate position indicating a low amplitude value, the synthesized image shown in FIG. 8 is displayed as a healthy part having a high amplitude value. On the other hand, in any C-scan image, at a coordinate position displayed as a peeling portion with a low amplitude value, it is displayed as a peeling portion with a low amplitude value in the composite image. That is, in this composite image, a low amplitude value is shown only when a peeling portion exists in the vicinity immediately below the target coordinates. Therefore, as in the present embodiment, the composite image obtained as a result of the inspection on the test body 100 having a circular peeled portion in a plan view is displayed as a circular amplitude distribution with the peeled portion center as a minimum value. It becomes.
[0036]
Next, the propagation characteristics of the plate wave when detecting the peeling inside the test body 100 using the ultrasonic inspection apparatus 1 according to the present invention will be briefly described. The ultrasonic waves transmitted from the plurality of transmitters 30 a to 30 d are incident on the inside of the test body 100 through the air that is an acoustic coupling medium, and generate a plate wave in the test body 100. Since the plate wave propagates through the specimen 100 while leaking a part of the plate wave to the outside, the leaked ultrasonic waves are respectively received by the receivers 40a to 40d through the air that is the acoustic coupling medium, and the received signal The peeling in the specimen 100 is detected from the amplitude. At this time, if a separation portion exists in the propagation path of the plate wave, the plate wave is attenuated or amplified in the separation portion.
[0037]
For example, when there is a peeling portion at the boundary surface between the composite material and the hard lining material or inside the composite material, the plate wave is generally attenuated because the propagation condition of the plate wave changes in the peeling portion. On the other hand, when there is a separation that occurs between the composite material and the soft lining material, the component leaking to the soft lining material is reduced, so the amplitude of the plate wave is relatively less than when there is no separation. growing. Therefore, by observing the change in the reception amplitude of the ultrasonic wave received by the receiver 40, it is possible to detect the peeling inside the test body 100.
[0038]
【Example】
In order to demonstrate that the ultrasonic inspection apparatus 1 according to the present invention is useful for peeling inspection of a composite material or the like, the inventors have made a test specimen 100 having artificial peelings D1 to D4 as shown in FIG. A peel test was conducted. The test body 100 is a flat plate having a two-layer structure of a lining material made of CFPR having a thickness of 6 mm and rubber having a thickness of 2 mm, and has first to fourth artificial peelings D1 to D4 on the boundary surface between the CFRP and the lining material. A thing was used. Here, the first artificial peeling D1 was 20 mm in diameter, the second artificial peeling D2 was 11 mm in diameter, the third artificial peeling D3 was 10 mm in diameter, and the fourth artificial peeling D4 was 16 mm in diameter. Further, the inclination angle θ of the transmitter 30 and the receiver 40 is adjusted so that the distance E between the incident and receiving points of the ultrasonic wave is 55 mm, and the distance H between the transmitter 30 and the receiver 40 and the specimen surface 100a is 5 mm. did.
[0039]
When performing the scanning, the ultrasonic sensor unit 10 was moved so as to be parallel to the specimen surface 100a as shown by a path R shown in FIG. At that time, the pitch interval in the scanning direction X was set to 0.5 mm, and the pitch interval in the step direction Y was set to 0.5 mm.
[0040]
In this embodiment, data collection was performed for each pair of the transmitter 30 and the receiver 40 as shown in FIGS. 6A to 6D at each coordinate position. FIGS. 7A to 7D show the maximum amplitude value of the received signal obtained as a result of the scanning shown in FIGS. 6A to 6D in color tone display (C scan image) for each coordinate position. FIG. 8 shows the color tone of the extracted maximum values for each coordinate position among the maximum amplitudes of these four received waves. It was confirmed that the amplitude value distribution of the composite image shown in FIG. 8 matched the actual peeling shapes of the artificial peelings D1 to D4 with high accuracy.
[0041]
Finally, the possibility of other embodiments of the ultrasonic inspection apparatus according to the present invention will be mentioned. In addition, you may implement combining each embodiment shown below suitably.
In the above embodiment, CFRP is described as an example of the composite material, but a composite material other than CFRP may be used. Further, the present invention is not necessarily limited to the composite material, and can be applied to peel inspection of various low density thin plates.
[0042]
In the above-described embodiment, the case where the separation on the joint surface of the test body 100 having the multilayer structure is detected has been described as an example. However, it is also possible to detect a defect in the inspection target material.
[0043]
Moreover, in the said embodiment, the flat thing was used as the test body 100. FIG. However, for example, the present invention can be applied not only to a flat plate-like material such as a composite member attached to an outer wall of an aircraft, an automobile, a rocket, an artificial satellite, or the like, but also to various shapes whose surfaces are bent.
[0044]
In the said embodiment, the case where the acoustic isolation wall 13 was provided so that the 1st accommodating part 11a and the 2nd accommodating part 11b were completely divided into 2 was demonstrated as an example. However, if it is possible to prevent crosstalk between transmitters and receivers, not only when the storage unit 11 is completely divided into two parts, but also when, for example, it is provided only in the vicinity of adjacent transmitters and receivers, It is also possible to provide only at the center.
[0045]
In the above embodiment, the case where the acoustic isolation wall 13 is provided has been described as an example. However, if transmission times are appropriately changed for each of the transmitters 30a to 30d, interference between ultrasonic waves does not occur, and crosstalk between adjacent transmitters and receivers can be prevented without providing the acoustic isolation wall 13. For example, in the sensor unit 10 shown in FIG. 3, first, ultrasonic waves are transmitted simultaneously from the first transmitter 30a and the third transmitter 30c. Thereafter, ultrasonic waves may be transmitted simultaneously from the second transmitter 30b and the fourth transmitter 30d. In this case, no ultrasonic wave is transmitted from the adjacent fourth transmitter 30d when receiving by the first receiver 40a, and similarly, the first transmission adjacent when receiving by the fourth receiver 40d. No ultrasonic wave is transmitted from the child 30a. Therefore, the problem of crosstalk does not occur between these adjacent transceivers.
[0046]
In the above embodiment, when the low-intensity part of the received signal corresponds to a defective part, and the received signals at all angles at a certain position are still low-intensity, the combining process is performed with that part as the defective part. However, depending on the nature of the defect, if the high-strength part of the received signal corresponds to the defective part and the received signal at all angles at a certain position is high-intensity, the synthesis process is performed with that part as the defective part. Is also possible. In addition to obtaining the maximum amplitude of the received signal, it is also possible to obtain an average amplitude and an integral value and perform each signal processing based on this.
[0047]
In addition, the code | symbol entered in the term of the claim is only for the convenience of contrast with drawing, and this invention is not limited to the structure of an accompanying drawing by this entry.
[Brief description of the drawings]
FIG. 1 is a block diagram of an inspection apparatus including an ultrasonic inspection apparatus according to the present invention.
FIG. 2 is a sectional view of a scanning unit.
FIG. 3 is a plan view of the inside of the sensor unit.
4 is a cross-sectional view taken along line AA in FIG.
FIG. 5 is a diagram showing a relationship between a scanning direction by a sensor unit and an artificial peeling position provided on a specimen.
FIG. 6 is a diagram showing a positional relationship between a transmitter and a receiver used in scanning performed using the ultrasonic inspection apparatus according to the present invention.
7A to 7D are C-scan images obtained by performing scanning in the inspection arrangements shown in FIGS. 5A to 5D, respectively.
FIG. 8 is a composite image obtained from the C-scan image shown in FIGS.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1: Ultrasonic inspection apparatus, 10: Sensor unit, 11: Storage chamber, 11a: 1st storage part, 11b: 2nd storage part, 13: Acoustic isolation wall, 15: Top plate, 16: Side wall, 17, 17a- h: transceiver support column, 20: scanning unit, 24: specimen storage box, 24a: mounting table, 25: scanning device, 25a: Y-axis guide, 25b: Y-axis slider, 25c: X-axis guide, 25d: X Axis slider, 25e: Z-axis guide, 25f: Z-axis slider, 25g: Transmitting unit support rod, 30: Transmitter, 30a to d: First to fourth transmitters, 31: Transmitter body, 32: Vibrator 33: Cable, 40: Receiver, 40a to d: First to fourth receiver, 41: Transmitter body, 42: Vibrator, 43: Cable, 53: Transceiver support block, 54: Tilt adjusting plate, 54a: inclination adjustment surface, 55 Inclination adjustment mechanism, 56: Spring lock pin, 56a: Pin tip, 56b: Spring, 56c: Inclination adjustment knob, 57a to f: First to eighth support arms, 60: Drive unit, 61: Function generator, 61a to d : First to fourth function generators, 62: preamplifier, 62a to d: first to fourth preamplifiers, 63: delay device, 64: A / D converter, 65: motor driver, 70: operation / signal processing unit, 72 : Motor controller, 73: Control device, 76: Processing device, 80: Display, S: Test specimen, 101: Composite member (CFRP), 102: Reinforcement material (foam core), D1-4: Artificial peeling, E: Distance between incident and receiving points, F: Transmitter / receiver mounting center axis, G: Normal, H: Distance between transmitter and receiver surface, M1 to M3: Drive Motor, X: the scanning direction, Y: stepping direction, theta: the tilt angle

Claims (7)

送信子(30)から空気を介して試験体(100)に超音波を入射させ、前記試験体(100)に板波を発生させると共に、前記試験体(100)内から漏洩した超音波を空気を介して受信子(40)で受信することにより試験体(100)の検査を行う超音波検査装置であって、前記送信子(30)及び受信子(40)の対を少なくとも2対以上配置し、前記対をなす送受信子(30a〜d,40a〜d)同士を結ぶ線分(L1〜L4)が平面視で互いに交差するように配置すると共に、前記送信子(30)及び受信子(40)を試験体表面(100a)に沿って走査するための走査装置(20)を設け、これら複数の受信子(40a〜d)で受信した各受信信号について、座標位置毎に各受信信号に基づいて1つの特徴量を抽出し、座標平面上に合成画像として表示することの可能な信号処理装置(76)を有していることを特徴とする超音波検査装置。  Ultrasonic waves are incident on the test body (100) from the transmitter (30) via air to generate a plate wave on the test body (100), and the ultrasonic waves leaked from the test body (100) are air. An ultrasonic inspection apparatus for inspecting a test body (100) by receiving at a receiver (40) via an antenna, wherein at least two pairs of the transmitter (30) and receiver (40) are arranged. The line segments (L1 to L4) connecting the paired transceivers (30a to d, 40a to d) intersect with each other in plan view, and the transmitter (30) and the receiver ( 40) is provided with a scanning device (20) for scanning along the surface of the test body (100a), and the received signals received by the plurality of receivers (40a to 40d) Extract one feature based on the coordinate plane An ultrasonic inspection apparatus comprising a signal processing device (76) capable of being displayed as a composite image on a surface. 前記複数の送信子(30a〜d)及び受信子(40a〜d)を前記線分(L1〜L4)が互いに交差する点を中心として略同一円周上に配置することを特徴とする請求項1に記載の超音波検査装置。  The plurality of transmitters (30a to d) and receivers (40a to d) are arranged on substantially the same circumference with a point where the line segments (L1 to L4) intersect with each other as a center. The ultrasonic inspection apparatus according to 1. 前記各線分(L1〜L4)間が順次等角となるように前記送受信子(30a〜d、40a〜d)を配置することを特徴とする請求項1又は2に記載の超音波検査装置。  The ultrasonic inspection apparatus according to claim 1 or 2, wherein the transceivers (30a to d, 40a to d) are arranged so that the line segments (L1 to L4) are equiangular in order. 前記複数の送信子(30a〜d)の全てを収納する第一収納部(11a)と、前記複数の受信子(40a〜d)の全てを収納する第二収納部(11b)とを設け、前記第一収納部(11a)と前記第二収納部(11b)の間に音響隔離壁(13)を設けることを特徴とする請求項1〜3のいずれかに記載の超音波検査装置。  A first storage part (11a) for storing all of the plurality of transmitters (30a to d) and a second storage part (11b) for storing all of the plurality of receivers (40a to d); The ultrasonic inspection apparatus according to any one of claims 1 to 3, wherein an acoustic isolation wall (13) is provided between the first storage part (11a) and the second storage part (11b). 前記超音波がバースト波であることを特徴とする請求項1〜4のいずれかに記載の超音波検査装置。  The ultrasonic inspection apparatus according to claim 1, wherein the ultrasonic wave is a burst wave. 前記試験体(100)が複合材料(101)又は多層構造体(101,102)であることを特徴とする請求項1〜5のいずれかに記載の超音波検査装置。  6. The ultrasonic inspection apparatus according to claim 1, wherein the test body (100) is a composite material (101) or a multilayer structure (101, 102). 請求項1〜6のいずれかに記載の超音波検査装置を用いた検査方法であって、送信子(30)から空気を介して試験体に超音波を入射させ、前記試験体(100)に板波を発生させると共に、前記試験体(100)内から漏洩した超音波を空気を介して受信子(40)で受信し、受信信号の振幅変化から試験体(100)内部の剥離を検査することを特徴とする検査方法。  It is an inspection method using the ultrasonic inspection apparatus according to any one of claims 1 to 6, wherein ultrasonic waves are incident on the test body via air from a transmitter (30), and the test body (100) While generating a plate wave, the ultrasonic wave leaked from the inside of the test body (100) is received by the receiver (40) through the air, and the peeling inside the test body (100) is inspected from the change in the amplitude of the received signal. Inspection method characterized by that.
JP2003206032A 2003-08-05 2003-08-05 Ultrasonic inspection apparatus and inspection method using the same Expired - Lifetime JP3749929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003206032A JP3749929B2 (en) 2003-08-05 2003-08-05 Ultrasonic inspection apparatus and inspection method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003206032A JP3749929B2 (en) 2003-08-05 2003-08-05 Ultrasonic inspection apparatus and inspection method using the same

Publications (2)

Publication Number Publication Date
JP2005055197A JP2005055197A (en) 2005-03-03
JP3749929B2 true JP3749929B2 (en) 2006-03-01

Family

ID=34363036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003206032A Expired - Lifetime JP3749929B2 (en) 2003-08-05 2003-08-05 Ultrasonic inspection apparatus and inspection method using the same

Country Status (1)

Country Link
JP (1) JP3749929B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302600B2 (en) 2016-01-19 2019-05-28 Northrop Grumman Innovation Systems, Inc. Inspection devices and related systems and methods

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120969B2 (en) 2005-07-04 2008-07-16 独立行政法人 宇宙航空研究開発機構 Ultrasonic test method and ultrasonic test apparatus using the same
JP4092704B2 (en) 2005-07-04 2008-05-28 独立行政法人 宇宙航空研究開発機構 Ultrasonic test method and ultrasonic test apparatus using the same
JP4630992B2 (en) * 2006-12-27 2011-02-09 独立行政法人 宇宙航空研究開発機構 Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
JP5069548B2 (en) * 2007-12-19 2012-11-07 カンメタエンジニアリング株式会社 Thermal spray coating inspection method and apparatus
CN104345089B (en) * 2014-10-11 2017-03-15 深圳市神视检验有限公司 A kind of method and apparatus of the intersection scanning central angle for determining pipe fitting welding
DE102015106872A1 (en) * 2015-05-04 2016-11-10 Inoson GmbH Devices and methods for one-sided non-destructive testing of objects made of different materials
JP6173636B1 (en) * 2017-04-13 2017-08-02 株式会社日本工業試験所 Ultrasonic inspection method and ultrasonic inspection apparatus
CN109239184B (en) * 2018-08-13 2021-01-08 广州多浦乐电子科技股份有限公司 Ultrasonic phased array detection method for pipe seat fillet weld
CN109668958A (en) * 2018-12-10 2019-04-23 江苏天鹏电源有限公司 Wall coating detection method in a kind of li battery shell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10302600B2 (en) 2016-01-19 2019-05-28 Northrop Grumman Innovation Systems, Inc. Inspection devices and related systems and methods
US10962506B2 (en) 2016-01-19 2021-03-30 Northrop Grumman Systems Corporation Inspection devices and related systems and methods

Also Published As

Publication number Publication date
JP2005055197A (en) 2005-03-03

Similar Documents

Publication Publication Date Title
JP4630992B2 (en) Ultrasonic inspection method and ultrasonic inspection apparatus used therefor
EP1709418B1 (en) Method and apparatus for examining the interior material of an object, such as a pipeline or a human body from a surface of the object using ultrasound
KR101641014B1 (en) Defect detection device, defect detection method, and storage medium
CA2814939C (en) Ultrasonic flaw detecting apparatus, ultrasonic transducer, and ultrasonic flaw detecting method
JP3749929B2 (en) Ultrasonic inspection apparatus and inspection method using the same
US4212258A (en) Underwater apparatus for acoustically inspecting a submerged object
US20060254359A1 (en) Hand-held flaw detector imaging apparatus
CN110199194B (en) Multi-element method and apparatus for inspecting components using ultrasonic waves
CN113994204B (en) Ultrasonic flaw detection method, ultrasonic flaw detection device, and steel manufacturing method
EP0005593A1 (en) Scan acoustical holographic apparatus and method
CN115856087A (en) Full-focusing imaging method based on longitudinal wave transmitting-receiving ultrasonic phased array probe
JP4633268B2 (en) Ultrasonic flaw detector
JP2000131297A (en) Leakage elastic surface wave measuring probe
JP2012002781A (en) Ultrasonic flaw detector and ultrasonic flaw detection method
KR100422259B1 (en) A Method The Defect Defection With Using Digital Ultrasonic Testing
JP2005055200A (en) Ultrasonic inspection device and inspection method using the device
JP7435322B2 (en) Ultrasonic flaw detection equipment, ultrasonic flaw detection method, and program
JP2020030095A (en) Ultrasonic flaw detection method
JP3777071B2 (en) Ultrasonic inspection equipment
JP5400580B2 (en) Ultrasonic diagnostic equipment
JPH0440360A (en) Ultrasonic flaw detecting method for composite material
JP2008245981A (en) Ultrasonic diagnostic equipment
CN112816558A (en) Frequency-conversion ultrasonic detection method and device for silicon carbide fiber reinforced composite material
JPH0292344A (en) Ultrasonic probe and ultrasonic diagnostic apparatus equipped with same probe
JPH0510744A (en) Sensor for measuring configuration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20030805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051102

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Ref document number: 3749929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term