JP3748839B2 - Sewage sterilizer - Google Patents

Sewage sterilizer Download PDF

Info

Publication number
JP3748839B2
JP3748839B2 JP2002220492A JP2002220492A JP3748839B2 JP 3748839 B2 JP3748839 B2 JP 3748839B2 JP 2002220492 A JP2002220492 A JP 2002220492A JP 2002220492 A JP2002220492 A JP 2002220492A JP 3748839 B2 JP3748839 B2 JP 3748839B2
Authority
JP
Japan
Prior art keywords
sewage
steam
heating pipe
temperature
sent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002220492A
Other languages
Japanese (ja)
Other versions
JP2004057951A (en
Inventor
好雄 堺
Original Assignee
株式会社アクアリサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクアリサーチ filed Critical 株式会社アクアリサーチ
Priority to JP2002220492A priority Critical patent/JP3748839B2/en
Publication of JP2004057951A publication Critical patent/JP2004057951A/en
Application granted granted Critical
Publication of JP3748839B2 publication Critical patent/JP3748839B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚水滅菌装置に関するものである。
【0002】
【従来の技術】
例えば、病院の手術室、解剖室、或いは感染病棟などから排出される汚水には、様々な感染症系の細菌類が含まれているため、これを汚水滅菌装置によって滅菌処理してから放流する必要がある。このような汚水滅菌装置として、蒸気の熱を利用して汚水中の微生物を殺滅する装置が従来より公知である。従来のこの種の装置は、加熱容器に蒸気を供給すると共に、この加熱容器に汚水を送り込み、該加熱容器内の汚水を適当な温度と圧力の下で加熱し、汚水中の微生物を殺滅するものである。ところが、この汚水滅菌装置によると、高圧に耐え得る大型の加熱容器を用いる必要があるため、その製造コストが高くなる欠点を免れなかった。
【0003】
【発明が解決しようとする課題】
本発明の目的は、上記従来の欠点を除去した汚水滅菌装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、上記目的を達成するため、汚水が送り込まれる加熱管と、該加熱管に送り込まれる前の汚水に蒸気を供給して該蒸気と汚水を混合する混合器と、加熱管を流通する汚水の温度を検知する温度センサと、該温度センサの検知結果に基づいて汚水への蒸気の供給量を制御する蒸気供給量制御手段と、前記混合器へ送り込まれる前の汚水を貯留する原水槽と、前記温度センサによって汚水の温度が異常に低い異常温度となったことが検知されたとき、前記加熱管を通過した汚水を前記原水槽に戻す汚水返送手段とを具備して成る汚水滅菌装置を提案する(請求項1)。
【0005】
また、本発明は、上記目的を達成するため、汚水が送り込まれる加熱管と、該加熱管に送り込まれる前の汚水に蒸気を供給して該蒸気と汚水を混合する混合器と、加熱管を通過した汚水を冷却する冷却手段と、加熱管を流通する汚水の温度を検知する温度センサと、該温度センサの検知結果に基づいて汚水への蒸気の供給量を制御する蒸気供給量制御手段と、前記混合器へ送り込まれる前の汚水を貯留する原水槽と、前記温度センサによって汚水の温度が異常に低い異常温度となったことが検知されたとき、前記冷却手段を通過した汚水を前記原水槽に戻す汚水返送手段とを具備して成る汚水滅菌装置を提案する(請求項2)。
【0006】
さらに、上記請求項1又は2に記載の汚水滅菌装置において、前記加熱管へ洗浄水を送り込む洗浄水供給手段を具備すると有利である(請求項3)。
【0007】
【発明の実施の形態】
以下、本発明の実施形態例を図面に従って詳細に説明する。
【0008】
図1は、本発明に係る汚水滅菌装置の一例を示すフローシートである。図1において、病院の手術室、解剖室、或いは感染病棟などの汚水発生源1から排出された汚水は、矢印Aで示すように排水管2を通して原水槽3へ送り込まれ、ここで一旦、貯留される。汚水中の固形物は、破砕機4により破砕された後、原水槽3へ送られる。
【0009】
原水槽3に貯留された汚水Wは、矢印Bで示すように原水ポンプ5により汲み上げられて供給管6を流通し、混合器7を介して加熱管8に送り込まれる。加熱管8を矢印Cで示すように流通した汚水は冷却手段9を通り、次いで矢印Dで示すように流出管10を通して冷却水槽11に送られる。
【0010】
混合器7は、加熱管8に送り込まれる前の汚水に蒸気(ここでは水蒸気)を供給してその蒸気と汚水を混合する用をなす。混合器7には、蒸気発生源12からの蒸気が、矢印Eで示すように蒸気管13を通して圧送され、該混合器7内でその蒸気が汚水に混合される。このようにして汚水が蒸気の熱によって加熱される。汚水中に取り込まれた蒸気は、通常、汚水に熱を奪われて液化する。蒸気発生源12としては、一般に病院で用いられているボイラーを用いることができる。
【0011】
上述の如く加熱された汚水が加熱管8を流通し、この間に、汚水中の微生物が滅菌される。加熱管8を通過した汚水は、高温度に加熱されているので、これをそのまま放流することはできない。そこで、加熱管8を通過した汚水を冷却手段9によって冷却する。ここに一例として示した冷却手段9は、内側管と外側管から成る二重管14を有し、加熱管8からの汚水が内側管内に流入し、該内側管を流通した汚水が内側管の出口から流出管10へ移行する。二重管14の外側管と内側管との間に冷却水が流通し、これによって内側管を流れる汚水が冷却される。冷却後の汚水の温度は、例えば80℃以下となっている。
【0012】
流出管10を通して冷却水槽11に送られた汚水は、ここでさらに温度が下げられ、40℃以下となった汚水が放流ポンプ15によって汲み上げられ下水道などに放流される。
【0013】
汚水が加熱管8に流入した時点から、その加熱管8を流出するまでの時間(以下、汚水の流通時間という)と、その加熱管8を流れる汚水の温度は、当該汚水を完全に滅菌処理できるだけの値に定められる。蒸気により加熱された汚水の温度が高いときは、その汚水の流通時間を短く設定でき、逆に汚水の温度が比較的低いときは、当該汚水の流通時間を長く設定する必要がある。例えば、加熱管8を流れる汚水の温度が130℃であるときは、その汚水の流通時間を10分以上に設定し、また汚水の温度が121℃であるときは汚水の流通時間を15分以上に設定する。図1に示した汚水滅菌装置においては、原水ポンプ5として定量ポンプが用いられ、このポンプ5によって一定量の汚水が加熱管8に送り込まれるように構成されている。しかも加熱管8を流れる汚水の温度が121℃以上となり、かつ当該汚水が加熱管8を流通する汚水の流通時間が20分となるように、汚水への蒸気供給量が調整される。すなわち、加熱管8の下流側の部分には、加熱管8を流通する汚水の温度を検知する温度センサ16が設けられ、この温度センサ16にて生じた検知信号はコントローラ17に取り込まれ、該コントローラ17からの指令によって、蒸気管13中に設けられた蒸気調整バルブ18の開度が調整され、汚水への蒸気の供給量が制御される。より具体的に示すと、温度センサ16により検知された汚水の温度が、予め決められた設定温度(例えば125℃)以下となったとき、コントローラ17からの指令により蒸気調整バルブ18の開度が拡大される。これにより蒸気発生源12から混合器7へ送り込まれる蒸気の量が増大し、多量の蒸気が汚水に供給される。逆に、温度センサ16により検知された汚水の温度が上記設定温度よりも高いときは、蒸気調整バルブ18の開度が小さくなるように該バルブが制御され、汚水へ供給される蒸気の量が減少する。このように、加熱管8を流れる汚水の温度が滅菌に適した温度範囲に維持され、適正な滅菌処理が行われる。図1に示したコントローラ17と、蒸気調整バルブ18は、温度センサの検知結果に基づいて汚水への蒸気の供給量を制御する蒸気供給量制御手段の一例を構成している。
【0014】
上述のように、本例の汚水滅菌装置は、汚水が加熱管8を通る間にその滅菌を行うように構成されているので、従来のように大型な加熱容器を用いる必要はなく、汚水滅菌装置のコストを低減できる。
【0015】
ところで、蒸気発生源12が故障すると、汚水に所定量の蒸気を供給できなくなり、加熱管8を通る汚水の温度が異常に低くなる結果、汚水の滅菌を行えなくなる。そこで、図1に示した汚水滅菌装置には、温度センサ16にて生じた検知信号が入力される前述のコントローラ17のほかに、このコントローラ17により制御される流路切換バルブ20と、この流路切換バルブ20を介して流出管10から分岐した返送管21とが設けられ、温度センサ16によって汚水の温度が異常に低い異常温度(例えば120℃)となったことが検知されたとき、コントローラ17からの指令により流路切換バルブ20が作動し、汚水の流路が返送管21へと切り換えられる。これにより、冷却手段9を通過した汚水は、冷却水槽11には送られず、矢印Fで示すように返送管21を通して原水槽3に戻される。このようにして、滅菌処理されていない汚水が、そのまま放流されることが阻止される。
【0016】
上述のように汚水の温度が異常温度となったことが検知されたときは、コントローラ17からの出力信号により蒸気調整バルブ18が閉じられ、汚水への蒸気の供給が停止される。これに対し、原水ポンプ5は作動を続け、原水槽3から加熱管8へ汚水が送り込まれ、その汚水は返送管21を通して原水槽3に戻される。このように汚水が循環している間に加熱管8を通る汚水の温度が大きく低下し、当該温度が例えば80℃となった時点で原水ポンプ5も作動を停止する。
【0017】
蒸気発生源12を修理した後、汚水滅菌装置の稼動が再開され、原水ポンプ5により圧送された汚水に、混合器7にて蒸気が供給される。その汚水は加熱管8を通り、次いで冷却手段9により冷却されるが、その冷却後の汚水は、しばらくの間、返送管21を通して原水槽3に戻される。温度センサ16によって汚水の温度が所定温度、例えば120℃よりも高い温度となったことが検知されたとき、コントローラ17からの指令により、流路切換バルブ20が作動して返送管21への流路が遮断され、これによって冷却手段9を通った汚水が冷却水槽11へ送り込まれる。
【0018】
上述のように、本例の汚水滅菌装置は、混合器へ送り込まれる前の汚水を貯留する原水槽3と、温度センサ16によって汚水の温度が異常に低い異常温度となったことが検知されたとき、加熱管8と冷却手段9を通過した汚水を原水槽3へ戻す汚水返送手段とを有しており、図示した例では、コントローラ17と、流路切換バルブ20と、返送管21とによって汚水返送手段が構成されている。
【0019】
ところで、加熱管8の内壁面には、経時的に汚物が付着するので、これを除去して加熱管8を清掃する必要がある。そこで、本例の汚水滅菌装置には、加熱管8へ洗浄水を送り込む洗浄水供給手段が設けられ、その洗浄水によって加熱管8内を清掃できるように構成されている。より具体的に示すと、前述の供給管6に、洗浄水ポンプ24が洗浄水管23を介して接続され、この洗浄水管中に電動弁22が設けられている。加熱管8内を清掃するときは、原水ポンプ5の作動を停止すると共に、電動弁22を開放し、洗浄水ポンプ24によって加圧された洗浄水を、洗浄水管23を通して供給管6に送り、当該洗浄水を混合器7を通して加熱管8内に圧送し、加熱管内を清掃する。その際、電動弁22より洗浄信号を受けたコントローラ17からの指令によって、蒸気調整バルブ18を調整し、洗浄水を、洗浄に最も適した温度(例えば40℃)に保持できる量の蒸気を混合器7により洗浄水に供給する。加熱管8を通った洗浄水は、細菌に汚染されているため、流路切換バルブ20を介して返送管21に送られ、原水槽3に送り込まれる。このように本例の洗浄水供給手段は、混合器7を介して、加熱管8へ洗浄水を送り込むように構成されている。
【0020】
従来の汚水滅菌装置においては、加熱容器の内壁面に付着した汚物を除去する作業が容易でなく、その作業に多くの時間を必要としていたが、本例の汚水滅菌装置では、上述のように、単に加熱管8内に洗浄水を通すだけで、簡単かつ短時間で加熱管を清掃することができる。
【0021】
本発明に係る汚水滅菌装置は、病院で発生する汚水を滅菌処理する装置として特に有効に利用できるが、病院以外の個所で発生する汚水を滅菌処理する汚水滅菌装置としても用いることができる。
【0022】
【発明の効果】
本発明に係る汚水滅菌装置によれば、確実に汚水を滅菌処理できると共に、そのコストを低減することができる。
【図面の簡単な説明】
【図1】汚水滅菌装置の一例を示すフローシートである。
【符号の説明】
3 原水槽
7 混合器
8 加熱管
9 冷却手段
16 温度センサ
W 汚水
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sewage sterilizer.
[0002]
[Prior art]
For example, sewage discharged from hospital operating rooms, anatomical rooms, or infection wards contains various infectious bacteria, which are sterilized by a sewage sterilizer and then released. There is a need. As such a sewage sterilization apparatus, an apparatus that kills microorganisms in the sewage by utilizing the heat of steam is conventionally known. This type of conventional apparatus supplies steam to the heating container and feeds sewage into the heating container and heats the sewage in the heating container at an appropriate temperature and pressure to kill microorganisms in the sewage. To do. However, according to this sewage sterilization apparatus, since it is necessary to use a large heating container that can withstand high pressure, the disadvantage of high manufacturing cost is inevitable.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a sewage sterilization apparatus that eliminates the above-mentioned conventional drawbacks.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the present invention distributes a heating pipe into which sewage is sent, a mixer for supplying steam to the sewage before being sent into the heating pipe and mixing the steam and sewage, and a heating pipe. A temperature sensor for detecting the temperature of sewage, a steam supply amount control means for controlling the amount of steam supplied to sewage based on the detection result of the temperature sensor, and a raw water tank for storing sewage before being fed into the mixer And a sewage sterilizer comprising a sewage returning means for returning the sewage that has passed through the heating pipe to the raw water tank when the temperature sensor detects that the temperature of the sewage is abnormally low. (Claim 1).
[0005]
In order to achieve the above object, the present invention provides a heating pipe into which sewage is sent, a mixer for supplying steam to the sewage before being sent into the heating pipe and mixing the steam and sewage, and a heating pipe. A cooling means for cooling the sewage that has passed, a temperature sensor for detecting the temperature of the sewage flowing through the heating pipe, and a steam supply amount control means for controlling the amount of steam supplied to the sewage based on the detection result of the temperature sensor; When the raw water tank for storing the sewage before being fed into the mixer and the temperature sensor detects that the temperature of the sewage is abnormally low, the sewage that has passed through the cooling means is A sewage sterilizer comprising sewage return means for returning to the water tank is proposed (claim 2).
[0006]
Furthermore, in the sewage sterilization apparatus according to claim 1 or 2, it is advantageous that the apparatus is provided with a washing water supply means for feeding washing water to the heating pipe (claim 3).
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings.
[0008]
FIG. 1 is a flow sheet showing an example of a sewage sterilizer according to the present invention. In FIG. 1, sewage discharged from a sewage generation source 1 such as a hospital operating room, an anatomy room, or an infection ward is sent to a raw water tank 3 through a drain pipe 2 as indicated by an arrow A, and temporarily stored therein. Is done. The solid matter in the sewage is crushed by the crusher 4 and then sent to the raw water tank 3.
[0009]
The sewage W stored in the raw water tank 3 is pumped up by the raw water pump 5 as shown by an arrow B, flows through the supply pipe 6, and is sent to the heating pipe 8 through the mixer 7. The sewage flowing through the heating pipe 8 as indicated by the arrow C passes through the cooling means 9 and then is sent to the cooling water tank 11 through the outflow pipe 10 as indicated by the arrow D.
[0010]
The mixer 7 supplies steam (here, water vapor) to the sewage before being fed into the heating pipe 8 and mixes the steam and sewage. Steam from the steam generation source 12 is pumped to the mixer 7 through the steam pipe 13 as indicated by an arrow E, and the steam is mixed with sewage in the mixer 7. In this way, the sewage is heated by the heat of the steam. The steam taken into the sewage is usually liquefied by the heat taken by the sewage. As the steam generation source 12, a boiler generally used in a hospital can be used.
[0011]
The sewage heated as described above flows through the heating pipe 8, and the microorganisms in the sewage are sterilized during this time. Since the sewage that has passed through the heating pipe 8 is heated to a high temperature, it cannot be discharged as it is. Therefore, the sewage that has passed through the heating pipe 8 is cooled by the cooling means 9. The cooling means 9 shown here as an example has a double pipe 14 consisting of an inner pipe and an outer pipe, and the sewage from the heating pipe 8 flows into the inner pipe, and the sewage flowing through the inner pipe passes through the inner pipe. Transition from the outlet to the outflow pipe 10. Cooling water circulates between the outer tube and the inner tube of the double tube 14, thereby cooling the sewage flowing through the inner tube. The temperature of the sewage after cooling is 80 ° C. or less, for example.
[0012]
The temperature of the sewage sent to the cooling water tank 11 through the outflow pipe 10 is further lowered, and the sewage having a temperature of 40 ° C. or less is pumped up by the discharge pump 15 and discharged into the sewer.
[0013]
The time from when sewage flows into the heating pipe 8 until it flows out of the heating pipe 8 (hereinafter referred to as sewage circulation time) and the temperature of the sewage flowing through the heating pipe 8 are completely sterilized. It is determined as much as possible. When the temperature of the sewage heated by the steam is high, the circulation time of the sewage can be set short. Conversely, when the temperature of the sewage is relatively low, the circulation time of the sewage needs to be set long. For example, when the temperature of sewage flowing through the heating pipe 8 is 130 ° C., the circulation time of the sewage is set to 10 minutes or more, and when the temperature of sewage is 121 ° C., the circulation time of the sewage is 15 minutes or more. Set to. In the sewage sterilization apparatus shown in FIG. 1, a metering pump is used as the raw water pump 5, and a fixed amount of sewage is sent to the heating pipe 8 by the pump 5. Moreover, the amount of steam supplied to the sewage is adjusted so that the temperature of the sewage flowing through the heating pipe 8 is 121 ° C. or more and the circulation time of the sewage through which the sewage flows through the heating pipe 8 is 20 minutes. That is, a temperature sensor 16 for detecting the temperature of the sewage flowing through the heating pipe 8 is provided in the downstream portion of the heating pipe 8, and a detection signal generated by the temperature sensor 16 is taken into the controller 17, According to a command from the controller 17, the opening degree of the steam adjustment valve 18 provided in the steam pipe 13 is adjusted, and the supply amount of steam to the sewage is controlled. More specifically, when the temperature of the sewage detected by the temperature sensor 16 is equal to or lower than a predetermined set temperature (for example, 125 ° C.), the opening degree of the steam adjustment valve 18 is set according to a command from the controller 17. Enlarged. As a result, the amount of steam sent from the steam generation source 12 to the mixer 7 increases, and a large amount of steam is supplied to the sewage. Conversely, when the temperature of the sewage detected by the temperature sensor 16 is higher than the set temperature, the valve is controlled so that the opening of the steam adjustment valve 18 is reduced, and the amount of steam supplied to the sewage is reduced. Decrease. In this way, the temperature of the sewage flowing through the heating tube 8 is maintained in a temperature range suitable for sterilization, and an appropriate sterilization process is performed. The controller 17 and the steam adjustment valve 18 shown in FIG. 1 constitute an example of a steam supply amount control means for controlling the amount of steam supplied to the sewage based on the detection result of the temperature sensor.
[0014]
As described above, the sewage sterilization apparatus of this example is configured to sterilize the sewage while passing through the heating pipe 8, so that it is not necessary to use a large heating container as in the prior art, and sewage sterilization is performed. The cost of the apparatus can be reduced.
[0015]
By the way, when the steam generation source 12 fails, it becomes impossible to supply a predetermined amount of steam to the sewage, and the temperature of the sewage passing through the heating pipe 8 becomes abnormally low, so that sewage cannot be sterilized. Therefore, in the sewage sterilization apparatus shown in FIG. 1, in addition to the controller 17 to which the detection signal generated by the temperature sensor 16 is input, the flow path switching valve 20 controlled by the controller 17 and the flow switch A return pipe 21 branched from the outflow pipe 10 via the path switching valve 20, and when the temperature sensor 16 detects that the temperature of the sewage is abnormally low (for example, 120 ° C.), the controller The flow path switching valve 20 is actuated by a command from 17, and the flow path of the sewage is switched to the return pipe 21. As a result, the sewage that has passed through the cooling means 9 is not sent to the cooling water tank 11 but is returned to the raw water tank 3 through the return pipe 21 as indicated by the arrow F. In this way, wastewater that has not been sterilized is prevented from being discharged as it is.
[0016]
When it is detected that the temperature of the sewage has become abnormal as described above, the steam adjustment valve 18 is closed by the output signal from the controller 17 and the supply of steam to the sewage is stopped. On the other hand, the raw water pump 5 continues to operate, sewage is sent from the raw water tank 3 to the heating pipe 8, and the sewage is returned to the raw water tank 3 through the return pipe 21. Thus, while the sewage is circulating, the temperature of the sewage passing through the heating pipe 8 is greatly reduced, and when the temperature reaches, for example, 80 ° C., the raw water pump 5 also stops operating.
[0017]
After repairing the steam generation source 12, the operation of the sewage sterilizer is restarted, and steam is supplied to the sewage pumped by the raw water pump 5 by the mixer 7. The sewage passes through the heating pipe 8 and is then cooled by the cooling means 9. The sewage after the cooling is returned to the raw water tank 3 through the return pipe 21 for a while. When the temperature sensor 16 detects that the temperature of the sewage is higher than a predetermined temperature, for example, 120 ° C., the flow path switching valve 20 is actuated by the command from the controller 17 and flows to the return pipe 21. The path is cut off, so that the sewage that has passed through the cooling means 9 is sent to the cooling water tank 11.
[0018]
As described above, in the sewage sterilization apparatus of this example, it was detected that the temperature of the sewage was abnormally low by the raw water tank 3 storing the sewage before being fed into the mixer and the temperature sensor 16. In the illustrated example, the controller 17, the flow path switching valve 20, and the return pipe 21 have a sewage return means for returning the sewage that has passed through the heating pipe 8 and the cooling means 9 to the raw water tank 3. Sewage return means are configured.
[0019]
By the way, since filth adheres to the inner wall surface of the heating tube 8 with time, it is necessary to remove this and clean the heating tube 8. Therefore, the sewage sterilization apparatus of the present example is provided with a cleaning water supply means for feeding cleaning water to the heating pipe 8 so that the inside of the heating pipe 8 can be cleaned with the cleaning water. More specifically, a washing water pump 24 is connected to the aforementioned supply pipe 6 via a washing water pipe 23, and an electric valve 22 is provided in the washing water pipe. When cleaning the inside of the heating pipe 8, the operation of the raw water pump 5 is stopped, the motor-operated valve 22 is opened, and the washing water pressurized by the washing water pump 24 is sent to the supply pipe 6 through the washing water pipe 23, The washing water is pumped into the heating tube 8 through the mixer 7 to clean the inside of the heating tube. At that time, the steam adjustment valve 18 is adjusted according to a command from the controller 17 that has received a cleaning signal from the motor-operated valve 22, and mixed with an amount of steam that can maintain the cleaning water at a temperature most suitable for cleaning (for example, 40 ° C.). The vessel 7 supplies the washing water. Since the washing water that has passed through the heating pipe 8 is contaminated with bacteria, it is sent to the return pipe 21 via the flow path switching valve 20 and sent to the raw water tank 3. Thus, the cleaning water supply means of this example is configured to send cleaning water to the heating pipe 8 via the mixer 7.
[0020]
In the conventional sewage sterilizer, it is not easy to remove the filth adhering to the inner wall surface of the heating container, and the work requires a lot of time. The heating tube can be cleaned easily and in a short time by simply passing cleaning water through the heating tube 8.
[0021]
The sewage sterilization apparatus according to the present invention can be used particularly effectively as an apparatus for sterilizing sewage generated at a hospital, but can also be used as a sewage sterilization apparatus for sterilizing sewage generated at a place other than a hospital.
[0022]
【The invention's effect】
According to the sewage sterilization apparatus according to the present invention, sewage can be reliably sterilized and its cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a flow sheet showing an example of a sewage sterilizer.
[Explanation of symbols]
3 Raw water tank 7 Mixer 8 Heating tube 9 Cooling means 16 Temperature sensor W Sewage

Claims (3)

汚水が送り込まれる加熱管と、該加熱管に送り込まれる前の汚水に蒸気を供給して該蒸気と汚水を混合する混合器と、加熱管を流通する汚水の温度を検知する温度センサと、該温度センサの検知結果に基づいて汚水への蒸気の供給量を制御する蒸気供給量制御手段と、前記混合器へ送り込まれる前の汚水を貯留する原水槽と、前記温度センサによって汚水の温度が異常に低い異常温度となったことが検知されたとき、前記加熱管を通過した汚水を前記原水槽に戻す汚水返送手段とを具備して成る汚水滅菌装置。  A heating pipe into which sewage is sent, a mixer for supplying steam to the sewage before being sent to the heating pipe to mix the steam and sewage, a temperature sensor for detecting the temperature of sewage flowing through the heating pipe, Steam supply amount control means for controlling the amount of steam supplied to the sewage based on the detection result of the temperature sensor, the raw water tank for storing the sewage before being sent to the mixer, and the temperature of the sewage is abnormal due to the temperature sensor A sewage sterilizer comprising: a sewage returning means for returning the sewage that has passed through the heating pipe to the raw water tank when it is detected that the temperature is extremely low. 汚水が送り込まれる加熱管と、該加熱管に送り込まれる前の汚水に蒸気を供給して該蒸気と汚水を混合する混合器と、加熱管を通過した汚水を冷却する冷却手段と、加熱管を流通する汚水の温度を検知する温度センサと、該温度センサの検知結果に基づいて汚水への蒸気の供給量を制御する蒸気供給量制御手段と、前記混合器へ送り込まれる前の汚水を貯留する原水槽と、前記温度センサによって汚水の温度が異常に低い異常温度となったことが検知されたとき、前記冷却手段を通過した汚水を前記原水槽に戻す汚水返送手段とを具備して成る汚水滅菌装置。  A heating pipe into which sewage is sent, a mixer for supplying steam to the sewage before being sent to the heating pipe to mix the steam and sewage, a cooling means for cooling the sewage that has passed through the heating pipe, and a heating pipe. A temperature sensor for detecting the temperature of the circulating sewage, a steam supply control means for controlling the amount of steam supplied to the sewage based on the detection result of the temperature sensor, and the sewage before being fed into the mixer are stored. Sewage comprising a raw water tank and sewage returning means for returning the sewage that has passed through the cooling means to the raw water tank when the temperature sensor detects that the temperature of the sewage is abnormally low. Sterilizer. 前記加熱管へ洗浄水を送り込む洗浄水供給手段を具備する請求項1又は2に記載の汚水滅菌装置。  The sewage sterilizer according to claim 1 or 2, further comprising cleaning water supply means for supplying cleaning water to the heating pipe.
JP2002220492A 2002-07-29 2002-07-29 Sewage sterilizer Expired - Fee Related JP3748839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002220492A JP3748839B2 (en) 2002-07-29 2002-07-29 Sewage sterilizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002220492A JP3748839B2 (en) 2002-07-29 2002-07-29 Sewage sterilizer

Publications (2)

Publication Number Publication Date
JP2004057951A JP2004057951A (en) 2004-02-26
JP3748839B2 true JP3748839B2 (en) 2006-02-22

Family

ID=31941064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002220492A Expired - Fee Related JP3748839B2 (en) 2002-07-29 2002-07-29 Sewage sterilizer

Country Status (1)

Country Link
JP (1) JP3748839B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4498974B2 (en) * 2005-05-12 2010-07-07 株式会社姫科エンジニアリング Infectious waste treatment facility
JP5110493B1 (en) * 2011-10-11 2012-12-26 鹿島建設株式会社 Wastewater inactivation method and system
CN107804938B (en) 2016-09-08 2022-05-13 松下知识产权经营株式会社 Liquid treatment method and liquid treatment apparatus
JP7190703B2 (en) * 2019-03-29 2022-12-16 三機工業株式会社 Continuous sterilizer and continuous sterilization method
WO2021140656A1 (en) * 2020-01-10 2021-07-15 鹿島建設株式会社 Decontamination system for microbe- and/or virus-containing waste fluid

Also Published As

Publication number Publication date
JP2004057951A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
US20070102357A1 (en) Heat sanitization for reverse osmosis systems
JP3748839B2 (en) Sewage sterilizer
KR20170133197A (en) Water purifying apparatus for supplying sterilized water
JP7190703B2 (en) Continuous sterilizer and continuous sterilization method
JP2000084053A (en) Circulatory disinfecting device
JP2020038030A (en) Hot-water supply system
KR102240591B1 (en) Pipe Conduit Type Ultraviolet Sterilization Device Operated By Peltier Element
KR101849075B1 (en) Water treatment apparatus and sterilizing method thereof
JP2004202223A (en) Disinfection method of foodstuff machine
KR20110019912A (en) A drain method and a drain treatment apparatus
KR101731548B1 (en) Bidet Control device with disinfection function of injection nozzle
JP3516476B2 (en) Cleaning equipment
JP3919161B2 (en) Method and apparatus for heat sterilization of liquid to be treated
JP4531590B2 (en) Hot water supply device
KR20190081221A (en) The steam cleaning method using hotwater heating module of water purifier
KR20180017295A (en) Direct receiving type water purifier possibile automatic sterilization cleaning by steam and method for sterilizing and cleaning water purifier by stream
KR20090125919A (en) Hot water cooling device of dringking water supplying apparetus
JP2006068184A (en) Instrument washer
JP4498974B2 (en) Infectious waste treatment facility
JP2002294825A (en) Sanitary washing toilet seat
JP2958365B2 (en) Sterilizer
JP2562289Y2 (en) Sterilizer
JP2001327583A (en) Sterilizing and disinfecting device
CN116354491A (en) Water dispenser disinfection method and water dispenser
JP2005245397A (en) Steam-heating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees