JP3748953B2 - Motorized valve and absorption refrigerator using motorized valve - Google Patents

Motorized valve and absorption refrigerator using motorized valve Download PDF

Info

Publication number
JP3748953B2
JP3748953B2 JP23111896A JP23111896A JP3748953B2 JP 3748953 B2 JP3748953 B2 JP 3748953B2 JP 23111896 A JP23111896 A JP 23111896A JP 23111896 A JP23111896 A JP 23111896A JP 3748953 B2 JP3748953 B2 JP 3748953B2
Authority
JP
Japan
Prior art keywords
liquid
valve
airtight
drive rod
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23111896A
Other languages
Japanese (ja)
Other versions
JPH1078153A (en
Inventor
直樹 坂本
英一 榎本
朗 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23111896A priority Critical patent/JP3748953B2/en
Publication of JPH1078153A publication Critical patent/JPH1078153A/en
Application granted granted Critical
Publication of JP3748953B2 publication Critical patent/JP3748953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、液体の流路を開閉する電動式弁ならびに電動式弁を用いて吸収液の流路を開閉する吸収式冷凍機に関するものである。また、この発明において、電動式弁とは、回転動作または直線動作による電気的な駆動力によって弁体の開閉動作を行う開閉弁の全てを含む総称である。
【0002】
【従来の技術】
この種の電動式弁としては、図4のように、弁室64の内部に設けた液体70の流路71を開閉する弁体61を設けた弁機構部分60と、弁体61の駆動棒62を、電磁コイル52の磁力で案内シリンダ56の内部を移動するプランジャ55によって駆動する駆動機構部分50を設けた電磁弁200や、例えば、図5のように、図4と同様に、液体70の流路71を開閉する弁体61の駆動棒62を、歯車機構85、例えば、ラック85Aとピニオン85Bとによる歯車機構を介して、回転動作を行う電動機86により駆動する電動弁300などの構成が周知である。
【0003】
また、こうした電動式弁において、流路70を流通する液体70が冷媒などの混入剤を含んだ溶液、例えば、吸収式冷凍機における熱操作流体のように、吸収剤などの混入剤を含んでいる場合には、駆動棒62を駆動する駆動機構部分50側に、混入剤の結晶が析出したり、腐食生成物、鉄粉、溶接スラッジなどが侵入して、駆動棒62の移動を阻害するため、吸収式冷凍機100に不測の故障、例えば、冷暖運転と暖房運転との切換が不能になるなどの故障を招くという不都合を生ずる。
【0004】
この不都合を解消するために、図4のように、弁室64と駆動棒との間に、蛇腹状の隔膜80を設けるとともに、隔膜80の伸縮による背圧を除去するため均圧管路83を駆動機構部分50側に設けて、この均圧管路83を流体70の圧力と同程度の圧力をもつ気体、例えば、冷媒蒸気の部分に接続する構成(以下、第1従来技術という)が、本願出願人の出願にかかる特開平8−128556号公報に開示されている。
【0005】
また、図4のような電動式弁、つまり、電磁弁200を、図6のように、吸収式冷凍機100における吸収液の所要の流路に設けた構成(以下、第2従来技術という)が、上記の特開平8−128556号公報に開示されている。
【0006】
図6において、吸収式冷凍機100は、吸収式冷温水機などの吸収式冷凍機であり、例えば、吸収剤を臭化リチウム、冷媒を水として混合した臭化リチウム水溶液などの吸収液を用いて周知の吸収式冷凍を行うものであって、太い実線部分は冷媒液・吸収液・冷却用水などの液体管路、二重線部分は冷媒蒸気の蒸気管路、つまり、気体管路であり、まず、吸収液の循環系を、吸収器1の底部に溜っている低濃度の吸収液、つまり、稀液2aを起点として説明する。
【0007】
稀液2aは、ポンプP1により、熱交換器3・4を経て、高温再生器5の加熱槽5Aに入る。高温再生器5は、加熱槽5Aと分離槽5Cとで構成してあり、稀液2aを加熱槽5Aで加熱して、分離槽5Cに送る。
【0008】
高温になった稀液2aは、分離槽5そ内で、稀液2a中に含まれている冷媒が蒸発して、高温になった中濃度の吸収液、つまり、中間液2bと、冷媒蒸気7aとに分離される。
【0009】
高温の中間液2bは、熱交換器4を経て、低温再生器11に入り、中間液2cになる。中間液2cは、低温再生器11内で高温再生器5からの冷媒蒸気7aが通る管路により加熱されて、高温になった高濃度の吸収液、つまり、濃液2dと、冷媒蒸気7bとに分離する。
【0010】
高温の濃液2dは、熱交換器3を経て、吸収器1内の散布器1Aに入り、散布器1Aの多数の穴から散布され、この散布した濃液2dは、吸収器1内の冷却管1Bを流通する冷却用水31aによって冷却される。
【0011】
また、濃液2dは、冷却管1Bの外側を流下する際に、隣接する蒸発器20から入ってくる冷媒蒸気7cを吸収して稀薄化し、低温の稀液2aに戻り、吸収液の一巡が終えるという吸収液循環を繰り返すものである。
【0012】
次に、冷媒の循環系を、吸収器1に入った冷媒蒸気7Cを起点にして説明する。冷媒蒸気7cは、上記の吸収液循環系で説明したように、吸収器1内の散布器1Aから分散した濃液2dに吸収される。冷媒を吸収した稀液2aは、高温再生器5で加熱されて冷媒蒸気7aが分離する。
【0013】
冷媒蒸気7aは、低温再生器11の放熱管11Aに入り、中間液2cに熱を与えて放熱し、凝縮して冷媒液8aになった後に、凝縮器15の底部に入る。また、凝縮器15は、隣接する低温再生器11から入ってくる冷媒蒸気7bを、凝縮器15内の冷却管15Aを通る冷却用水31aで冷却し、冷媒蒸気7bを凝縮して低温の冷媒液8aにする。
【0014】
冷媒液8aは、蒸発器20内の散布器20Aに入り、散布器20Aの多数の穴から蒸発器20内に散布され、蒸発器20の低部に溜まって冷媒液8bになる。この冷媒液8bは、ポンプP2により、再び散布器20Aに送られ、散布器20Aから散布することを繰り返す。
【0015】
散布された冷媒液8bは、蒸発器20内の熱交換管20Bを通る被熱操作流体、つまり、冷/温戻水32aを冷却する。この冷却の際に、冷媒液8bは、冷/温戻水32aから熱を吸収して蒸発し、冷媒蒸気7cになって、隣接する吸収器1に戻り、冷媒の一巡が終えるという冷媒循環を繰り返すものである。
【0016】
なお、高温再生器5は、加熱槽5Aと分離槽5Cとを一体構造にして構成したものも周知であり、また、高温再生器5の内部にある中間液2bと冷媒蒸気7aとは圧力が平衡状態にされており、さらに、蒸発器20の内部にある冷媒液8bと冷媒蒸気7cとは圧力が平衡状態にされているものである。
【0017】
上記のように、高温再生器5と低温再生器11との二重の再生動作によって、吸収液と冷媒、つまり、熱操作流体を循環しながら蒸発器20内の熱交換管20Bによって、冷/温戻水32a、つまり、被熱操作流体を冷却し、冷水32bを室内空調機器などの冷却対象機器(図示せず)に冷却用被熱操作流体として与える運転を、二重効用の冷却運転と言い、主として、冷房用に用いているため、冷房運転とも言っている。
【0018】
これに対して、高温再生器5の内部にある高温の中間液2bと冷媒蒸気7aとを、開閉弁V1を開いて、直接、吸収器1に戻し入れるとともに、蒸発器20の内部にある冷媒液8bを、開閉弁V2を開いて、吸収器1に戻し入れることにより、低温再生器11を用いずに、高温再生器5のみの運転によって、吸収液循環と冷媒循環とを行いながら蒸発器20内の熱交換管20Bによって、冷/温戻水32a、つまり、被熱操作流体を加温し、温水32bを室内空調機器などの加温対象機器(図示せず)に加温用被熱操作流体として与える運転を、加温運転(ボイラー運転)と言い、主として、暖房用に用いているため、暖房運転とも言っている。
【0019】
また、この加温運転時、つまり、暖房運転時には、吸収器1と凝縮器15との冷却は不要なので、冷却管1Bと冷却管15Aとに対する冷却用水31aの送水を停止している。
【0020】
なお、必要に応じて、暖房運転時に、冷媒液8aを蒸発器20に、直接、戻し入れるための開閉弁V4や、濃液2dを散布管1Aを介さずに吸収器1に戻し入れるための開閉弁V3を設けている。
【0021】
こうした冷房運転と暖房運転との切換などを行うための開閉弁V1・V2・V3・V4として、図4のような構成をもつ電動式弁、つまり、電磁弁200を用いるとともに、流入口63・流出口65・均圧管路83を所要の箇所に接続している。
【0022】
【発明が解決しようとする課題】
上記のような第1従来技術による電動式弁、つまり、電磁弁200の構造では、蛇腹状の隔膜80を、弁室64内に設けているため、実質的な弁室の容積と弁体61の移動量とが小さくなるので、吸収液の循環容量が大きい吸収式冷凍機100の場合には、不向きであり、図5の電動弁300のように、弁室64の壁部64Aに設けた気密状の貫通部分66、つまり、気密用部材66A、例えば、Oリングのパッキンで気密状にした貫通部分を貫通させた駆動棒62を、弁室64の外側に設けた駆動機構部分50によって駆動する構成のものを用いる必要がある。
【0023】
しかしながら、こうした構成の電動式弁を用いた場合には、貫通部分66の外側が外気になっているため、駆動棒62の移動によって、気密用部材66A、例えば、パッキンなどに付着した液体70中の混入剤が結晶になって析出したり、同様に付着した液体70中の腐食生成物、鉄粉、溶接スラッジなどが固化して、駆動棒62の移動を阻害し、または、気密構造を破壊するため、吸収式冷凍機100に不測の故障、例えば、冷暖運転と暖房運転との切換が不能になるなどの故障を招くという不都合を生ずる。
【0024】
このため、こうした不都合のない電動式弁ならびに電動式弁を用いた吸収式冷凍機の提供が望まれているという課題がある。
【0025】
【課題を解決するための手段】
この発明は、上記のような
弁室の壁部に設けた貫通部分を貫通する駆動棒によって弁体を移動することにより、混入剤を含んだ液体の流路を開閉するとともに、上記の駆動棒を電動力によって駆動する電動式弁において、
【0026】
上記の貫通部分に気密用部材を設けるとともに、上記の貫通部分の外側の上記の壁部と上記の駆動棒との間に、上記の移動に伴って変形する隔膜を設けた気密室を形成する気密室形成手段と、
上記の気密室と、上記の液体の下流側に配置された上記の液体の蒸気の部分とを接続するための流路を設けることにより、上記の気密用部材の部分に上記の混入剤の結晶が析出することを防止する結晶析出防止手段と
を設ける第1の構成と、
【0027】
吸収液を、冷媒蒸気を保有する部分に、流下させるために、弁室の壁部に設けた貫通部分を貫通する駆動棒によって弁体を移動することにより、上記の吸収液の流路を開閉するとともに、上記の駆動棒を電動力によって駆動する電動式弁を設けた吸収式冷凍機において、
【0028】
上記の貫通部分に気密用部材を設けるとともに、上記の貫通部分の外側の上記の壁部と上記の駆動棒との間に、上記の移動に伴って変形する隔膜を設けた気密室を形成する気密室形成手段と、
上記の気密室と、上記の液体の下流側に配置された上記の冷媒蒸気の部分とを接続するための流路を設けることにより、上記の気密用部材の部分に上記の吸収液の混入剤の結晶が析出することを防止する結晶析出防止手段と
を設ける第2の構成とによって、上記の課題を解決したものである。
【0029】
【発明の実施の形態】
この発明の実施の形態として、図5の電動弁300と同様の電動弁の構成と、図6の吸収式冷凍機100の構成とに、この発明を適用した場合の実施例を説明する。
【0030】
【実施例】
以下、実施例を図1〜図3により説明する。これらの図において、図4〜図6の符号と同一符号で示す部分は、図4〜図7で説明した同一符号の部分と同一の機能をもつ部分であり、また、図1〜図3において、同一符号で示す部分は、図1〜図3のいずれかによって説明した同一符号の部分と同一の機能をもつ部分である。
【0031】
〔第1実施例〕
まず、第1実施例として、図1により電動弁300の実施例を説明する。図1において、図5の電動弁300と異なる箇所は、歯車機構85を小傘歯車85Cと大傘歯車85Dとによる歯車機構にした箇所と、駆動棒62の移動機構を、軸受85Eで保持されたネジ軸62Bを大傘歯車85Dで回転することにより、駆動棒62に設けたネジ穴62Aに対して、入れ出しして移動するように構成した箇所と、貫通部分33の外側の壁部64Aと駆動棒62との間に、弁体61の移動、つまり、駆動棒62の移動にともなって変形する隔膜80Aを設けた気密室81Aを形成した箇所と、気密室81に、この気密室81Aと、液体70の下流側に配置された気体の部分(図示せず)とを接続するための流路として均圧管路83Aを設けた箇所とである。
【0032】
そして、具体的には、隔膜80Aは、薄い金属材、例えば、薄いステンレス鋼材を蛇腹状に形成したベローズであって、一端側は、駆動棒62の張出部分62Cに、また、他端側は、壁部64Aに気密状に固定した筒体87の解放端側87Aに、それぞれ、ろー付け、または、溶接で気密状に固定することにより、気密室80Aを形成してある。
【0033】
各構成部材は、断面に右上がり傾斜の細線ハッチングを施した部分と、断面に左上がり細線ハッチングを施した部分とが、それぞれ別個の一体になるように、気密を要する箇所にはパッキン(図示せず)を設けて、固定してある。
【0034】
そして、取付フレーム84に固定した電動機86の内部には所要の減速機構が組み込まれており、電動機86の回転軸86Aに固定した小傘歯車85Cが回転すると、大傘歯車85Dに固定したネジ軸62Bが回転して、ネジ軸62Bがネジ穴62Aに入れ出しされるため、右下がり傾斜の細線ハッチングを施した部分が移動するので、弁体61が弁座61Aに対して開閉動作することになるものである。
【0035】
したがって、気密用部材66Aの外側が、直接、外気にさらされることがなく、気密用部材66Aの外側と外気との間に、液体70の下流側に配置された気体、つまり、液体70の蒸気が充満された気密室81Aが介在しているため、気密用部材66Aの部分に、液体70中の混入剤の結晶が析出したり、液体70中の腐食生成物、鉄粉、溶接スラッジなどが固化して、駆動棒62の移動を阻害し、または、気密構造を破壊するなどの弊害がなくなり、また、仮に、液体70が気密用部材66Aの外側に漏れ出した場合でも、下流側の気体、つまり、液体70の蒸気に吸収されるため、吸収式冷凍機100に不測の故障、例えば、冷暖運転と暖房運転との切換が不能になるなどの故障を未然に防止することができる。
【0036】
〔第2実施例〕
次に、第2実施例として、図2により図1とは異なる電動弁300の実施例を説明する。図2において、図5の電動弁300と異なる箇所は、貫通部分33の外側の壁部64Aと駆動棒62との間に、弁体61の移動、つまり、駆動棒62の移動にともなって変形する隔膜80Aを設けた気密室81Aを形成した箇所と、気密室81に、この気密室81Aと、液体70の圧力と平衡状態をもつ液体70の下流側に配置された気体の部分(図示せず)とを接続するための流路として均圧管路83Aを設けた箇所とである。
【0037】
そして、具体的には、隔膜80Aは、図1における隔膜80Aと同様のものであって、一端側は、駆動棒62の張出部分62Cに、また、他端側は、壁部64Aに気密状に固定した筒体87の解放端側87Aに、それぞれ、ろー付け、または、溶接で気密状に固定することにより、気密室80Aを形成してある。
【0038】
各構成部材は、断面に右上がり傾斜の細線ハッチングを施した部分と、断面に左上がり細線ハッチングを施した部分とが、それぞれ別個の一体になるように、気密を要する箇所にはパッキン(図示せず)を設けて、固定してある。
【0039】
そして、電動機86の内部には所要の減速機構が組み込まれており、電動機86の回転軸86Aに固定したピニオン85Bが回転すると、貫通部分33と軸受85Fとで支持されたラック85Aが移動するため、右下がり傾斜の細線ハッチングを施した部分が移動することになるので、弁体61が弁座61Aに対して開閉動作することになるものである。
【0040】
したがって、第1実施例の場合と同様に、気密用部材66Aの外側が、直接、外気にさらされることがなく、気密用部材66Aの外側と外気との間に、液体70の下流側に配置された気体、つまり、液体70の蒸気が充満している気密室81Aが介在しているため、第1実施例と同様の効果が得られるほか、第1実施例に比べて、構成部材が少なく、簡便安価に構成にできる。
【0041】
〔第1実施例・第2実施例の構成の要約〕
上記の第1実施例・第2実施例の構成を要約すると、
弁室64の壁部64Aに設けた貫通部分66を貫通する駆動棒62によって弁体61を移動することにより、混入剤を含んだ液体70の流路71を開閉するとともに、上記の駆動棒62を、例えば、電動機86による電動力によって駆動する電動式弁、例えば、電動弁300において、
【0042】
上記の貫通部分66に気密用部材66Aを設けるとともに、上記の貫通部分66の外側の上記の壁部64Aと上記の駆動棒62との間に、上記の移動に伴って変形する隔膜、例えば、ベローズによる隔膜80Aを設けた気密室81Aを形成する気密室形成手段と、
上記の気密室81Aと、上記の液体70の下流側に配置された上記の液体70の蒸気75の部分とを接続するための流路、例えば、均圧管路83Aを設けることにより、上記の気密用部材66Aの部分に上記の混入剤の結晶が析出することを防止する結晶析出防止手段と
を設ける第1の構成を構成していることになるものである。
【0043】
〔第3実施例〕
次に、第3実施例として、図3により第1実施例・第2実施例による電動式弁、つまり、電動弁300を用いた吸収式冷凍機100の実施例を説明する。
【0044】
図3において、図7の構成と異なる箇所は、開閉弁V1・V2・V3・V4として第1実施例または第2実施例の構成による電動弁300を用いている箇所と、電動弁300の均圧管路83Aを、流入口63に流入する液体70に相当する吸収液に対して平衡状態をもつとともに、その吸収液の下流側に配置された気体、つまり、冷媒蒸気の部分に接続するように構成した箇所である。
【0045】
具体的には、開閉弁V1では、流入口63を中間液2bの部分に接続し、また、均圧管路83Aを、例えば、吸収器1の底部側の冷媒蒸気7cの部分に接続している。開閉弁V2では、流入口63を冷媒液8bの部分に接続し、また、均圧管路83Aを、例えば、蒸発器20の底部側の冷媒蒸気7cの部分に接続している。
【0046】
開閉弁V3では、流入口63を熱交換器3の下流側の管路内の濃液2dの部分に接続し、また、均圧管路83Aを、例えば、吸収器1の底部側の冷媒蒸気7cの部分に接続している。開閉弁V4では、流入口63を冷媒液8aの部分に接続し、均圧管路83Aを、例えば、吸収器1の冷媒蒸気7cの部分に接続している。
【0047】
したがって、第1実施例の場合と同様に、気密用部材66Aの外側が、直接、外気にさらされることがなく、気密用部材66Aの外側と外気との間に、液体70と平衡状態にある気体、つまり、液体70の蒸気が充満された気密室81Aが介在しているため、第1実施例と同様の効果が得られる。
【0048】
〔第3実施例の構成の要約〕
この第3実施例の構成を要約すると、
吸収液、例えば、濃液2a・中間液2b・冷媒液8a・冷媒液8bを、冷媒蒸気7cを保有する部分に、流下させるために、弁室64の壁部64Aに設けた貫通部分66を貫通する駆動棒62によって弁体61を移動することにより、上記の吸収液の流路71を開閉するとともに、上記の駆動棒62を電動力、例えば、電動機86による電動力によって駆動する電動式弁300を設けた吸収式冷凍機100において、
【0049】
上記の貫通部分66に気密用部材66Aを設けるとともに、上記の貫通部分66の外側の上記の壁部64Aと上記の駆動棒62との間に、上記の移動に伴って変形する隔膜、例えば、ベローズによる隔膜80Aを設けた気密室81Aを形成する気密室形成手段と、
上記の気密室81Aと、上記の液体70の下流側に配置された上記の冷媒蒸気7cの部分とを接続するための流路、例えば、均圧管路83Aを設けることにより、上記の気密用部材66Aの部分に上記の吸収液の混入剤の結晶が析出することを防止する結晶析出防止手段と
を設ける第2の構成を構成していることになるものである。
【0050】
〔変形実施〕
この発明は次のように変形して実施することを含むものである。
(1)隔膜80Aを、合成樹脂材で構成するとともに、隔膜80Aを、例えば、第1従来技術と同様の取付構造によって、所要の箇所に固定して構成する。
【0051】
(2)隔膜80Aの形状を蛇腹状にせずに、適宜の曲面状にして構成する。
(3)均圧用管路83Aを設ける箇所を気密室81Aの他の箇所に変更して構成する。
【0052】
(4)電動機86と歯車機構85による駆動機構部分50を第1従来技術と同様の電磁コイルとプランジャとにる駆動機構に変更して構成する。
【0053】
(5)電動機86と歯車機構85による駆動機構部分50を、直線動作の電動機、つまり、リニアモータによる駆動機構に変更して構成する。
【0054】
(6)開閉弁V1・V2・V3・V4のうちの所要の開閉弁、例えば、開閉弁V1のみについて、第1の構成による電動式弁を適用して構成する。
【0055】
【発明の効果】
この発明によれば、以上のように、第1の構成と第2の構成では、気密用部材の外側に、混入剤を含んだ液体の下流側に配置された気体、つまり、混入剤を含んだ液体の蒸気が充満している気密室が介在しているため、気密用部材の部分に、混入剤の結晶の析出や、腐食生成物、鉄粉、溶接スラッジなどの固化による駆動棒の移動阻害と気密構造の破壊などを防止することができ、また、仮に、液体が気密用部材の外側に漏れ出した場合でも、下流側の気体、つまり、混入剤を含んだ液体の蒸気に吸収できる。
【0056】
さらに、第3の構成では、吸収液の流路を開閉するが、上記の第1の構成と第2の構成のようになっているため、冷暖運転と暖房運転との切換を不能するなどの故障を未然に防止しできる吸収式冷凍機を提供し得るなどの特長がある。
【図面の簡単な説明】
図面中、図1〜図3はこの発明の実施例を、また、図4〜図6は従来技術を示し、各図の内容は次のとおりである。
【図1】要部構成縦断面図
【図2】要部構成縦断面図
【図3】全体ブロック構成図
【図4】要部構成縦断面図
【図5】要部構成縦断面図
【図6】全体ブロック構成図
【符号の説明】
1 吸収器
1A 散布管
1B 冷却管
2a 稀液
2b 中間液
2c 中間液
2d 濃液
3 熱交換管
4 熱交換管
5 高温再生器
5A 加熱槽
5C 分離槽
7a 冷媒蒸気
7b 冷媒蒸気
7c 冷媒蒸気
8a 冷媒液
8b 冷媒液
11 低温再生器
11A 放熱管
15 凝縮器
15A 冷却管
20 蒸発器
20A 散布管
20B 熱交換管
31a 冷却用水
32a 冷/温戻水
32b 冷/温水
50 駆動機構部分
52 電磁コイル
55 プランジャ
56 案内シリンダ
60 弁機構部分
61 弁体
61A 弁座
62 駆動棒
62A ネジ穴
62B ネジ軸
62C 張出部分
63 流入口
64 弁室
64A 壁部
65 流出口
66 貫通部分
66A 気密用部材
70 液体
71 流路
75 気体
80 隔膜
80A 隔膜
81 気密室
81A 気密室
83 均圧管
83A 均圧管
84 取付フレーム
85 歯車機構
85A ラック
85B ピニオン
85C 小傘歯車
85D 大傘歯車
85E 軸受
85F 軸受
86 電動機
86A 回転軸
87 筒体
87A 解放端
100 吸収式冷凍機
200 電磁弁
300 電動弁
P1 ポンプ
P2 ポンプ
V1 開閉弁
V2 開閉弁
V3 開閉弁
V4 開閉弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric valve that opens and closes a liquid flow path and an absorption refrigerator that uses an electric valve to open and close an absorption liquid flow path. In the present invention, the electric valve is a general term including all on-off valves that open and close the valve body by an electric driving force by a rotational operation or a linear operation.
[0002]
[Prior art]
As this type of electric valve, as shown in FIG. 4, a valve mechanism portion 60 provided with a valve body 61 that opens and closes a flow path 71 of a liquid 70 provided inside a valve chamber 64, and a drive rod for the valve body 61. 62, a solenoid valve 200 provided with a drive mechanism portion 50 that is driven by a plunger 55 that moves inside the guide cylinder 56 by the magnetic force of the electromagnetic coil 52, or, for example, as shown in FIG. The drive rod 62 of the valve body 61 that opens and closes the flow path 71 is configured by a motor mechanism 86 that is driven by a motor 86 that rotates through a gear mechanism 85, for example, a gear mechanism by a rack 85A and a pinion 85B. Is well known.
[0003]
Further, in such an electric valve, the liquid 70 flowing through the flow path 70 contains a mixed agent such as an absorbent, such as a solution containing a mixed agent such as a refrigerant, for example, a thermal operation fluid in an absorption refrigerator. In the case where the drive rod 62 is driven, crystals of the admixture precipitate on the side of the drive mechanism portion 50 that drives the drive rod 62, or corrosion products, iron powder, welding sludge, etc. enter the drive rod 62, thereby inhibiting the movement of the drive rod 62. For this reason, there arises an inconvenience that the absorption refrigeration machine 100 causes an unexpected failure, for example, failure of switching between the cooling / heating operation and the heating operation.
[0004]
In order to eliminate this inconvenience, as shown in FIG. 4, a bellows-like diaphragm 80 is provided between the valve chamber 64 and the drive rod, and a pressure equalizing pipe 83 is provided to remove back pressure due to expansion and contraction of the diaphragm 80. A structure (hereinafter referred to as the first prior art) that is provided on the drive mechanism portion 50 side and connects the pressure equalizing pipe 83 to a gas having a pressure comparable to the pressure of the fluid 70, for example, a refrigerant vapor portion, is described in the present application. This is disclosed in Japanese Patent Application Laid-Open No. 8-128556 related to the applicant's application.
[0005]
Moreover, the structure which provided the motorized valve like FIG. 4, ie, the electromagnetic valve 200, in the required flow path of the absorption liquid in the absorption refrigeration machine 100 as shown in FIG. 6 (hereinafter referred to as the second prior art). Is disclosed in JP-A-8-128556.
[0006]
In FIG. 6, an absorption refrigerator 100 is an absorption refrigerator such as an absorption chiller / heater. For example, an absorption liquid such as a lithium bromide aqueous solution in which an absorbent is mixed with lithium bromide and a refrigerant is used as water is used. This is a well-known absorption refrigeration, where the thick solid line part is a liquid line for refrigerant liquid, absorption liquid, cooling water, etc., and the double line part is a vapor line for refrigerant vapor, that is, a gas line First, the circulation system of the absorbing liquid will be described with the low concentration absorbing liquid accumulated at the bottom of the absorber 1, that is, the dilute liquid 2a as a starting point.
[0007]
The dilute liquid 2a enters the heating tank 5A of the high-temperature regenerator 5 through the heat exchangers 3 and 4 by the pump P1. The high-temperature regenerator 5 includes a heating tank 5A and a separation tank 5C, and the dilute liquid 2a is heated by the heating tank 5A and sent to the separation tank 5C.
[0008]
The dilute liquid 2a having a high temperature is evaporated in the separation tank 5 so that the refrigerant contained in the dilute liquid 2a evaporates to a medium concentration absorbing liquid that has become a high temperature, that is, the intermediate liquid 2b and the refrigerant vapor. 7a.
[0009]
The high temperature intermediate liquid 2b passes through the heat exchanger 4 and enters the low temperature regenerator 11 to become the intermediate liquid 2c. The intermediate liquid 2c is heated in a pipe through which the refrigerant vapor 7a from the high-temperature regenerator 5 passes in the low-temperature regenerator 11, and becomes a high-concentration absorbing liquid, that is, concentrated liquid 2d, refrigerant vapor 7b, and To separate.
[0010]
The hot concentrated liquid 2d passes through the heat exchanger 3 and enters the spreader 1A in the absorber 1 and is sprayed from a number of holes in the spreader 1A. The sprayed concentrated liquid 2d is cooled in the absorber 1. Cooled by cooling water 31a flowing through the pipe 1B.
[0011]
Further, when the concentrated liquid 2d flows down the cooling pipe 1B, the concentrated liquid 2d absorbs the refrigerant vapor 7c entering from the adjacent evaporator 20 and dilutes to return to the low-temperature diluted liquid 2a. The absorption liquid circulation is repeated.
[0012]
Next, the refrigerant circulation system will be described starting from the refrigerant vapor 7 </ b> C that has entered the absorber 1. The refrigerant vapor 7c is absorbed by the concentrated liquid 2d dispersed from the spreader 1A in the absorber 1 as described in the above-described absorption liquid circulation system. The diluted liquid 2a that has absorbed the refrigerant is heated by the high-temperature regenerator 5, and the refrigerant vapor 7a is separated.
[0013]
The refrigerant vapor 7a enters the heat radiating pipe 11A of the low temperature regenerator 11, dissipates heat by applying heat to the intermediate liquid 2c, condenses into the refrigerant liquid 8a, and then enters the bottom of the condenser 15. Further, the condenser 15 cools the refrigerant vapor 7b entering from the adjacent low-temperature regenerator 11 with cooling water 31a passing through the cooling pipe 15A in the condenser 15, and condenses the refrigerant vapor 7b to cool the refrigerant vapor at a low temperature. 8a.
[0014]
The refrigerant liquid 8a enters the spreader 20A in the evaporator 20 and is spread into the evaporator 20 from a number of holes of the spreader 20A, and accumulates in the lower part of the evaporator 20 to become the refrigerant liquid 8b. This refrigerant liquid 8b is sent again to the spreader 20A by the pump P2, and repeatedly spread from the spreader 20A.
[0015]
The sprayed refrigerant liquid 8b cools the heat-treated fluid that passes through the heat exchange pipe 20B in the evaporator 20, that is, the cold / warm water 32a. At the time of this cooling, the refrigerant liquid 8b absorbs heat from the cold / warm water 32a and evaporates to become refrigerant vapor 7c, returns to the adjacent absorber 1 and completes the circulation of the refrigerant. Repeat.
[0016]
In addition, the high temperature regenerator 5 is also known in which the heating tank 5A and the separation tank 5C are integrated, and the intermediate liquid 2b and the refrigerant vapor 7a inside the high temperature regenerator 5 are under pressure. In addition, the refrigerant liquid 8b and the refrigerant vapor 7c inside the evaporator 20 are in an equilibrium state.
[0017]
As described above, by the double regeneration operation of the high-temperature regenerator 5 and the low-temperature regenerator 11, the heat exchange pipe 20B in the evaporator 20 is cooled / refrigerated by circulating the absorption liquid and the refrigerant, that is, the heat operation fluid. The operation of cooling the warm return water 32a, that is, the heated operation fluid, and supplying the cold water 32b to the cooling target device (not shown) such as the indoor air conditioner as the cooling heated operation fluid is a double-effect cooling operation. In other words, because it is mainly used for cooling, it is also called cooling operation.
[0018]
On the other hand, the high-temperature intermediate liquid 2b and the refrigerant vapor 7a inside the high-temperature regenerator 5 are directly returned to the absorber 1 by opening the on-off valve V1 and the refrigerant inside the evaporator 20 By opening the on-off valve V2 and returning the liquid 8b to the absorber 1, the evaporator is operated while only the high-temperature regenerator 5 is operated and only the high-temperature regenerator 5 is operated without using the low-temperature regenerator 11. The heat exchange pipe 20B in 20 heats the cold / warm water 32a, that is, the heated operation fluid, and heats the hot water 32b to a heating target device (not shown) such as an indoor air conditioner. The operation given as the operation fluid is referred to as a heating operation (boiler operation), and is also referred to as a heating operation because it is mainly used for heating.
[0019]
Further, during the heating operation, that is, during the heating operation, cooling of the absorber 1 and the condenser 15 is unnecessary, and therefore, the water supply of the cooling water 31a to the cooling pipe 1B and the cooling pipe 15A is stopped.
[0020]
In addition, the opening and closing valve V4 for returning the refrigerant liquid 8a directly to the evaporator 20 and the concentrated liquid 2d for returning the concentrated liquid 2d to the absorber 1 without passing through the spray pipe 1A during the heating operation, if necessary. An on-off valve V3 is provided.
[0021]
As the on-off valves V1, V2, V3, and V4 for switching between the cooling operation and the heating operation, an electric valve having a configuration as shown in FIG. The outlet 65 and the pressure equalizing pipe 83 are connected to a required location.
[0022]
[Problems to be solved by the invention]
In the structure of the electric valve according to the first prior art as described above, that is, the electromagnetic valve 200, the bellows-like diaphragm 80 is provided in the valve chamber 64, so that the substantial volume of the valve chamber and the valve body 61 are provided. Therefore, it is not suitable for the absorption refrigerator 100 having a large circulating capacity of the absorbing liquid, and is provided on the wall 64A of the valve chamber 64 as in the motor-operated valve 300 of FIG. A drive rod 62 that is passed through an airtight penetrating portion 66, that is, an airtight member 66A, for example, an airtight penetrating portion with O-ring packing, is driven by a drive mechanism portion 50 provided outside the valve chamber 64. It is necessary to use the thing of the structure to do.
[0023]
However, when the electric valve having such a configuration is used, the outside of the penetrating portion 66 is outside air, and therefore the liquid 70 adhering to the airtight member 66A, for example, packing or the like by the movement of the drive rod 62 is increased. In the same way, corrosion products, iron powder, welding sludge, etc. in the liquid 70 adhering to the liquid 70 are solidified to inhibit the movement of the drive rod 62 or destroy the airtight structure. For this reason, the absorption refrigerator 100 has an inconvenience that it causes an unexpected failure, for example, a failure such as switching between the cooling / heating operation and the heating operation becomes impossible.
[0024]
For this reason, there exists a subject that provision of the absorption refrigeration machine using an electric valve and an electric valve without such an inconvenience is desired.
[0025]
[Means for Solving the Problems]
The present invention, Ri by the moving the valve element by a drive rod which passes through the setting digit penetrating portion in the wall of the valve chamber as described above, as well as opening and closing a flow path of containing mixed agent liquids, the In the electric valve that drives the drive rod of the motor by electric power,
[0026]
An airtight member is provided in the penetrating portion, and an airtight chamber is provided between the wall portion outside the penetrating portion and the driving rod, and a diaphragm that is deformed with the movement is provided. An airtight chamber forming means;
By providing a flow path for connecting the airtight chamber with the liquid vapor portion disposed on the downstream side of the liquid, a crystal of the admixture is formed on the airtight member portion. A first structure for providing a crystal precipitation preventing means for preventing the precipitation of
[0027]
The absorption liquid, the portion carrying the refrigerant vapor, in order to please the flow, more to move the valve element by a drive rod which passes through the through portion digits set in the wall of the valve chamber, the flow of the absorption liquid In the absorption refrigeration machine provided with an electric valve that opens and closes the path and drives the drive rod by electric power,
[0028]
An airtight member is provided in the penetrating portion, and an airtight chamber is provided between the wall portion outside the penetrating portion and the driving rod, and a diaphragm that is deformed with the movement is provided. An airtight chamber forming means;
By providing a flow path for connecting the airtight chamber and the refrigerant vapor portion disposed on the downstream side of the liquid, the admixture of the absorbing liquid is provided in the airtight member portion. The above-mentioned problem is solved by a second configuration provided with a crystal precipitation preventing means for preventing the precipitation of crystals .
[0029]
DETAILED DESCRIPTION OF THE INVENTION
As an embodiment of the present invention, an example in which the present invention is applied to the configuration of a motor-operated valve similar to the motor-operated valve 300 of FIG. 5 and the configuration of the absorption refrigerator 100 of FIG. 6 will be described.
[0030]
【Example】
Examples will be described below with reference to FIGS. In these drawings, the parts denoted by the same reference numerals as those in FIGS. 4 to 6 are the parts having the same functions as the parts having the same reference numerals described in FIGS. 4 to 7, and in FIGS. The parts indicated by the same reference numerals are parts having the same functions as the parts indicated by the same reference numerals described in any of FIGS.
[0031]
[First embodiment]
First, as a first embodiment, an embodiment of a motor-operated valve 300 will be described with reference to FIG. In FIG. 1, a portion different from the motor-operated valve 300 in FIG. 5 is that a portion where the gear mechanism 85 is a gear mechanism using a small bevel gear 85C and a large bevel gear 85D and a moving mechanism of the drive rod 62 are held by a bearing 85E. The screw shaft 62B is rotated by the large bevel gear 85D so that the screw shaft 62B is inserted into and moved from the screw hole 62A provided in the drive rod 62, and the outer wall portion 64A of the penetrating portion 33. The position of the airtight chamber 81A provided with the diaphragm 80A that is deformed with the movement of the valve body 61, that is, the movement of the drive rod 62, and the airtight chamber 81 are formed between the valve body 61 and the drive rod 62. And a portion where a pressure equalizing pipe 83A is provided as a flow path for connecting a gas portion (not shown) disposed on the downstream side of the liquid 70.
[0032]
Specifically, the diaphragm 80A is a bellows in which a thin metal material, for example, a thin stainless steel material, is formed in a bellows shape, and one end side thereof is an overhang portion 62C of the drive rod 62 and the other end side. Are formed on the open end 87A of the cylinder 87 that is airtightly fixed to the wall portion 64A, respectively, by airtightly fixing by brazing or welding.
[0033]
Each component has a packing (see Fig. 4) where airtight and thin cross-hatched portions are cross-sectioned and left-trimmed thin-line hatched portions are separately integrated. (Not shown) is provided and fixed.
[0034]
A required speed reduction mechanism is incorporated in the electric motor 86 fixed to the mounting frame 84. When the small bevel gear 85C fixed to the rotating shaft 86A of the electric motor 86 rotates, the screw shaft fixed to the large bevel gear 85D. Since 62B rotates and the screw shaft 62B is inserted into and removed from the screw hole 62A, the portion with the thin line hatching inclined downward to the right moves, so that the valve body 61 opens and closes with respect to the valve seat 61A. It will be.
[0035]
Therefore, the outside of the airtight member 66A is not directly exposed to the outside air, and the gas disposed on the downstream side of the liquid 70 between the outside of the airtight member 66A and the outside air , that is, the vapor of the liquid 70 Since the airtight chamber 81A filled with is interposed, crystals of the admixture in the liquid 70 are deposited on the portion of the airtight member 66A, and corrosion products, iron powder, welding sludge, etc. in the liquid 70 are present. The solidification prevents the movement of the drive rod 62 or destroys the airtight structure, and even if the liquid 70 leaks outside the airtight member 66A, the downstream gas That is, since it is absorbed by the vapor of the liquid 70, it is possible to prevent an unexpected failure in the absorption refrigerator 100, for example, a failure such as switching between the cooling / heating operation and the heating operation becoming impossible.
[0036]
[Second Embodiment]
Next, as a second embodiment, an embodiment of a motor-operated valve 300 different from FIG. 1 will be described with reference to FIG. 2 differs from the motor-driven valve 300 of FIG. 5 in that the valve body 61 is moved between the wall portion 64A outside the penetrating portion 33 and the drive rod 62, that is, the drive rod 62 is moved. The portion of the airtight chamber 81A provided with the separating membrane 80A is formed, and in the airtight chamber 81, a gas portion (not shown) arranged on the downstream side of the airtight chamber 81A and the liquid 70 having an equilibrium state with the pressure of the liquid 70. The pressure equalizing pipe 83A is provided as a flow path for connecting the
[0037]
Specifically, the diaphragm 80A is the same as the diaphragm 80A in FIG. 1, and one end side is airtight to the overhanging portion 62C of the drive rod 62 and the other end side is airtight to the wall portion 64A. An airtight chamber 80A is formed on the open end side 87A of the cylindrical body 87 fixed in a shape by fixing it in an airtight manner by brazing or welding.
[0038]
Each component has a packing (see Fig. 4) where airtight and thin cross-hatched portions are cross-sectioned and left-trimmed thin-line hatched portions are separately integrated. (Not shown) is provided and fixed.
[0039]
A required speed reduction mechanism is incorporated in the electric motor 86, and when the pinion 85B fixed to the rotating shaft 86A of the electric motor 86 rotates, the rack 85A supported by the penetrating portion 33 and the bearing 85F moves. Since the portion hatched with the fine line hatching to the right is moved, the valve body 61 is opened and closed with respect to the valve seat 61A.
[0040]
Therefore, as in the case of the first embodiment, the outside of the airtight member 66A is not directly exposed to the outside air, and is arranged on the downstream side of the liquid 70 between the outside of the airtight member 66A and the outside air. Since the airtight chamber 81A filled with the gas, that is, the vapor of the liquid 70 is interposed, the same effect as that of the first embodiment can be obtained, and the number of constituent members is smaller than that of the first embodiment. It can be configured simply and inexpensively.
[0041]
[Summary of the configuration of the first and second embodiments]
To summarize the configuration of the first and second embodiments,
Ri by the moving the valve body 61 by a drive rod 62 which passes through the through portion 66 digits set in the wall portion 64A of the valve chamber 64, thereby opening and closing a flow path 71 of the liquid body 70 containing a mixing agent, in the the drive rod 62, for example, an electric valve to thus drive the electric force that by the electric motor 86, for example, in an electric valve 300,
[0042]
An airtight member 66A is provided in the penetrating portion 66, and a diaphragm that deforms with the movement between the wall portion 64A outside the penetrating portion 66 and the driving rod 62, for example, An airtight chamber forming means for forming an airtight chamber 81A provided with a bellows diaphragm 80A;
An airtight chamber 81A of the flow path for connecting a portion of the vapor 75 of the liquid 70 disposed on the downstream side of the liquid 70, for example, by providing a pressure equalizing pipe line 83A, the above airtight This constitutes a first configuration in which a crystal precipitation preventing means for preventing the crystals of the admixture from precipitating on the member 66A is provided.
[0043]
[Third embodiment]
Next, as a third embodiment, an embodiment of the absorption refrigeration machine 100 using the motor operated valve according to the first embodiment and the second embodiment, that is, the motor operated valve 300 will be described with reference to FIG.
[0044]
3 differs from the configuration of FIG. 7 in that the motor-operated valve 300 according to the configuration of the first embodiment or the second embodiment is used as the on-off valves V1, V2, V3, and V4. The pressure line 83A is in an equilibrium state with respect to the absorbing liquid corresponding to the liquid 70 flowing into the inflow port 63, and is connected to a gas disposed downstream of the absorbing liquid, that is, a refrigerant vapor portion. This is the place that was constructed.
[0045]
Specifically, in the on-off valve V1, the inlet 63 is connected to the intermediate liquid 2b portion, and the pressure equalizing pipe 83A is connected to the refrigerant vapor 7c portion on the bottom side of the absorber 1, for example. . In the on-off valve V2, the inflow port 63 is connected to the portion of the refrigerant liquid 8b, and the pressure equalizing pipe 83A is connected to the portion of the refrigerant vapor 7c on the bottom side of the evaporator 20, for example.
[0046]
In the on-off valve V3, the inlet 63 is connected to the portion of the concentrated liquid 2d in the pipe downstream of the heat exchanger 3, and the pressure equalizing pipe 83A is connected to, for example, the refrigerant vapor 7c on the bottom side of the absorber 1. Is connected to the part. In the on-off valve V4, the inlet 63 is connected to the refrigerant liquid 8a, and the pressure equalizing pipe 83A is connected to, for example, the refrigerant vapor 7c of the absorber 1.
[0047]
Therefore, as in the case of the first embodiment, the outside of the airtight member 66A is not directly exposed to the outside air, and is in equilibrium with the liquid 70 between the outside of the airtight member 66A and the outside air. Since the airtight chamber 81A filled with gas, that is, the vapor of the liquid 70 is interposed, the same effect as the first embodiment can be obtained.
[0048]
[Summary of Configuration of Third Embodiment]
To summarize the configuration of the third embodiment,
Absorbing liquid, for example, a concentrated solution 2a · intermediate liquid 2b · coolant liquid 8a · refrigerant liquid 8b, the portion carrying the refrigerant vapor 7c, in order to please the flow, transmembrane portion digits set in the wall portion 64A of the valve chamber 64 more to the drive rod 62 passing through the 66 to move the valve body 61, thereby opening and closing a flow path 71 of the absorption liquid, the electric power of the above drive rod 62, for example, is driven by an electric force by the electric motor 86 In the absorption refrigerator 100 provided with the electric valve 300,
[0049]
An airtight member 66A is provided in the penetrating portion 66, and a diaphragm that deforms with the movement between the wall portion 64A outside the penetrating portion 66 and the driving rod 62, for example, An airtight chamber forming means for forming an airtight chamber 81A provided with a bellows diaphragm 80A;
By providing a flow path for connecting the airtight chamber 81A and the portion of the refrigerant vapor 7c disposed on the downstream side of the liquid 70, for example, a pressure equalizing pipe 83A, the airtight member This constitutes a second configuration in which the crystal precipitation preventing means for preventing the admixture crystal of the absorption liquid from being precipitated is provided at the portion 66A .
[0050]
[Modification]
The present invention includes the following modifications.
(1) The diaphragm 80A is made of a synthetic resin material, and the diaphragm 80A is fixed to a required place by the same mounting structure as that of the first prior art, for example.
[0051]
(2) The shape of the diaphragm 80A is not an accordion shape but an appropriate curved shape.
(3) The part where the pressure equalizing pipe 83A is provided is changed to another part of the airtight chamber 81A.
[0052]
(4) The drive mechanism portion 50 constituted by the electric motor 86 and the gear mechanism 85 is changed to a drive mechanism using an electromagnetic coil and a plunger similar to the first prior art.
[0053]
(5) The drive mechanism portion 50 including the electric motor 86 and the gear mechanism 85 is changed to a linearly operated electric motor, that is, a drive mechanism using a linear motor.
[0054]
(6) A required on-off valve of the on-off valves V1, V2, V3, and V4, for example, only the on-off valve V1, is configured by applying the electric valve according to the first configuration.
[0055]
【The invention's effect】
According to the present invention, as described above, the first configuration and the second configuration, the outside of the airtight member, comprises a gas which is disposed downstream of the liquid containing the mixed agent, i.e., a mixed agent Because there is an airtight chamber filled with liquid vapor, the drive rod moves due to the precipitation of contaminant crystals and the solidification of corrosion products, iron powder, welding sludge, etc. Inhibition and destruction of the airtight structure can be prevented, and even if the liquid leaks to the outside of the airtight member, it can be absorbed into the gas on the downstream side , that is, the liquid vapor containing the contaminant. .
[0056]
Furthermore, in the third configuration, although the flow path of the absorbing liquid is opened and closed, the switching between the cooling / heating operation and the heating operation cannot be performed because the first configuration and the second configuration are used. There is an advantage that an absorption refrigerator that can prevent breakdowns can be provided.
[Brief description of the drawings]
In the drawings, FIGS. 1 to 3 show an embodiment of the present invention, and FIGS. 4 to 6 show the prior art. The contents of each figure are as follows.
[Fig. 1] Main configuration vertical section [Fig. 2] Main configuration vertical cross section [Fig. 3] Overall block configuration [Fig. 4] Main configuration vertical cross section [Fig. 5] Main configuration vertical cross section [Fig. 6] Overall block diagram [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorber 1A Spreading pipe 1B Cooling pipe 2a Diluted liquid 2b Intermediate liquid 2c Intermediate liquid 2d Concentrated liquid 3 Heat exchange pipe 4 Heat exchange pipe 5 High temperature regenerator 5A Heating tank 5C Separation tank 7a Refrigerant vapor 7b Refrigerant vapor 7c Refrigerant vapor 8a Refrigerant Liquid 8b Refrigerant liquid 11 Low temperature regenerator 11A Radiator pipe 15 Condenser 15A Cooling pipe 20 Evaporator 20A Spreading pipe 20B Heat exchange pipe 31a Cooling water 32a Cold / warm water 32b Cold / hot water 50 Drive mechanism portion 52 Electromagnetic coil 55 Plunger 56 Guide cylinder 60 Valve mechanism portion 61 Valve body 61A Valve seat 62 Drive rod 62A Screw hole 62B Screw shaft 62C Overhang portion 63 Inlet 64 Valve chamber 64A Wall portion 65 Outlet 66 Through portion 66A Airtight member 70 Liquid 71 Channel 75 Gas 80 Diaphragm 80A Diaphragm 81 Airtight chamber 81A Airtight chamber 83 Pressure equalizing tube 83A Pressure equalizing tube 84 Mounting frame 85 Gear mechanism 85A 85B Pinion 85C Small bevel gear 85D Large bevel gear 85E Bearing 85F Bearing 86 Electric motor 86A Rotating shaft 87 Cylindrical body 87A Open end 100 Absorption refrigeration machine 200 Electromagnetic valve 300 Electric valve P1 Pump P2 Pump V1 On-off valve V2 On-off valve V3 On-off valve V4 open / close valve

Claims (2)

弁室の壁部に設けた貫通部分を貫通する駆動棒によって弁体を移動することにより、混入剤を含んだ液体の流路を開閉するとともに、前記駆動棒を電動力によって駆動する電動式弁であって、
前記貫通部分に気密用部材を設けるとともに、前記貫通部分の外側の前記壁部と前記駆動棒との間に、前記移動に伴って変形する隔膜を設けた気密室を形成する気密室形成手段と、
前記気密室と、前記液体の下流側に配置された前記液体の蒸気の部分とを接続するための流路を設けることにより、前記気密用部材の部分に前記混入剤の結晶が析出することを防止する結晶析出防止手段と
を具備することを特徴とする電動式弁。
Ri by the moving the valve element by a drive rod which passes through the through portion digits set in the wall of the valve chamber, thereby opening and closing a flow path of containing mixed agent liquids, driving the drive rod by an electric force An electric valve,
An airtight chamber forming means for forming an airtight chamber in which an airtight member is provided in the penetrating portion, and a diaphragm that is deformed with the movement is provided between the wall portion outside the penetrating portion and the drive rod; ,
By providing a flow path for connecting the hermetic chamber and a portion of the liquid vapor disposed on the downstream side of the liquid , crystals of the admixture are deposited on the portion of the hermetic member. An electrically operated valve comprising: crystal precipitation preventing means for preventing .
吸収液を、冷媒蒸気を保有する部分に、流下させるために、弁室の壁部に設けた貫通部分を貫通する駆動棒によって弁体を移動することにより、前記吸収液の流路を開閉するとともに、前記駆動棒を電動力によって駆動する電動式弁を設けた吸収式冷凍機であって、
前記貫通部分に気密用部材を設けるとともに、前記貫通部分の外側の前記壁部と前記駆動棒との間に、前記移動に伴って変形する隔膜を設けた気密室を形成する気密室形成手段と、
前記気密室と、前記液体の下流側に配置された前記冷媒蒸気の部分とを接続するための流路を設けることにより、前記気密用部材の部分に前記吸収液の混入剤の結晶が析出することを防止する結晶析出防止手段と
を具備することを特徴とする吸収式冷凍機。
The absorption liquid, the portion carrying the refrigerant vapor, in order to please the flow, more to move the valve element by a drive rod which passes through the through portion digits set in the wall of the valve chamber, the flow passage of the absorbing liquid And an absorption refrigeration machine provided with an electric valve that drives the drive rod with electric force,
An airtight chamber forming means for forming an airtight chamber in which an airtight member is provided in the penetrating portion, and a diaphragm that is deformed with the movement is provided between the wall portion outside the penetrating portion and the drive rod; ,
By providing a flow path for connecting the airtight chamber and the portion of the refrigerant vapor disposed on the downstream side of the liquid , crystals of the admixture of the absorbing liquid are deposited on the portion of the airtight member. An absorption refrigerator comprising: crystal precipitation preventing means for preventing this .
JP23111896A 1996-08-30 1996-08-30 Motorized valve and absorption refrigerator using motorized valve Expired - Fee Related JP3748953B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23111896A JP3748953B2 (en) 1996-08-30 1996-08-30 Motorized valve and absorption refrigerator using motorized valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23111896A JP3748953B2 (en) 1996-08-30 1996-08-30 Motorized valve and absorption refrigerator using motorized valve

Publications (2)

Publication Number Publication Date
JPH1078153A JPH1078153A (en) 1998-03-24
JP3748953B2 true JP3748953B2 (en) 2006-02-22

Family

ID=16918576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23111896A Expired - Fee Related JP3748953B2 (en) 1996-08-30 1996-08-30 Motorized valve and absorption refrigerator using motorized valve

Country Status (1)

Country Link
JP (1) JP3748953B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775654A (en) * 2013-12-30 2014-05-07 宁波市天基隆智控技术有限公司 Reversing valve

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO323938B1 (en) * 2005-06-08 2007-07-23 Bard Havre Device for transmitting a torque and use of the device
ES2729840T3 (en) * 2005-10-24 2019-11-06 Camfil Usa Inc Linear drive for integrated regulator
KR101102063B1 (en) 2010-02-10 2012-01-04 송진한 Actuator for driving valve
KR101134628B1 (en) 2010-08-23 2012-04-09 송진한 Actuator for driving valve
JP2012077950A (en) * 2010-09-30 2012-04-19 Sanyo Electric Co Ltd Valve device and absorption refrigerator using the same
CN103867789A (en) * 2012-12-11 2014-06-18 浙江三花股份有限公司 Flow regulating valve

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103775654A (en) * 2013-12-30 2014-05-07 宁波市天基隆智控技术有限公司 Reversing valve

Also Published As

Publication number Publication date
JPH1078153A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
EP0795725A2 (en) Adsorptive-type refrigeration apparatus
JP3748953B2 (en) Motorized valve and absorption refrigerator using motorized valve
JP3287131B2 (en) Absorption chiller / heater
CA2426526A1 (en) Phase-change heat transfer coupling for aqua-ammonia absorption systems
JP3241550B2 (en) Double effect absorption chiller / heater
JP2530094B2 (en) Refrigeration cycle
JP2983862B2 (en) Solenoid valve and absorption refrigerator using solenoid valve
JP3348402B2 (en) Air conditioner
JP2554782B2 (en) Absorption heat pump device
JP3715157B2 (en) 2-stage double-effect absorption refrigerator
KR0130652Y1 (en) Small absorption type cooling/heating device by heat pipe
US6000235A (en) Absorption cooling and heating refrigeration system flow valve
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JP3315349B2 (en) solenoid valve
JPH02272268A (en) Absorbing type freezing device
JPH0222311B2 (en)
KR910008683Y1 (en) Absorption type refrigerator
JP3133538B2 (en) Absorption refrigerator
JP2000171121A (en) Absorption refrigerating machine
JP2645828B2 (en) Double effect absorption refrigerator
JP2001317835A (en) Absorption refrigeration machine
JP2957191B2 (en) Defrosting mechanism for absorption heat pump and absorption heat pump cooling / heating device provided with the defrosting mechanism
JPH0222544Y2 (en)
JPH07104071B2 (en) Absorption refrigerator
JPH04244562A (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees