WO2021140656A1 - Decontamination system for microbe- and/or virus-containing waste fluid - Google Patents

Decontamination system for microbe- and/or virus-containing waste fluid Download PDF

Info

Publication number
WO2021140656A1
WO2021140656A1 PCT/JP2020/000694 JP2020000694W WO2021140656A1 WO 2021140656 A1 WO2021140656 A1 WO 2021140656A1 JP 2020000694 W JP2020000694 W JP 2020000694W WO 2021140656 A1 WO2021140656 A1 WO 2021140656A1
Authority
WO
WIPO (PCT)
Prior art keywords
waste liquid
temperature
heat exchange
receiving tank
flow path
Prior art date
Application number
PCT/JP2020/000694
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 進
Original Assignee
鹿島建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鹿島建設株式会社 filed Critical 鹿島建設株式会社
Priority to PCT/JP2020/000694 priority Critical patent/WO2021140656A1/en
Priority to SG11202013147VA priority patent/SG11202013147VA/en
Priority to JP2020526652A priority patent/JP6761149B1/en
Publication of WO2021140656A1 publication Critical patent/WO2021140656A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L11/00Methods specially adapted for refuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances

Definitions

  • the present invention refers to one or more selected from microorganisms and / or viruses (bacteria, filamentous fungi, yeast, algae, protozoa, virus phages, prions, etc. The same shall apply hereinafter).
  • the system in particular, it relates to a decontamination system that inactivates waste liquid from pharmaceutical facilities / factories, laboratories, hospitals, etc. where the presence of microorganisms and / or viruses is a concern.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a decontamination system capable of continuously inactivating a small amount of microbial and / or virus-containing waste liquid by heating.
  • the present invention is a decontamination system that continuously inactivates a waste liquid containing microorganisms and / or viruses, and is a waste liquid receiving tank that receives the waste liquid from a facility that discharges the waste liquid.
  • a heat exchange device that heats the waste liquid supplied from the waste liquid receiving tank by heat exchange with the steam generated by the steam generating device, and the heat from the waste liquid receiving tank.
  • a waste liquid supply means for supplying the waste liquid to the exchange device, a control device for controlling the waste liquid receiving tank, the steam generator, the heat exchange device, and the waste liquid supply means to continuously inactivate the waste liquid.
  • the heat exchanger has a coiled tube heat exchanger, and heats the waste liquid to a predetermined first temperature or higher by heat exchange with the steam generated by the steam generator. And the first temperature while having a coiled tube heat exchanger and exchanging heat with the steam generated by the steam generator for the waste liquid heated to the first temperature or higher by the heater.
  • a decontamination system for microbial and / or virus-containing waste liquid having a cage that holds the heat for a predetermined time.
  • a flow rate detecting means provided in a flow path between the waste liquid receiving tank and the heater and detecting the flow rate of the waste liquid flowing through the flow path, the heater and the heater.
  • a first temperature detecting means provided in the flow path between the cages to detect the temperature of the waste liquid flowing through the flow path, and a waste liquid provided in the flow path on the downstream side of the cage and flowing through the flow path.
  • the control device includes a second temperature detecting means for detecting the temperature of the above, and the control device detects the flow rate detected by the flow rate detecting means, the temperature detected by the first temperature detecting means, and the second temperature detecting means.
  • the waste liquid receiving tank, the waste liquid supply means, the steam generating device, and the heat exchange device may be controlled based on the temperature.
  • a waste liquid circulation means for circulating the waste liquid discharged from the heat exchange device to the waste liquid receiving tank is further provided, and the control device is detected by the second temperature detecting means.
  • the waste liquid circulation means may be controlled to circulate the waste liquid discharged from the heat exchange device to the waste liquid receiving tank.
  • the heat exchange device is provided in the flow path between the waste liquid receiving tank and the heater, and is supplied from the waste liquid receiving tank to the heater. Further having a preheater for preheating the waste liquid to be produced, the preheater may be supplied with drain water discharged from the heater.
  • a drain circulation means for circulating the drain water discharged from the preheater to the steam generator may be further provided.
  • the heat exchange device has a coiled tube heat exchanger, and is held at the first temperature or higher for a predetermined time by the cage. It may further have a cooler that cools the waste liquid to a predetermined second temperature or lower by heat exchange with cooling water.
  • the heat exchange device is provided in a flow path between the cage and the cooler, and is held at the first temperature or higher for a predetermined time by the cage.
  • a precooler for precooling the waste liquid to be later supplied to the cooler may be further provided, and drain water discharged from the cooler may be supplied to the precooler.
  • a pressure detecting means provided in the flow path on the downstream side of the cooler and detecting the pressure in the flow path, and a pressure detecting means downstream of the pressure detecting means.
  • a regulating valve provided in the flow path on the side and capable of adjusting the pressure in the flow path is further provided, and the control device opens and closes the regulating valve based on the pressure detected by the pressure detecting means. You may control it.
  • the chemical solution storage tank for storing the chemical solution and the chemical solution stored in the chemical solution storage tank are supplied to the heat exchange device and the heat exchange is performed.
  • a chemical liquid circulation means for circulating the chemical liquid supplied to the apparatus to the chemical liquid storage tank may be further provided.
  • a strainer provided in the waste liquid introduction path for introducing the waste liquid from the equipment for discharging the waste liquid into the waste liquid receiving tank, and a strainer for filtering the waste liquid, and the steam.
  • the strainer cleaning means for thermally cleaning the strainer by supplying the steam generated by the generator to the strainer may be further provided.
  • the present invention it is possible to provide a decontamination system capable of continuously inactivating a small amount of microbial and / or virus-containing waste liquid by heating.
  • FIG. 1 is a diagram showing a configuration of a decontamination system 100 according to an embodiment of the present invention.
  • the decontamination system 100 according to the present embodiment executes inactivation treatment of a small amount of waste liquid (for example, 300 L / day) discharged from equipment (not shown) such as a research institute or a hospital for, for example, 20 hours. Decontaminate with.
  • the inactivating treatment is carried out, for example, by holding at 135 ° C. for 90 seconds, and the waste liquid can be continuously inactivated at, for example, 250 mL / min.
  • the decontamination system 100 according to the present embodiment can be manufactured, for example, with a height of 1000 mm or less, and can be compactly installed on the side of a sink or the like.
  • the decontamination system 100 has a waste liquid receiving tank 1, a waste liquid supply means (waste liquid supply system on-off valve 5 and a pump 6), and a heat exchange device 10 (as main components). It includes a preheater 8, a heater 11, a cage 13, a precooler 16 and a cooler 17), a boiler 20, a chemical storage tank 25, and a control device 90. Further, the decontamination system 100 includes a strainer 3, a flow meter 7, a first thermometer 12, a second thermometer 15, a regulating valve 19, and a plurality of various on-off valves for switching the flow path of each system. And various drains of the preheater 8, the heater 11, the cage 13, the precooler 16 and the cooler 17.
  • the waste liquid receiving tank 1 is a tank that receives waste liquid (hereinafter, also simply referred to as waste liquid) containing microorganisms and / or viruses discharged from equipment (not shown) such as a research institute or a hospital.
  • waste liquid waste liquid
  • the waste liquid introduction system on-off valves 2a and 2b and the strainer 3 are provided in the waste liquid introduction path for introducing the waste liquid into the waste liquid receiving tank 1.
  • the introduction of the waste liquid into the waste liquid receiving tank 1 is controlled by the opening / closing control of the waste liquid introduction system on-off valves 2a and 2b by the control device 90.
  • the various on-off valves and adjusting valves of the present embodiment are composed of solenoid valves and the like.
  • the capacity of the waste liquid receiving tank 1 is, for example, 20 L, which is a small capacity.
  • a level meter 4 is installed in the waste liquid receiving tank 1, and it is set so that the continuous inactivation treatment is started when the storage of 5 L is confirmed.
  • the activation setting (storage amount level) of this continuous inactivation process can be arbitrarily set.
  • the waste liquid supply system on-off valve 5 and the pump 6 as the waste liquid supply means are provided in the flow path between the waste liquid receiving tank 1 and the heater 11.
  • the waste liquid supply system on-off valve 5 and the pump 6 are controlled by the control device 90, and the waste liquid in the waste liquid receiving tank 1 is supplied to the heat exchange device 10 including the heater 11 and the like.
  • the flow meter 7 is provided downstream of the pump 6.
  • the flow meter 7 detects the flow rate of the waste liquid supplied to the preheater 8 and the heater 11.
  • the detection signal of the flow meter 7 is transmitted to the control device 90.
  • the preheater 8 is provided in the flow path between the waste liquid receiving tank 1 and the heater 11.
  • the preheater 8 preheats the waste liquid supplied from the waste liquid receiving tank 1 to the heater 11.
  • the waste liquid preheated by the preheater 8 is supplied to the heater 11.
  • Drain water discharged from the heater 11 is supplied to the preheater 8, and heat exchange is performed between the drain water and the waste liquid.
  • the preheater 8 has a preheater drain 9 as a drain circulation means, and the drain water flowing through the preheater drain 9 is circulated to the boiler 20 and reused.
  • the heater 11 is provided downstream of the preheater 8 and heats the preheated waste liquid by heat exchange with the steam generated by the boiler 20. Specifically, the heater 11 heats the preheated waste liquid to a predetermined first temperature or higher. In this embodiment, for example, the first temperature is set to 135 ° C. That is, the heater 11 heats the waste liquid preheated to, for example, 25 ° C. to 135 ° C. or higher.
  • the heater 11 is composed of a coiled tube heat exchanger, like the cage 13 and the cooler 17, which will be described later.
  • a spiral heat exchanger is used as the heat exchanger.
  • This spiral heat exchanger is formed by inserting a spacer between two flat plates and winding it up with a flow path secured.
  • This spiral heat exchanger has a single flow path structure in which a high-temperature fluid and a low-temperature fluid flow in a single flow path and has high heat transfer characteristics, and is therefore suitable for heat exchange of a large volume of waste liquid. Therefore, the reality is that there is no spiral heat exchanger with a small flow rate and a small heat transfer area.
  • the heat transfer area of the coiled tube heat exchanger used in this embodiment may if 0.2 m 2 or less, 0.2 m 2 or less of spiral heat exchanger heat transfer area is not present ..
  • the heat exchanger used in the present embodiment needs to be a closed pressure vessel, but when the spiral heat exchanger is to be reduced in capacity and miniaturized, it is clamped to make it a closed pressure vessel.
  • the structure cannot be taken and it has to be welded.
  • it if it is welded, it cannot be used as the heat exchanger of the present embodiment because it cannot be opened internally for inspection and maintenance. Therefore, in the present embodiment, it is possible to inactivate a small amount of waste liquid by using a coiled tube heat exchanger.
  • the heater 11 has heater drains 11a and 11b and a heater drain system on-off valve 11c.
  • the heater drain water is supplied to the preheater 8 via the heater drain 11a, or the boiler is supplied to the preheater 8 via the heater drain 11b. It is circulated to 20 and reused.
  • the heater drain water is discharged to the outside of the system via the heater drain 11b.
  • the first thermometer 12 as the first temperature detecting means is provided in the flow path between the heater 11 and the cage 13.
  • the first thermometer 12 detects the temperature of the waste liquid heated to the first temperature or higher by the heater 11.
  • the detection signal of the first thermometer 12 is transmitted to the control device 90.
  • the cage 13 is provided downstream of the heater 11 and heats the waste liquid heated to the above-mentioned first temperature or higher by the heater 11 with the steam generated by the boiler 20 to exchange heat with the steam generated by the boiler 20 for a predetermined time to the first temperature or higher. Hold.
  • the cage 13 holds the waste liquid at 135 ° C. or higher for 90 seconds. Holding at 135 ° C for 90 seconds includes all bacteria that can be contained in the effluent, and hepatitis viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). It has been confirmed by the present inventor that it means that microorganisms including other viruses and viruses can be killed by 6 digits.
  • HCV human immunodeficiency virus
  • HBV hepatitis B virus
  • HCV hepatitis C virus
  • SAL is a sterility guarantee level represented by "10-n " with a probability that one microorganism exists after sterilization. For example, a final sterilization method performed after filling and sealing a drug in a final container.
  • SAL10 -6 it is required.
  • F0 ⁇ 12 is required (ISO / TS 17665-2).
  • the F0 value is a sterilization index that serves as a reference for high-pressure steam sterilization, and changes the z value at 10 ° C. (the time (minutes) for sterilizing the viable cell count to 1/10 at a predetermined temperature) by 10 times. It is a value indicating a time (minute) equivalent to a temperature of 121.1 ° C. (250 ° F.) for a microorganism having a temperature change frequency).
  • the decontamination system 100 is a decontamination system capable of treating 300 L / day by continuously treating at 250 mL / min for 20 hours.
  • the pump 6 as the waste liquid supply means used in the present embodiment from, for example, 240 mL / min to 540 mL / min with an inverter, for example, by continuously treating at 500 mL / min for 20 hours, 600 L / day can be processed. It will be possible. This is because the present embodiment is based on guaranteeing sterilization (inactivation) at F0. In this case, the cage 13 is held at a temperature of 138 ° C. or higher via the control device 90 to ensure F0. > 30 can be achieved.
  • the cage 13 is composed of a coiled tube heat exchanger, like the heater 11 and the cooler 17. Since the cage 13 holds the waste liquid while exchanging heat with the steam generated by the boiler 20, the waste liquid can be reliably held at the first temperature or higher for a predetermined time.
  • the cage 13 has a cage drain 13a and a cage drain system on-off valve 13b.
  • the cage drain water is circulated to the boiler 20 via the cage drain 13a and reused.
  • the drain system on-off valve 14 the cage drain water is discharged to the outside of the system via the cage drain 13a.
  • the second thermometer 15 as the second temperature detecting means is provided downstream of the cage 13.
  • the second thermometer 15 detects the temperature of the waste liquid held above the first temperature for a predetermined time by the cage 13.
  • the detection signal of the second thermometer 15 is transmitted to the control device 90.
  • the precooler 16 is provided in the flow path between the cage 13 and the cooler 17.
  • the precooler 16 precools the waste liquid held at the first temperature or higher for a predetermined time by the cage 13.
  • the waste liquid precooled by the precooler 16 is supplied to the cooler 17. Drain water discharged from the cooler 17 is supplied to the precooler 16, and heat exchange is performed between the drain water and the waste liquid.
  • the cooler 17 is provided downstream of the precooler 16, and heat exchanges the waste liquid precooled by the precooler 16 with the cooling water supplied from the outside after being held at the first temperature or higher by the cage 13 for a predetermined time. Cools to a predetermined second temperature or lower. For example, the cooler 17 cools the waste liquid to 50 ° C. to 60 ° C. or lower. This makes it possible to discharge the waste liquid as sewage that must be 40 ° C. or lower. As described above, the cooler 17 is composed of a coiled tube heat exchanger, like the heater 11 and the cage 13.
  • the cooler 17 is connected to a cooling water supply path to which cooling water is supplied from the outside, and cooling system on-off valves 21a to 21c are provided in the cooling water supply path. By controlling the opening and closing of these cooling system on-off valves 21a to 21c by the control device 90, cooling water is supplied to the cooler 17 or the chemical liquid storage tank 25 from the outside.
  • the cooler 17 has a cooler drain 17a and a cooler drain system on-off valve 17b.
  • the cooler drain water is supplied to the precooler 16 via the cooler drain 17a or discharged to the outside of the system.
  • the pressure gauge 18 as the pressure detecting means is provided downstream of the cooler 17.
  • the pressure gauge 18 detects the pressure in the flow path through which the waste liquid cooled to the second temperature or lower by the cooler 17 flows.
  • the detection signal of the pressure gauge 18 is transmitted to the control device 90.
  • the adjusting valve 19 is provided downstream of the pressure gauge 18, and adjusts the pressure in the flow path by opening and closing the valve.
  • the opening and closing of the regulating valve 19 is controlled by the control device 90. Specifically, the opening and closing of the adjusting valve 19 is controlled based on the pressure value detected by the pressure gauge 18. As a result, when the waste liquid is discharged through the discharge system on-off valve 23, the pressure in the flow path is kept constant and the waste liquid is prevented from collapsing.
  • the boiler 20 as a steam generator is an electric boiler and generates steam from water.
  • the steam generator is not limited to the electric boiler, and any steam generator may be used as long as it can generate steam.
  • the generated steam is supplied to the heater 11, the cage 13, or the strainer 3.
  • the supply of these steams is performed by controlling the opening and closing of the steam system on-off valves 20a to 20f by the control device 90.
  • the steam system on-off valves 20e and 20f function as strainer cleaning means for supplying steam to the strainer 3.
  • the chemical solution storage tank 25 functions as a chemical solution circulation tank that stores the chemical solution and circulates the chemical solution supplied to the heat exchange device 10 before the start of the inactivation treatment.
  • the chemical solution storage tank 25 has a chemical solution supply system on-off valve 25a as a chemical solution circulation means. By controlling the opening and closing of the chemical solution supply system on-off valve 25a by the control device 90, the chemical solution stored in the chemical solution storage tank 25 is supplied to the heat exchange device 10, and the chemical solution supplied to the heat exchange device 10 is supplied with the chemical solution. It is circulated in the storage tank 25.
  • the chemical storage tank 25 includes an alkali storage tank 26, an acid storage tank 27, an alkali supply system on-off valve 26a, and an acid supply system on-off valve 27a.
  • the alkali storage tank 26 stores sodium hydroxide as an alkali, but the present invention is not limited to this, and other alkalis such as potassium hydroxide may be stored.
  • the acid storage tank 27 stores nitric acid as an acid, but the present invention is not limited to this, and for example, other inorganic acids such as phosphoric acid and organic acids such as sulfamic acid may be stored.
  • the waste liquid containing the microorganism and / or virus to be treated according to the present embodiment is an bio-preparation or the like, and is effective because the waste liquid contains a large amount of protein.
  • the acid is supplied to the heat exchange device 10 as a chemical solution and circulated, the scale composed of silica, calcium and the like precipitated in the flow path is dissolved and removed by heating. This makes it possible to avoid blocking the flow path.
  • the above-mentioned drug solution storage tank 25 and the like are CIP (Clean-in-placeing-in-place; in production state) of pharmaceutical facilities such as blood products, factories, hospitals, etc., and in particular, additional equipment is attached to the device. Automatic cleaning performed without or without disassembling the production equipment.) Functions as a unit.
  • the chemical solution circulation treatment, the inactivation treatment, the inactivation abnormality treatment, and the strainer maintenance treatment are executed by the control device 90, respectively.
  • each process will be described in detail with reference to FIGS. 2 to 5.
  • FIG. 2 is a diagram showing a chemical solution circulation treatment of the decontamination system 100 according to the present embodiment.
  • the thick dashed line indicates the state in which the chemical solution is flowing
  • the thin broken line indicates the state in which steam is flowing
  • the fine alternate long and short dash line indicates the state in which cooling water is flowing.
  • This chemical circulation treatment is performed prior to the inactivation treatment of the waste liquid.
  • the chemical liquid supply system on-off valve 25a is opened with the waste liquid supply system on-off valve 5 closed, and the chemical liquid is supplied from the chemical liquid storage tank 25 to the heat exchange device 10 by the pump 6.
  • the waste liquid circulation system on-off valve 22 and the discharge system on-off valve 23 are closed, and the chemical liquid circulation system on-off valve 24 is opened to circulate the chemical liquid in the chemical liquid storage tank 25.
  • the circulation of the chemical solution is carried out until the detection temperature of the first thermometer 12 at the outlet of the heater 11 becomes, for example, 135 ° C.
  • the chemical solution to be circulated is performed by appropriately switching between alkali and acid. Switching between alkali and acid is performed by controlling the opening and closing of the alkali supply system on-off valve 26a and the acid supply system on-off valve 27a.
  • FIG. 3 is a diagram showing an inactivating treatment of the decontamination system 100 according to the present embodiment.
  • the thick solid line shows the state where the waste liquid is flowing
  • the thin broken line shows the state where the steam is flowing
  • the fine one-dot chain line shows the state where the cooling water is flowing.
  • the chemical liquid supply system on-off valve 25a It is started by closing the waste liquid supply system on-off valve 5 and opening the waste liquid supply system on-off valve 5.
  • the chemical solution in the inactivating treatment path is washed away by the waste liquid into the chemical solution storage tank 25.
  • the timing at which the chemical solution in the inactivation treatment path is replaced with the waste liquid is calculated based on the flow rate detected by the flow meter 7, and the waste liquid circulation system is calculated at that timing.
  • the on-off valve 22 is closed and the discharge system on-off valve 23 is opened.
  • the waste liquid at 25 ° C. is supplied to the heater 11 after being preheated by the preheater 8 from the waste liquid receiving tank 1.
  • the drain water of the heater 11 is supplied to the preheater 8, and the drain water of the preheater 8 is circulated to the boiler 20 and reused.
  • the waste liquid supplied to the heater 11 is heated to, for example, 135 ° C. by exchanging heat with the steam supplied from the boiler 20 in the heater 11.
  • the waste liquid heated to 135 ° C. is supplied to the cage 13 and held at 135 ° C. or higher for 90 seconds, for example.
  • the holding time secures the holding time in the cage 13 by controlling the flow rate detected by the flow meter 7.
  • the waste liquid held in the cage 13 at, for example, 135 ° C.
  • the waste liquid supplied to the cooler 17 is cooled to, for example, 50 ° C. to 60 ° C. or lower by exchanging heat with the cooling water, and then discharged to the outside of the system.
  • the drain water of the cooler 17 is supplied to the precooler 16, and the drain water of the precooler 16 is discharged to the outside of the system.
  • the receiving temperature of the waste liquid is, for example, 25 ° C. and the inactivating condition is 135 ° C. ⁇ 90 seconds
  • the preheater 8 has preheated the temperature to 65 ° C.
  • the energy can achieve a predetermined capacity at 2.2 kg / hour at a steam pressure of 4 KG.
  • the required vapor amount is 66 kg. .. In this case, since the waste liquid is held in the area in an untreated (inactivated) state for a long time, there is a concern that the work space may be contaminated, and the effectiveness of the decontamination system of the present embodiment can be confirmed.
  • FIG. 4 is a diagram showing an inactivated abnormal treatment of the decontamination system 100 according to the present embodiment.
  • the thick solid line indicates the state in which the waste liquid is circulating
  • the thin broken line indicates the state in which steam is circulating
  • the fine alternate long and short dash line indicates the state in which cooling water is circulating.
  • This inactivation abnormality processing is executed in the unlikely event that the cage 13 cannot secure the holding at 135 ° C. or higher for 90 seconds (monitorable by the second thermometer 15).
  • this treatment by closing the discharge system on-off valve 23 and opening the waste liquid circulation system on-off valve 22, the waste liquid is circulated to the waste liquid receiving tank 1 without being discharged to the outside of the system. This prevents undecontaminated waste liquid from being discharged to the outside of the system.
  • FIG. 5 is a diagram showing a strainer maintenance process of the decontamination system 100 according to the present embodiment. This strainer maintenance process is executed when the strainer 3 is replaced or the like. In FIG. 5, the broken line indicates the state in which steam is flowing. By this treatment, the steam of the boiler 20 is supplied to the strainer 3, and the strainer 3 is heat-cleaned.
  • the decontamination system 100 According to the decontamination system 100 according to the present embodiment, the following effects are exhibited. (1) According to the decontamination system 100 according to the present embodiment, a small volume of microbial and / or virus-containing waste liquid can be continuously inactivated. Bacteria and viruses that are not sufficiently disinfected with conventional chemicals can be raised to a predetermined temperature (lethal temperature) and can be reliably inactivated. (2) Compared with the conventional disinfection with a chemical solution, the inactivation treatment is only by steam, and the possibility of polluting the environment is low. In addition, disinfection with a chemical solution requires a large amount of chemical solution, which increases the cost, but in this system, the processing running cost can be reduced because it is heated.
  • the heat radiation can be effectively used as compared with the batch heat treatment method such as direct steam injection, which saves energy.
  • the amount of steam input can be reduced, and by reusing the steam drain as returned water, the amount of water and electricity used can be reduced, and the temperature of the final treated water can be lowered to a predetermined temperature. it can.
  • processing can be performed with a space-saving compact device.
  • the untreated liquid can be treated instantly and back pollution in the atmosphere (indoor) can be prevented.
  • All systems including piping and heat exchangers can be cleaned with alkali (sodium hydroxide, etc.) and acids (nitric acid, etc.), preventing scale and protein from adhering to piping and equipment, and redistributing. And easy to maintain. Therefore, clogging peculiar to the heat exchanger can be prevented, piping and equipment can be passivated, and the life of the system can be extended.
  • the set temperature can be changed arbitrarily depending on the target virus, and it is possible to deal with unknown bacteria and viruses in the future.
  • the supplied steam can be effectively used as thermal cleaning when cleaning the system by reusing it. In addition, heat cleaning is possible when the strainer 3 is replaced.
  • the amount of cooling water used can be reduced by exchanging heat with the untreated water for cooling the cooling water used to lower the temperature of the final treated water to a predetermined temperature.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Organic Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

The present invention provides a decontamination system that is capable of continuously inactivating small volumes of microbe- and/or virus-containing waste fluid by heating. The decontamination system 100 for microbe- and/or virus-containing waste fluid comprises: a waste fluid receiving tank 1; a boiler 20; a heat exchange device 10 that heats waste fluid supplied from the waste fluid receiving tank 1, by exchanging heat with the steam from the boiler 20; a waste fluid supply system opening/closing valve 5 and a pump 6 that supply waste fluid to the heat exchange device 10 from the waste fluid receiving tank 1; and a control device 90 that controls the waste fluid receiving tank 1, the boiler 20, the heat exchange device 10, the waste fluid supply system opening/closing valve 5, and the pump 6 and continuously inactivates the waste fluid. The heat exchange device 10 has: a heater 11 that has a coiled tube-type heat exchanger and heats the waste fluid to at least a prescribed first temperature by exchanging heat with the steam; and a holder 13 that has a coiled tube-type heat exchanger and holds the waste fluid that has been heated to at least the first temperature by the heater, at least the first temperature for a prescribed time period, while exchanging heat with the steam.

Description

微生物及び/又はウィルス含有廃液の除染システムDecontamination system for microbial and / or virus-containing waste liquids
 本発明は、微生物及び/又はウィルス(細菌、糸状菌、酵母、らん藻、原生動物、ウィルス・ファージ、プリオン等から選択された1以上のものをいう。以下、同じ。)含有廃液の除染システムに関し、特に、微生物及び/又はウィルスの存在が懸念される製薬施設・工場や研究所、病院等からの廃液を不活化する除染システムに関する。 The present invention refers to one or more selected from microorganisms and / or viruses (bacteria, filamentous fungi, yeast, algae, protozoa, virus phages, prions, etc. The same shall apply hereinafter). Regarding the system, in particular, it relates to a decontamination system that inactivates waste liquid from pharmaceutical facilities / factories, laboratories, hospitals, etc. where the presence of microorganisms and / or viruses is a concern.
 従来、微生物及び/又はウィルスを含有する廃液の処理として、薬液による不活化処理(殺菌処理を意味する。以下、同じ)がある。この薬液による不活化処理では、先ず廃液に対してpH調整や凝集沈殿を行った後、汚泥部分は脱水後に焼却(燃焼)処理し、液相成分は次亜塩素酸ナトリウム等による消毒剤による処理後、さらに過剰薬剤の中和を行って系外へ排出する。しかしながら、薬液による不活化処理では、多量の薬液が必要となるうえ焼却に大きなエネルギを要するため、ランニングコストが嵩むという問題がある。 Conventionally, as a treatment of waste liquid containing microorganisms and / or viruses, there is an inactivation treatment with a chemical solution (meaning a sterilization treatment; the same applies hereinafter). In the inactivation treatment with this chemical solution, the waste liquid is first adjusted for pH and coagulated and precipitated, then the sludge portion is dehydrated and then incinerated (combusted), and the liquid phase component is treated with a disinfectant such as sodium hypochlorite. After that, the excess drug is further neutralized and discharged to the outside of the system. However, the inactivation treatment with a chemical solution requires a large amount of chemical solution and requires a large amount of energy for incineration, so that there is a problem that the running cost increases.
 これに対して、微生物及び/又はウィルスを含有する廃液の処理として、加熱による不活化処理がある。この加熱による不活化処理として、例えば、蒸気や電気抵抗を利用したバッチ式の加熱処理装置による不活化処理が提案されている(例えば、特許文献1、2参照)。これらの加熱による不活化処理によれば、上述の薬液による不活化処理の問題は解決可能である。 On the other hand, as a treatment of waste liquid containing microorganisms and / or viruses, there is an inactivation treatment by heating. As the inactivation treatment by this heating, for example, an inactivation treatment by a batch type heat treatment apparatus using steam or electric resistance has been proposed (see, for example, Patent Documents 1 and 2). According to these inactivation treatments by heating, the above-mentioned problem of inactivation treatments by chemicals can be solved.
特開2000-263037号公報Japanese Unexamined Patent Publication No. 2000-263037 米国特許出願公開第2016/0145121号明細書U.S. Patent Application Publication No. 2016/0145121
 しかしながら、近年のバイオ製剤では、これまでの大量生産から、使い捨てのシングルユース機器を使用した小容量の連続生産が主流になっており、微生物及び/又はウィルスがそれぞれ異なる多品種化が進んでいる。そのため、上記バッチ式の加熱処理装置による不活化処理では、廃液は一定量溜まるまで未除染の状態で放置されるところ、中央除染設備とした場合には配管を介して未処理の微生物及び/又はウィルスが逆汚染(コンタミネーション)する可能性がある。 However, in recent years, biopharmaceuticals have become mainstream from mass production to small-volume continuous production using disposable single-use devices, and diversification of different microorganisms and / or viruses is progressing. .. Therefore, in the inactivation treatment by the above-mentioned batch type heat treatment device, the waste liquid is left in an undecontaminated state until a certain amount is accumulated, but in the case of a central decontamination facility, untreated microorganisms and untreated microorganisms and / Or the virus may be back-contaminated (contamination).
 また、研究所や病院では、使用される水の量は少なく、廃液量も少ない。そのため、大容量の廃液を不活化処理するのに適した中央除染設備ではなく、各スイート(各製造エリア)において、瞬時にその場で連続的に不活化処理を行うことが要求される。しなしながら、小容量の微生物及び/又はウィルス含有廃液を加熱により連続的に不活化処理できる除染システムは、これまでのところ見出されていない。 Also, in laboratories and hospitals, the amount of water used is small and the amount of waste liquid is also small. Therefore, instead of a central decontamination facility suitable for inactivating a large amount of waste liquid, it is required to perform inactivating treatment instantly and continuously on the spot in each suite (each manufacturing area). However, a decontamination system capable of continuously inactivating a small amount of microbial and / or virus-containing waste liquid by heating has not been found so far.
 本発明は上記に鑑みてなされたものであり、小容量の微生物及び/又はウィルス含有廃液を加熱により連続的に不活化処理できる除染システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a decontamination system capable of continuously inactivating a small amount of microbial and / or virus-containing waste liquid by heating.
 (1) 上記目的を達成するため本発明は、微生物及び/又はウィルスを含有する廃液を連続的に不活化処理する除染システムであって、前記廃液を排出する設備から前記廃液を受ける廃液受槽と、蒸気を生成する蒸気生成装置と、前記廃液受槽から供給される前記廃液を、前記蒸気生成装置により生成された前記蒸気との熱交換により加熱する熱交換装置と、前記廃液受槽から前記熱交換装置に前記廃液を供給する廃液供給手段と、前記廃液受槽、前記蒸気生成装置、前記熱交換装置及び前記廃液供給手段を制御して、前記廃液を連続的に不活化処理する制御装置と、を備え、前記熱交換装置は、コイル状の管式熱交換器を有し、前記蒸気生成装置により生成された前記蒸気との熱交換により前記廃液を所定の第1温度以上に加熱する加熱器と、コイル状の管式熱交換器を有し、前記加熱器により前記第1温度以上に加熱された前記廃液を、前記蒸気生成装置により生成された前記蒸気と熱交換しながら前記第1温度以上に所定時間保持する保持器と、を有する、微生物及び/又はウィルス含有廃液の除染システムを提供する。 (1) In order to achieve the above object, the present invention is a decontamination system that continuously inactivates a waste liquid containing microorganisms and / or viruses, and is a waste liquid receiving tank that receives the waste liquid from a facility that discharges the waste liquid. A heat exchange device that heats the waste liquid supplied from the waste liquid receiving tank by heat exchange with the steam generated by the steam generating device, and the heat from the waste liquid receiving tank. A waste liquid supply means for supplying the waste liquid to the exchange device, a control device for controlling the waste liquid receiving tank, the steam generator, the heat exchange device, and the waste liquid supply means to continuously inactivate the waste liquid. The heat exchanger has a coiled tube heat exchanger, and heats the waste liquid to a predetermined first temperature or higher by heat exchange with the steam generated by the steam generator. And the first temperature while having a coiled tube heat exchanger and exchanging heat with the steam generated by the steam generator for the waste liquid heated to the first temperature or higher by the heater. Provided above is a decontamination system for microbial and / or virus-containing waste liquid having a cage that holds the heat for a predetermined time.
 (2) (1)の除染システムにおいて、前記廃液受槽と前記加熱器の間の流路に設けられ、該流路を流通する廃液の流量を検出する流量検出手段と、前記加熱器と前記保持器の間の流路に設けられ、該流路を流通する廃液の温度を検出する第1温度検出手段と、前記保持器の下流側の流路に設けられ、該流路を流通する廃液の温度を検出する第2温度検出手段と、を備え、前記制御装置は、前記流量検出手段により検出された流量、前記第1温度検出手段により検出された温度及び前記第2温度検出手段により検出された温度に基づいて、前記廃液受槽、前記廃液供給手段、前記蒸気生成装置及び前記熱交換装置を制御してもよい。 (2) In the decontamination system of (1), a flow rate detecting means provided in a flow path between the waste liquid receiving tank and the heater and detecting the flow rate of the waste liquid flowing through the flow path, the heater and the heater. A first temperature detecting means provided in the flow path between the cages to detect the temperature of the waste liquid flowing through the flow path, and a waste liquid provided in the flow path on the downstream side of the cage and flowing through the flow path. The control device includes a second temperature detecting means for detecting the temperature of the above, and the control device detects the flow rate detected by the flow rate detecting means, the temperature detected by the first temperature detecting means, and the second temperature detecting means. The waste liquid receiving tank, the waste liquid supply means, the steam generating device, and the heat exchange device may be controlled based on the temperature.
 (3) (2)の除染システムにおいて、前記熱交換装置から排出される廃液を前記廃液受槽に循環させる廃液循環手段をさらに備え、前記制御装置は、前記第2温度検出手段により検出された温度が前記第1温度未満である場合には、前記廃液循環手段を制御して、前記熱交換装置から排出される廃液を前記廃液受槽に循環させてもよい。 (3) In the decontamination system of (2), a waste liquid circulation means for circulating the waste liquid discharged from the heat exchange device to the waste liquid receiving tank is further provided, and the control device is detected by the second temperature detecting means. When the temperature is lower than the first temperature, the waste liquid circulation means may be controlled to circulate the waste liquid discharged from the heat exchange device to the waste liquid receiving tank.
 (4) (1)から(3)いずれかの除染システムにおいて、前記熱交換装置は、前記廃液受槽と前記加熱器との間の流路に設けられ、前記廃液受槽から前記加熱器に供給される前記廃液を予熱する予熱器をさらに有し、前記予熱器には、前記加熱器から排出されるドレン水が供給されてもよい。 (4) In any of the decontamination systems (1) to (3), the heat exchange device is provided in the flow path between the waste liquid receiving tank and the heater, and is supplied from the waste liquid receiving tank to the heater. Further having a preheater for preheating the waste liquid to be produced, the preheater may be supplied with drain water discharged from the heater.
 (5) (4)の除染システムにおいて、前記予熱器から排出されるドレン水を前記蒸気生成装置に循環させるドレン循環手段をさらに備えてもよい。 (5) In the decontamination system of (4), a drain circulation means for circulating the drain water discharged from the preheater to the steam generator may be further provided.
 (6) (1)から(5)いずれかの除染システムにおいて、前記熱交換装置は、コイル状の管式熱交換器を有し、前記保持器により前記第1温度以上に所定時間保持された前記廃液を、冷却水との熱交換により所定の第2温度以下に冷却する冷却器をさらに有してもよい。 (6) In any of the decontamination systems (1) to (5), the heat exchange device has a coiled tube heat exchanger, and is held at the first temperature or higher for a predetermined time by the cage. It may further have a cooler that cools the waste liquid to a predetermined second temperature or lower by heat exchange with cooling water.
 (7) (6)の除染システムにおいて、前記熱交換装置は、前記保持器と前記冷却器との間の流路に設けられ、前記保持器により前記第1温度以上に所定時間保持された後に前記冷却器に供給される前記廃液を予冷する予冷器をさらに有し、前記予冷器には、前記冷却器から排出されるドレン水が供給されてもよい。 (7) In the decontamination system of (6), the heat exchange device is provided in a flow path between the cage and the cooler, and is held at the first temperature or higher for a predetermined time by the cage. A precooler for precooling the waste liquid to be later supplied to the cooler may be further provided, and drain water discharged from the cooler may be supplied to the precooler.
 (8) (6)又は(7)の除染システムにおいて、前記冷却器の下流側の流路に設けられ、該流路内の圧力を検出する圧力検出手段と、前記圧力検出手段よりも下流側の流路に設けられ、該流路内の圧力を調整可能な調整弁と、をさらに備え、前記制御装置は、前記圧力検出手段により検出された圧力に基づいて、前記調整弁の開閉を制御してもよい。 (8) In the decontamination system of (6) or (7), a pressure detecting means provided in the flow path on the downstream side of the cooler and detecting the pressure in the flow path, and a pressure detecting means downstream of the pressure detecting means. A regulating valve provided in the flow path on the side and capable of adjusting the pressure in the flow path is further provided, and the control device opens and closes the regulating valve based on the pressure detected by the pressure detecting means. You may control it.
 (9) (1)から(8)いずれかの除染システムにおいて、薬液を貯留する薬液貯留槽と、前記薬液貯留槽に貯留されている薬液を前記熱交換装置に供給するとともに、該熱交換装置に供給された薬液を前記薬液貯留槽に循環させる薬液循環手段と、をさらに備えてもよい。 (9) In any of the decontamination systems (1) to (8), the chemical solution storage tank for storing the chemical solution and the chemical solution stored in the chemical solution storage tank are supplied to the heat exchange device and the heat exchange is performed. A chemical liquid circulation means for circulating the chemical liquid supplied to the apparatus to the chemical liquid storage tank may be further provided.
 (10) (1)から(9)いずれかの除染システムにおいて、前記廃液を排出する設備から前記廃液受槽に廃液を導入する廃液導入路に設けられ、前記廃液を濾過するストレーナと、前記蒸気生成装置により生成された前記蒸気を前記ストレーナに供給することにより、前記ストレーナを熱洗浄するストレーナ洗浄手段と、をさらに備えてもよい。 (10) In any of the decontamination systems (1) to (9), a strainer provided in the waste liquid introduction path for introducing the waste liquid from the equipment for discharging the waste liquid into the waste liquid receiving tank, and a strainer for filtering the waste liquid, and the steam. The strainer cleaning means for thermally cleaning the strainer by supplying the steam generated by the generator to the strainer may be further provided.
 本発明によれば、小容量の微生物及び/又はウィルス含有廃液を加熱により連続的に不活化処理できる除染システムを提供できる。 According to the present invention, it is possible to provide a decontamination system capable of continuously inactivating a small amount of microbial and / or virus-containing waste liquid by heating.
本発明の一実施形態に係る除染システムの構成を示す図である。It is a figure which shows the structure of the decontamination system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る除染システムの薬液循環処理を示す図である。It is a figure which shows the chemical liquid circulation treatment of the decontamination system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る除染システムの不活化処理を示す図である。It is a figure which shows the inactivation treatment of the decontamination system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る除染システムの不活化異常処理を示す図である。It is a figure which shows the inactivation abnormality processing of the decontamination system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る除染システムのストレーナメンテナンス処理を示す図である。It is a figure which shows the strainer maintenance process of the decontamination system which concerns on one Embodiment of this invention.
 以下、本発明の一実施形態について図面を参照しながら詳しく説明する。 Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
 図1は、本発明の一実施形態に係る除染システム100の構成を示す図である。本実施形態に係る除染システム100は、研究所や病院等の設備(不図示)から排出される小容量の廃液(例えば、300L/日)を、例えば20時間の不活化処理を実行することにより除染する。不活化処理は、例えば135℃×90秒保持することにより実行され、例えば250mL/分で連続的に廃液を不活化処理可能である。また、本実施形態に係る除染システム100は、例えば、高さが1000mm以下で製作可能であり、シンク横等にコンパクトに設置可能である。 FIG. 1 is a diagram showing a configuration of a decontamination system 100 according to an embodiment of the present invention. The decontamination system 100 according to the present embodiment executes inactivation treatment of a small amount of waste liquid (for example, 300 L / day) discharged from equipment (not shown) such as a research institute or a hospital for, for example, 20 hours. Decontaminate with. The inactivating treatment is carried out, for example, by holding at 135 ° C. for 90 seconds, and the waste liquid can be continuously inactivated at, for example, 250 mL / min. Further, the decontamination system 100 according to the present embodiment can be manufactured, for example, with a height of 1000 mm or less, and can be compactly installed on the side of a sink or the like.
 図1に示されるように、本実施形態に係る除染システム100は、主構成要素として、廃液受槽1と、廃液供給手段(廃液供給系開閉弁5及びポンプ6)と、熱交換装置10(予熱器8、加熱器11、保持器13、予冷器16及び冷却器17)と、ボイラ20と、薬液貯留槽25と、制御装置90と、を備える。また、除染システム100は、ストレーナ3と、流量計7と、第1温度計12と、第2温度計15と、調整弁19と、各系の流路を切り替えるための複数の各種開閉弁と、予熱器8、加熱器11、保持器13、予冷器16及び冷却器17の各種ドレンと、を備える。 As shown in FIG. 1, the decontamination system 100 according to the present embodiment has a waste liquid receiving tank 1, a waste liquid supply means (waste liquid supply system on-off valve 5 and a pump 6), and a heat exchange device 10 (as main components). It includes a preheater 8, a heater 11, a cage 13, a precooler 16 and a cooler 17), a boiler 20, a chemical storage tank 25, and a control device 90. Further, the decontamination system 100 includes a strainer 3, a flow meter 7, a first thermometer 12, a second thermometer 15, a regulating valve 19, and a plurality of various on-off valves for switching the flow path of each system. And various drains of the preheater 8, the heater 11, the cage 13, the precooler 16 and the cooler 17.
 廃液受槽1は、研究所や病院等の設備(不図示)から排出される微生物及び/又はウィルスを含有する廃液(以下、単に廃液ともいう。)を受ける槽である。廃液受槽1に廃液を導入する廃液導入路には、廃液導入系開閉弁2a,2bと、ストレーナ3が設けられる。廃液受槽1への廃液の導入は、制御装置90による廃液導入系開閉弁2a,2bの開閉制御により制御される。なお、本実施形態の各種開閉弁、調整弁は、電磁弁等により構成される。 The waste liquid receiving tank 1 is a tank that receives waste liquid (hereinafter, also simply referred to as waste liquid) containing microorganisms and / or viruses discharged from equipment (not shown) such as a research institute or a hospital. The waste liquid introduction system on-off valves 2a and 2b and the strainer 3 are provided in the waste liquid introduction path for introducing the waste liquid into the waste liquid receiving tank 1. The introduction of the waste liquid into the waste liquid receiving tank 1 is controlled by the opening / closing control of the waste liquid introduction system on-off valves 2a and 2b by the control device 90. The various on-off valves and adjusting valves of the present embodiment are composed of solenoid valves and the like.
 廃液受槽1の容量は、例えば20Lであり、小容量である。廃液受槽1には、レベル計4が設置されており、5Lの貯留が確認された時点で、連続不活化処理が開始されるように設定される。ただし、この連続不活化処理の起動設定(貯留量レベル)は、任意に設定可能である。 The capacity of the waste liquid receiving tank 1 is, for example, 20 L, which is a small capacity. A level meter 4 is installed in the waste liquid receiving tank 1, and it is set so that the continuous inactivation treatment is started when the storage of 5 L is confirmed. However, the activation setting (storage amount level) of this continuous inactivation process can be arbitrarily set.
 廃液供給手段としての廃液供給系開閉弁5及びポンプ6は、廃液受槽1と加熱器11との間の流路に設けられる。これら廃液供給系開閉弁5及びポンプ6は制御装置90により制御され、廃液受槽1内の廃液を加熱器11等からなる熱交換装置10に供給する。 The waste liquid supply system on-off valve 5 and the pump 6 as the waste liquid supply means are provided in the flow path between the waste liquid receiving tank 1 and the heater 11. The waste liquid supply system on-off valve 5 and the pump 6 are controlled by the control device 90, and the waste liquid in the waste liquid receiving tank 1 is supplied to the heat exchange device 10 including the heater 11 and the like.
 流量計7は、ポンプ6の下流に設けられる。流量計7は、予熱器8及び加熱器11に供給される廃液の流量を検出する。流量計7の検出信号は、制御装置90に送信される。 The flow meter 7 is provided downstream of the pump 6. The flow meter 7 detects the flow rate of the waste liquid supplied to the preheater 8 and the heater 11. The detection signal of the flow meter 7 is transmitted to the control device 90.
 予熱器8は、廃液受槽1と加熱器11との間の流路に設けられる。予熱器8は、廃液受槽1から加熱器11に供給される廃液を予熱する。これにより、予熱器8により予熱された廃液が加熱器11に供給される。この予熱器8には、加熱器11から排出されるドレン水が供給され、このドレン水と廃液との間で熱交換が行われる。また、予熱器8は、ドレン循環手段としての予熱器ドレン9を有しており、この予熱器ドレン9を流通するドレン水は、ボイラ20に循環されて再利用される。 The preheater 8 is provided in the flow path between the waste liquid receiving tank 1 and the heater 11. The preheater 8 preheats the waste liquid supplied from the waste liquid receiving tank 1 to the heater 11. As a result, the waste liquid preheated by the preheater 8 is supplied to the heater 11. Drain water discharged from the heater 11 is supplied to the preheater 8, and heat exchange is performed between the drain water and the waste liquid. Further, the preheater 8 has a preheater drain 9 as a drain circulation means, and the drain water flowing through the preheater drain 9 is circulated to the boiler 20 and reused.
 加熱器11は、予熱器8の下流に設けられ、ボイラ20により生成された蒸気との熱交換により、予熱された廃液を加熱する。具体的には、加熱器11は、予熱された廃液を所定の第1温度以上に加熱する。本実施形態では、例えば、第1温度は135℃に設定される。即ち、加熱器11は、例えば25℃まで予熱された廃液を、135℃以上に加熱する。 The heater 11 is provided downstream of the preheater 8 and heats the preheated waste liquid by heat exchange with the steam generated by the boiler 20. Specifically, the heater 11 heats the preheated waste liquid to a predetermined first temperature or higher. In this embodiment, for example, the first temperature is set to 135 ° C. That is, the heater 11 heats the waste liquid preheated to, for example, 25 ° C. to 135 ° C. or higher.
 加熱器11は、後述する保持器13及び冷却器17と同様に、コイル状の管式熱交換器により構成される。ここで、従来の連続式不活化処理装置では、熱交換器としてはスパイラル式熱交換器が用いられている。このスパイラル式熱交換器は、2枚の平板の間にスペーサを挿入して流路を確保した状態で巻き上げることにより形成される。このスパイラル式熱交換器は、高温流体と低温流体とが向流する単一の流路構造で高い伝熱特性を有するため、大容量の廃液を熱交換するのに適している。そのため、小流量で小伝熱面積のスパイラル熱交換器は存在しないのが実情である。例えば、本実施形態で用いられるコイル状の管式熱交換器の伝熱面積は0.2m以下であればよいが、0.2m以下の伝熱面積のスパイラル式熱交換器は存在しない。 The heater 11 is composed of a coiled tube heat exchanger, like the cage 13 and the cooler 17, which will be described later. Here, in the conventional continuous inactivation treatment apparatus, a spiral heat exchanger is used as the heat exchanger. This spiral heat exchanger is formed by inserting a spacer between two flat plates and winding it up with a flow path secured. This spiral heat exchanger has a single flow path structure in which a high-temperature fluid and a low-temperature fluid flow in a single flow path and has high heat transfer characteristics, and is therefore suitable for heat exchange of a large volume of waste liquid. Therefore, the reality is that there is no spiral heat exchanger with a small flow rate and a small heat transfer area. For example, the heat transfer area of the coiled tube heat exchanger used in this embodiment may if 0.2 m 2 or less, 0.2 m 2 or less of spiral heat exchanger heat transfer area is not present ..
 また、本実施形態で用いる熱交換器は、密閉式の圧力容器である必要があるところ、スパイラル式熱交換器を小容量化して小型化しようとすると、密閉式の圧力容器にするにはクランプ構造を取り得ず、溶接せざるを得ない。しかしながら、溶接してしまうと、内部解放して点検、メンテナンスすることができなくなるため、本実施形態の熱交換器として用いることはできない。従って、本実施形態では、コイル状の管式熱交換器を用いることにより、小容量の廃液の不活化処理を可能としている。 Further, the heat exchanger used in the present embodiment needs to be a closed pressure vessel, but when the spiral heat exchanger is to be reduced in capacity and miniaturized, it is clamped to make it a closed pressure vessel. The structure cannot be taken and it has to be welded. However, if it is welded, it cannot be used as the heat exchanger of the present embodiment because it cannot be opened internally for inspection and maintenance. Therefore, in the present embodiment, it is possible to inactivate a small amount of waste liquid by using a coiled tube heat exchanger.
 加熱器11は、加熱器ドレン11a,11bと、加熱器ドレン系開閉弁11cを有する。制御装置90により加熱器ドレン系開閉弁11cが開閉制御されることにより、加熱器ドレン水が、加熱器ドレン11aを介して予熱器8に供給されるか、又は加熱器ドレン11bを介してボイラ20に循環されて再利用される。あるいは、ドレン系開閉弁14を開くことにより、加熱器ドレン11bを介して加熱器ドレン水が系外へ排出される。 The heater 11 has heater drains 11a and 11b and a heater drain system on-off valve 11c. By controlling the opening and closing of the heater drain system on-off valve 11c by the control device 90, the heater drain water is supplied to the preheater 8 via the heater drain 11a, or the boiler is supplied to the preheater 8 via the heater drain 11b. It is circulated to 20 and reused. Alternatively, by opening the drain system on-off valve 14, the heater drain water is discharged to the outside of the system via the heater drain 11b.
 第1温度検出手段としての第1温度計12は、加熱器11と保持器13の間の流路に設けられる。第1温度計12は、加熱器11により第1温度以上に加熱された廃液の温度を検出する。第1温度計12の検出信号は、制御装置90に送信される。 The first thermometer 12 as the first temperature detecting means is provided in the flow path between the heater 11 and the cage 13. The first thermometer 12 detects the temperature of the waste liquid heated to the first temperature or higher by the heater 11. The detection signal of the first thermometer 12 is transmitted to the control device 90.
 保持器13は、加熱器11の下流に設けられ、加熱器11により上述の第1温度以上に加熱された廃液を、ボイラ20により生成された蒸気と熱交換しながら第1温度以上に所定時間保持する。例えば、保持器13は、90秒間135℃以上に廃液を保持する。135℃×90秒間保持することは、廃液中に含まれ得る細菌類の全て、及びヒト免疫不全ウィルス(HIV)、B型肝炎ウィルス(HBV)、C型肝炎ウィルス(HCV)等の肝炎ウィルス、その他のウィルスを含む微生物、ウィルスを6桁殺滅できることを意味することが、本発明者によって確認されている。 The cage 13 is provided downstream of the heater 11 and heats the waste liquid heated to the above-mentioned first temperature or higher by the heater 11 with the steam generated by the boiler 20 to exchange heat with the steam generated by the boiler 20 for a predetermined time to the first temperature or higher. Hold. For example, the cage 13 holds the waste liquid at 135 ° C. or higher for 90 seconds. Holding at 135 ° C for 90 seconds includes all bacteria that can be contained in the effluent, and hepatitis viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV). It has been confirmed by the present inventor that it means that microorganisms including other viruses and viruses can be killed by 6 digits.
 ここで、「SAL」は、滅菌後に1個の微生物が存在する確率で「10-n」で表される無菌性保証水準であり、例えば医薬品を最終容器に充填密封してから行う最終滅菌法では、「SAL10-6」が要求される。一般に、「SAL10-6」を保証するために、オーバーキル滅菌条件を採用すればよいとされ、その指標として、F0≧12が要求される(ISO/TS 17665-2)。F0値は、高圧蒸気滅菌で基準となる滅菌指標であり、10℃のz値(所定の温度で生菌数を10分の1に殺菌する時間(分)であるD値を10倍変化させる温度変化の度数)を持つ微生物について、121.1℃(250°F)の温度に等価な時間(分)を示す値である。 Here, "SAL" is a sterility guarantee level represented by "10-n " with a probability that one microorganism exists after sterilization. For example, a final sterilization method performed after filling and sealing a drug in a final container. In "SAL10 -6" it is required. In general, in order to ensure "SAL10 -6", is the may be employed overkill sterilization conditions, as the index, F0 ≧ 12 is required (ISO / TS 17665-2). The F0 value is a sterilization index that serves as a reference for high-pressure steam sterilization, and changes the z value at 10 ° C. (the time (minutes) for sterilizing the viable cell count to 1/10 at a predetermined temperature) by 10 times. It is a value indicating a time (minute) equivalent to a temperature of 121.1 ° C. (250 ° F.) for a microorganism having a temperature change frequency).
 本実施形態に係る除染システム100は、250mL/分で連続20時間処理することにより、300L/日の処理が可能な除染システムである。本実施形態で使用する廃液供給手段としてのポンプ6を、例えば240mL/分~540mL/分にインバータで可変にすることで、例えば500mL/分で連続20時間処理することにより600L/日の処理が可能となる。これは、本実施形態が、F0で滅菌(不活化)保証することに基づいているためであり、この場合、制御装置90を介して保持器13を138℃以上の温度に保持することでF0>30が達成できる。これは、上述のF0≧12をクリアし、1つの装置で300L/日~600L/日まで処理可能な除染システムを提供できることを意味する。これに対して、先行技術文献に記載される槽、即ち反応釜の形式においては、反応釜の容量が一定であるので、当該反応釜の処理総量を変更することはできない。 The decontamination system 100 according to the present embodiment is a decontamination system capable of treating 300 L / day by continuously treating at 250 mL / min for 20 hours. By varying the pump 6 as the waste liquid supply means used in the present embodiment from, for example, 240 mL / min to 540 mL / min with an inverter, for example, by continuously treating at 500 mL / min for 20 hours, 600 L / day can be processed. It will be possible. This is because the present embodiment is based on guaranteeing sterilization (inactivation) at F0. In this case, the cage 13 is held at a temperature of 138 ° C. or higher via the control device 90 to ensure F0. > 30 can be achieved. This means that it is possible to provide a decontamination system capable of processing from 300 L / day to 600 L / day with one device by clearing the above-mentioned F0 ≧ 12. On the other hand, in the tank described in the prior art document, that is, the type of the reaction kettle, since the capacity of the reaction kettle is constant, the total processing amount of the reaction kettle cannot be changed.
 なお、上述した通り保持器13は、加熱器11や冷却器17と同様に、コイル状の管式熱交換器により構成される。保持器13は、ボイラ20で生成された蒸気と熱交換しながら廃液を保持するため、所定時間、第1温度以上に廃液を確実に保持可能となっている。 As described above, the cage 13 is composed of a coiled tube heat exchanger, like the heater 11 and the cooler 17. Since the cage 13 holds the waste liquid while exchanging heat with the steam generated by the boiler 20, the waste liquid can be reliably held at the first temperature or higher for a predetermined time.
 保持器13は、保持器ドレン13aと、保持器ドレン系開閉弁13bと、を有する。制御装置90により保持器ドレン系開閉弁13bが開閉制御されることにより、保持器ドレン水が、保持器ドレン13aを介してボイラ20に循環されて再利用される。あるいは、ドレン系開閉弁14を開くことにより、保持器ドレン13aを介して保持器ドレン水が系外へ排出される。 The cage 13 has a cage drain 13a and a cage drain system on-off valve 13b. By controlling the opening and closing of the cage drain system on-off valve 13b by the control device 90, the cage drain water is circulated to the boiler 20 via the cage drain 13a and reused. Alternatively, by opening the drain system on-off valve 14, the cage drain water is discharged to the outside of the system via the cage drain 13a.
 第2温度検出手段としての第2温度計15は、保持器13の下流に設けられる。第2温度計15は、保持器13により所定時間、第1温度以上に保持された廃液の温度を検出する。第2温度計15の検出信号は、制御装置90に送信される。 The second thermometer 15 as the second temperature detecting means is provided downstream of the cage 13. The second thermometer 15 detects the temperature of the waste liquid held above the first temperature for a predetermined time by the cage 13. The detection signal of the second thermometer 15 is transmitted to the control device 90.
 予冷器16は、保持器13と冷却器17との間の流路に設けられる。予冷器16は、保持器13により第1温度以上に所定時間保持された廃液を予冷する。これにより、予冷器16により予冷された廃液が冷却器17に供給される。この予冷器16には、冷却器17から排出されるドレン水が供給され、このドレン水と廃液との間で熱交換が行われる。 The precooler 16 is provided in the flow path between the cage 13 and the cooler 17. The precooler 16 precools the waste liquid held at the first temperature or higher for a predetermined time by the cage 13. As a result, the waste liquid precooled by the precooler 16 is supplied to the cooler 17. Drain water discharged from the cooler 17 is supplied to the precooler 16, and heat exchange is performed between the drain water and the waste liquid.
 冷却器17は、予冷器16の下流に設けられ、保持器13により第1温度以上に所定時間保持された後に予冷器16により予冷された廃液を、外部から供給される冷却水との熱交換により所定の第2温度以下に冷却する。例えば、冷却器17は、廃液を50℃~60℃以下に冷却する。これにより、廃液を、40℃以下でなければならない下水として排出することが可能となっている。なお、上述した通り冷却器17は、加熱器11や保持器13と同様に、コイル状の管式熱交換器により構成される。 The cooler 17 is provided downstream of the precooler 16, and heat exchanges the waste liquid precooled by the precooler 16 with the cooling water supplied from the outside after being held at the first temperature or higher by the cage 13 for a predetermined time. Cools to a predetermined second temperature or lower. For example, the cooler 17 cools the waste liquid to 50 ° C. to 60 ° C. or lower. This makes it possible to discharge the waste liquid as sewage that must be 40 ° C. or lower. As described above, the cooler 17 is composed of a coiled tube heat exchanger, like the heater 11 and the cage 13.
 冷却器17は、外部から冷却水が供給される冷却水供給路が接続されており、該冷却水供給路には、冷却系開閉弁21a~21cが設けられる。制御装置90により、これら冷却系開閉弁21a~21cが開閉制御されることにより、外部から冷却器17、あるいは薬液貯留槽25に冷却水が供給される。 The cooler 17 is connected to a cooling water supply path to which cooling water is supplied from the outside, and cooling system on-off valves 21a to 21c are provided in the cooling water supply path. By controlling the opening and closing of these cooling system on-off valves 21a to 21c by the control device 90, cooling water is supplied to the cooler 17 or the chemical liquid storage tank 25 from the outside.
 冷却器17は、冷却器ドレン17aと、冷却器ドレン系開閉弁17bと、を有する。制御装置90により冷却器ドレン系開閉弁17bが開閉制御されることにより、冷却器ドレン水が、冷却器ドレン17aを介して予冷器16に供給されるか、又は系外へ排出される。 The cooler 17 has a cooler drain 17a and a cooler drain system on-off valve 17b. By controlling the opening and closing of the cooler drain system on-off valve 17b by the control device 90, the cooler drain water is supplied to the precooler 16 via the cooler drain 17a or discharged to the outside of the system.
 圧力検出手段としての圧力計18は、冷却器17の下流に設けられる。圧力計18は、冷却器17により第2温度以下に冷却された廃液が流通する流路内の圧力を検出する。圧力計18の検出信号は、制御装置90に送信される。 The pressure gauge 18 as the pressure detecting means is provided downstream of the cooler 17. The pressure gauge 18 detects the pressure in the flow path through which the waste liquid cooled to the second temperature or lower by the cooler 17 flows. The detection signal of the pressure gauge 18 is transmitted to the control device 90.
 調整弁19は、圧力計18の下流に設けられ、弁を開閉することにより該流路内の圧力を調整する。調整弁19の開閉を制御装置90により制御される。具体的には、上記圧力計18により検出された圧力値に基づいて、調整弁19の開閉が制御される。これにより、排出系開閉弁23を介して廃液を排出する際に、流路内の圧力が一定に保たれ、廃液の突沸が防止される。 The adjusting valve 19 is provided downstream of the pressure gauge 18, and adjusts the pressure in the flow path by opening and closing the valve. The opening and closing of the regulating valve 19 is controlled by the control device 90. Specifically, the opening and closing of the adjusting valve 19 is controlled based on the pressure value detected by the pressure gauge 18. As a result, when the waste liquid is discharged through the discharge system on-off valve 23, the pressure in the flow path is kept constant and the waste liquid is prevented from collapsing.
 蒸気生成装置としてのボイラ20は、電気式ボイラであり、水から蒸気を生成する。ただし、蒸気生成装置としては電気ボイラに限定されず、蒸気を生成可能なものであればよい。生成した蒸気は、加熱器11及び保持器13、又はストレーナ3に供給される。これら蒸気の供給は、制御装置90により蒸気系開閉弁20a~20fを開閉制御することにより行われる。なお、蒸気系開閉弁20e,20fは、ストレーナ3に蒸気を供給するストレーナ洗浄手段として機能する。 The boiler 20 as a steam generator is an electric boiler and generates steam from water. However, the steam generator is not limited to the electric boiler, and any steam generator may be used as long as it can generate steam. The generated steam is supplied to the heater 11, the cage 13, or the strainer 3. The supply of these steams is performed by controlling the opening and closing of the steam system on-off valves 20a to 20f by the control device 90. The steam system on-off valves 20e and 20f function as strainer cleaning means for supplying steam to the strainer 3.
 薬液貯留槽25は、薬液を貯留するとともに、不活化処理開始前に熱交換装置10に供給される薬液を循環させる薬液循環槽として機能する。薬液貯留槽25は、薬液循環手段としての薬液供給系開閉弁25aを有する。制御装置90により薬液供給系開閉弁25aが開閉制御されることにより、薬液貯留槽25に貯留されている薬液が熱交換装置10に供給されるとともに、熱交換装置10に供給された薬液が薬液貯留槽25に循環される。 The chemical solution storage tank 25 functions as a chemical solution circulation tank that stores the chemical solution and circulates the chemical solution supplied to the heat exchange device 10 before the start of the inactivation treatment. The chemical solution storage tank 25 has a chemical solution supply system on-off valve 25a as a chemical solution circulation means. By controlling the opening and closing of the chemical solution supply system on-off valve 25a by the control device 90, the chemical solution stored in the chemical solution storage tank 25 is supplied to the heat exchange device 10, and the chemical solution supplied to the heat exchange device 10 is supplied with the chemical solution. It is circulated in the storage tank 25.
 薬液貯留槽25は、アルカリ貯留槽26と、酸貯留槽27と、アルカリ供給系開閉弁26aと、酸供給系開閉弁27aと、を有する。アルカリ貯留槽26は、アルカリとして水酸化ナトリウムを貯留するが、これに限定されず、例えば水酸化カリウム等の他のアルカリを貯留してもよい。また、酸貯留槽27は、酸として硝酸を貯留するが、これに限定されず、例えば、リン酸等の他の無機酸や、スルファミン酸等の有機酸を貯留してもよい。 The chemical storage tank 25 includes an alkali storage tank 26, an acid storage tank 27, an alkali supply system on-off valve 26a, and an acid supply system on-off valve 27a. The alkali storage tank 26 stores sodium hydroxide as an alkali, but the present invention is not limited to this, and other alkalis such as potassium hydroxide may be stored. Further, the acid storage tank 27 stores nitric acid as an acid, but the present invention is not limited to this, and for example, other inorganic acids such as phosphoric acid and organic acids such as sulfamic acid may be stored.
 薬液としてアルカリが熱交換装置10に供給、循環されると、加熱により流路内で固化変性した蛋白等が溶解されて除去される。特に、本実施形態の処理対象である微生物及び/又はウィルスを含有する廃液は、バイオ製剤等であり、廃液中に蛋白が多く含まれているため、有効である。また、薬液として酸が熱交換装置10に供給、循環されると、加熱により流路内で析出したシリカ、カルシウム等からなるスケールが溶解されて除去される。これにより、流路が閉塞されるのを回避可能となっている。 When alkali is supplied to the heat exchange device 10 as a chemical solution and circulated, proteins and the like solidified and denatured in the flow path are dissolved and removed by heating. In particular, the waste liquid containing the microorganism and / or virus to be treated according to the present embodiment is an bio-preparation or the like, and is effective because the waste liquid contains a large amount of protein. Further, when the acid is supplied to the heat exchange device 10 as a chemical solution and circulated, the scale composed of silica, calcium and the like precipitated in the flow path is dissolved and removed by heating. This makes it possible to avoid blocking the flow path.
 なお、上述の薬液貯留槽25等は、血液製剤等の製薬施設、工場や病院等のCIP(Clean-in-placeing-in-place;生産状態のままで、特に装置に追加的機器を取り付けるこなく又は生産設備を分解することなく行われる自動洗浄のことをいう。)ユニットとして機能する。 It should be noted that the above-mentioned drug solution storage tank 25 and the like are CIP (Clean-in-placeing-in-place; in production state) of pharmaceutical facilities such as blood products, factories, hospitals, etc., and in particular, additional equipment is attached to the device. Automatic cleaning performed without or without disassembling the production equipment.) Functions as a unit.
 以上の構成を備える本実施形態の除染システム100は、制御装置90により、薬液循環処理、不活化処理、不活化異常処理、ストレーナメンテナンス処理がそれぞれ実行される。以下、図2~図5を参照して各処理について詳しく説明する。 In the decontamination system 100 of the present embodiment having the above configuration, the chemical solution circulation treatment, the inactivation treatment, the inactivation abnormality treatment, and the strainer maintenance treatment are executed by the control device 90, respectively. Hereinafter, each process will be described in detail with reference to FIGS. 2 to 5.
 図2は、本実施形態に係る除染システム100の薬液循環処理を示す図である。図2中、太破線は薬液が流通している状態、細破線は蒸気が流通している状態、細一点鎖線は冷却水が流通している状態を示している。この薬液循環処理は、廃液の不活化処理に先立って実行される。先ず、廃液供給系開閉弁5を閉じた状態で薬液供給系開閉弁25aを開き、ポンプ6により薬液貯留槽25から薬液を熱交換装置10に供給する。同時に、廃液循環系開閉弁22及び排出系開閉弁23を閉じ、薬液循環系開閉弁24を開くことにより、薬液を薬液貯留槽25に循環させる。薬液の循環は、加熱器11の出口にある第1温度計12の検出温度が、例えば135℃になるまで行われる。循環される薬液は、アルカリと酸を適宜切り替えて行われる。アルカリと酸の切り替えは、アルカリ供給系開閉弁26a及び酸供給系開閉弁27aを開閉制御することにより行われる。本処理により、不活化処理経路内の蛋白、スケールが除去され、経路の閉塞が防止される。 FIG. 2 is a diagram showing a chemical solution circulation treatment of the decontamination system 100 according to the present embodiment. In FIG. 2, the thick dashed line indicates the state in which the chemical solution is flowing, the thin broken line indicates the state in which steam is flowing, and the fine alternate long and short dash line indicates the state in which cooling water is flowing. This chemical circulation treatment is performed prior to the inactivation treatment of the waste liquid. First, the chemical liquid supply system on-off valve 25a is opened with the waste liquid supply system on-off valve 5 closed, and the chemical liquid is supplied from the chemical liquid storage tank 25 to the heat exchange device 10 by the pump 6. At the same time, the waste liquid circulation system on-off valve 22 and the discharge system on-off valve 23 are closed, and the chemical liquid circulation system on-off valve 24 is opened to circulate the chemical liquid in the chemical liquid storage tank 25. The circulation of the chemical solution is carried out until the detection temperature of the first thermometer 12 at the outlet of the heater 11 becomes, for example, 135 ° C. The chemical solution to be circulated is performed by appropriately switching between alkali and acid. Switching between alkali and acid is performed by controlling the opening and closing of the alkali supply system on-off valve 26a and the acid supply system on-off valve 27a. By this treatment, proteins and scales in the inactivating treatment pathway are removed, and blockage of the pathway is prevented.
 図3は、本実施形態に係る除染システム100の不活化処理を示す図である。図3中、太実線は廃液が流通している状態、細破線は蒸気が流通している状態、細一点鎖線は冷却水が流通している状態を示している。この不活化処理は、上述の薬液循環処理において、第1温度計12の検出温度が例えば135℃に達した時点で、薬液供給系開閉弁25a
を閉じるとともに廃液供給系開閉弁5を開くことにより開始される。開始されると、不活化処理経路内の薬液が廃液により薬液貯留槽25に押し流される。本システムでは経路配管の径は全て同一であるため、流量計7で検出される流量に基づいて、不活化処理経路内の薬液が廃液に置換されるタイミングを算出し、そのタイミングで廃液循環系開閉弁22を閉じ、排出系開閉弁23を開く。
FIG. 3 is a diagram showing an inactivating treatment of the decontamination system 100 according to the present embodiment. In FIG. 3, the thick solid line shows the state where the waste liquid is flowing, the thin broken line shows the state where the steam is flowing, and the fine one-dot chain line shows the state where the cooling water is flowing. In this inactivation treatment, when the detection temperature of the first thermometer 12 reaches, for example, 135 ° C. in the above-mentioned chemical liquid circulation treatment, the chemical liquid supply system on-off valve 25a
It is started by closing the waste liquid supply system on-off valve 5 and opening the waste liquid supply system on-off valve 5. When started, the chemical solution in the inactivating treatment path is washed away by the waste liquid into the chemical solution storage tank 25. In this system, since the diameters of the route pipes are all the same, the timing at which the chemical solution in the inactivation treatment path is replaced with the waste liquid is calculated based on the flow rate detected by the flow meter 7, and the waste liquid circulation system is calculated at that timing. The on-off valve 22 is closed and the discharge system on-off valve 23 is opened.
 本処理では、廃液受槽1から予熱器8による予熱を経て、加熱器11に例えば25℃の廃液が供給される。予熱器8には加熱器11のドレン水が供給され、予熱器8のドレン水はボイラ20に循環されて再利用される。加熱器11に供給された廃液は、加熱器11でボイラ20から供給された蒸気と熱交換することにより、例えば135℃に昇温される。135℃に昇温された廃液は、保持器13に供給され、例えば135℃以上で90秒間保持される。保持時間は、流量計7で検出された流量を制御することにより、保持器13での保持時間を確保する。保持器13で例えば135℃以上で90秒間保持された廃液は、予冷器16による予冷を経て、冷却器17に供給される。冷却器17に供給された廃液は、冷却水と熱交換することにより、例えば50℃~60℃以下に冷却された後、系外に排出される。予冷器16には冷却器17のドレン水が供給され、予冷器16のドレン水は系外に排出される。 In this treatment, the waste liquid at 25 ° C. is supplied to the heater 11 after being preheated by the preheater 8 from the waste liquid receiving tank 1. The drain water of the heater 11 is supplied to the preheater 8, and the drain water of the preheater 8 is circulated to the boiler 20 and reused. The waste liquid supplied to the heater 11 is heated to, for example, 135 ° C. by exchanging heat with the steam supplied from the boiler 20 in the heater 11. The waste liquid heated to 135 ° C. is supplied to the cage 13 and held at 135 ° C. or higher for 90 seconds, for example. The holding time secures the holding time in the cage 13 by controlling the flow rate detected by the flow meter 7. The waste liquid held in the cage 13 at, for example, 135 ° C. or higher for 90 seconds is supplied to the cooler 17 after being precooled by the precooler 16. The waste liquid supplied to the cooler 17 is cooled to, for example, 50 ° C. to 60 ° C. or lower by exchanging heat with the cooling water, and then discharged to the outside of the system. The drain water of the cooler 17 is supplied to the precooler 16, and the drain water of the precooler 16 is discharged to the outside of the system.
 ここで、廃液の受け入れ温度を例えば25℃として、不活化条件を135℃×90秒間とした場合、予熱器8で65℃まで予熱昇温されたとして、昇温のために投入する外部からのエネルギは、4KGの蒸気圧力で2.2kg/時で所定能力が達成可能である。これに対して、本実施形態と同様に300L/日の廃液を、従来のキルタンク(直接蒸気投入密閉反応容器)を用いて、同じ条件で不活化処理した場合、その必要蒸気量は66kgである。この場合には廃液が長時間未処理(未不活化)状態でエリア内に保持されるため、作業空間が汚染される懸念もあり、本実施形態の除染システムの有効性が確認できる。 Here, when the receiving temperature of the waste liquid is, for example, 25 ° C. and the inactivating condition is 135 ° C. × 90 seconds, it is assumed that the preheater 8 has preheated the temperature to 65 ° C. The energy can achieve a predetermined capacity at 2.2 kg / hour at a steam pressure of 4 KG. On the other hand, when 300 L / day of waste liquid is inactivated using a conventional kill tank (direct steam injection sealed reaction vessel) under the same conditions as in the present embodiment, the required vapor amount is 66 kg. .. In this case, since the waste liquid is held in the area in an untreated (inactivated) state for a long time, there is a concern that the work space may be contaminated, and the effectiveness of the decontamination system of the present embodiment can be confirmed.
 図4は、本実施形態に係る除染システム100の不活化異常処理を示す図である。図4中、太実線は廃液が循環している状態、細破線は蒸気が流通している状態、細一点鎖線は冷却水が流通している状態を示している。この不活化異常処理は、万が一、保持器13で例えば135℃以上90秒間の保持が確保できなかった場合(第2温度計15で監視可能)に実行される。本処理では、排出系開閉弁23を閉じ、廃液循環系開閉弁22を開くことにより、廃液は系外に放流されることなく、廃液受槽1に循環される。これにより、未除染の廃液が系外に排出されるのが防止される。 FIG. 4 is a diagram showing an inactivated abnormal treatment of the decontamination system 100 according to the present embodiment. In FIG. 4, the thick solid line indicates the state in which the waste liquid is circulating, the thin broken line indicates the state in which steam is circulating, and the fine alternate long and short dash line indicates the state in which cooling water is circulating. This inactivation abnormality processing is executed in the unlikely event that the cage 13 cannot secure the holding at 135 ° C. or higher for 90 seconds (monitorable by the second thermometer 15). In this treatment, by closing the discharge system on-off valve 23 and opening the waste liquid circulation system on-off valve 22, the waste liquid is circulated to the waste liquid receiving tank 1 without being discharged to the outside of the system. This prevents undecontaminated waste liquid from being discharged to the outside of the system.
 図5は、本実施形態に係る除染システム100のストレーナメンテナンス処理を示す図である。このストレーナメンテナンス処理は、ストレーナ3の交換時等に実行される。図5中、細破線は蒸気が流通している状態を示している。本処理により、ボイラ20の蒸気がストレーナ3に供給され、ストレーナ3の熱洗浄処理が行われる。 FIG. 5 is a diagram showing a strainer maintenance process of the decontamination system 100 according to the present embodiment. This strainer maintenance process is executed when the strainer 3 is replaced or the like. In FIG. 5, the broken line indicates the state in which steam is flowing. By this treatment, the steam of the boiler 20 is supplied to the strainer 3, and the strainer 3 is heat-cleaned.
 本実施形態に係る除染システム100によれば、以下の効果が奏される。
 (1) 本実施形態に係る除染システム100によれば、小容量の微生物及び/又はウィルス含有廃液を連続的に不活化できる。従来の薬液による消毒では不十分な細菌、ウィルスに対しても、所定の温度(致死温度)に昇温する事ができ、確実に不活化することができる。
 (2) 従来の薬液による消毒に比べて不活化処理は蒸気によるもののみであり、環境を汚染する可能性が低い。また、薬液による消毒では、大量の薬液が必要となりコストが高騰するが、本システムでは加熱によるため処理ランニングコストを低減できる。
 (3) 複数の熱交換器で処理することで、蒸気直接投入等のバッチ式熱処理法に比べ、放熱分を有効に利用できるため省エネルギである。また、熱交換器を多段に組み合わせることで、蒸気投入量を削減でき、蒸気ドレンを還水再利用することで水使用量、電気使用量を削減できる共に、最終処理水を所定の温度に降温できる。
 (4) 連続処理が可能なため、省スペースのコンパクトな装置で処理可能である。加えて、未処理液を瞬時に処理でき雰囲気(室内)内への逆汚染を防止できる。
 (5) アルカリ(水酸化ナトリウム等)や酸(硝酸等)により配管及び熱交換器を含む全システムを洗浄可能であり、配管内及び機器内へのスケールや蛋白の付着を防止並びに再溶解可能であり、メンテナンスが容易である。そのため、熱交換器特有の詰まりを防止でき、配管、機器が不動態化され、システムを高寿命化できる。
 (6) 対象ウィルスによって、任意に設定温度を変更でき、将来の未知の細菌やウィルスに対しても対応可能である。
 (7) 供給された蒸気は、再利用することでシステムの洗浄時に熱洗浄として有効利用可能である。また、ストレーナ3の交換時に熱洗浄が可能である。
 (8) 最終処理水を所定の温度に降温するために使用する冷却水は、降温未処理水と熱交換することで冷却水使用量を削減できる。
According to the decontamination system 100 according to the present embodiment, the following effects are exhibited.
(1) According to the decontamination system 100 according to the present embodiment, a small volume of microbial and / or virus-containing waste liquid can be continuously inactivated. Bacteria and viruses that are not sufficiently disinfected with conventional chemicals can be raised to a predetermined temperature (lethal temperature) and can be reliably inactivated.
(2) Compared with the conventional disinfection with a chemical solution, the inactivation treatment is only by steam, and the possibility of polluting the environment is low. In addition, disinfection with a chemical solution requires a large amount of chemical solution, which increases the cost, but in this system, the processing running cost can be reduced because it is heated.
(3) By processing with a plurality of heat exchangers, the heat radiation can be effectively used as compared with the batch heat treatment method such as direct steam injection, which saves energy. In addition, by combining heat exchangers in multiple stages, the amount of steam input can be reduced, and by reusing the steam drain as returned water, the amount of water and electricity used can be reduced, and the temperature of the final treated water can be lowered to a predetermined temperature. it can.
(4) Since continuous processing is possible, processing can be performed with a space-saving compact device. In addition, the untreated liquid can be treated instantly and back pollution in the atmosphere (indoor) can be prevented.
(5) All systems including piping and heat exchangers can be cleaned with alkali (sodium hydroxide, etc.) and acids (nitric acid, etc.), preventing scale and protein from adhering to piping and equipment, and redistributing. And easy to maintain. Therefore, clogging peculiar to the heat exchanger can be prevented, piping and equipment can be passivated, and the life of the system can be extended.
(6) The set temperature can be changed arbitrarily depending on the target virus, and it is possible to deal with unknown bacteria and viruses in the future.
(7) The supplied steam can be effectively used as thermal cleaning when cleaning the system by reusing it. In addition, heat cleaning is possible when the strainer 3 is replaced.
(8) The amount of cooling water used can be reduced by exchanging heat with the untreated water for cooling the cooling water used to lower the temperature of the final treated water to a predetermined temperature.
 なお、本発明は上記実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良は本発明に含まれる。 The present invention is not limited to the above embodiment, and modifications and improvements within the range in which the object of the present invention can be achieved are included in the present invention.
 1 廃液受槽
 2a,2b 廃液導入系開閉弁
 3 ストレーナ
 4 レベル計
 5 廃液供給系開閉弁(廃液供給手段)
 6 ポンプ(廃液供給手段)
 7 流量計(流量検出手段)
 8 予熱器
 9 予熱器ドレン(第1ドレン循環手段)
 10 熱交換装置
 11 加熱器
 11a、11b 加熱器ドレン
 11c 加熱器ドレン系開閉弁(ドレン循環手段)
 12 第1温度計(第1温度検出手段)
 13 保持器
 13a 保持器ドレン
 13b 保持器ドレン系開閉弁
 14 ドレン系開閉弁
 15 第2温度計(第2温度検出手段)
 16 予冷器
 16a 予冷器ドレン(第2ドレン循環手段)
 17 冷却器
 17a 冷却器ドレン
 17b 冷却器ドレン系開閉弁
 18 圧力計(圧力検出手段)
 19 調整弁
 20 ボイラ(蒸気生成装置)
 20a,20b,20c,20d 蒸気系開閉弁
 20e,20f 蒸気系開閉弁(ストレーナ洗浄手段)
 21a,21b,21c 冷却系開閉弁
 22 廃液循環系開閉弁(廃液循環手段)
 23 排出系開閉弁(廃液循環手段)
 24 薬液循環系開閉弁(薬液循環手段)
 25 薬液貯留槽(薬液循環手段)
 25a 薬液供給系開閉弁(薬液循環手段)
 26 アルカリ貯留槽
 26a アルカリ供給系開閉弁
 27 酸貯留槽
 27a 酸供給系開閉弁
 90 制御装置
 100 除染システム
1 Waste liquid receiving tank 2a, 2b Waste liquid introduction system on-off valve 3 Strainer 4 Level meter 5 Waste liquid supply system on-off valve (waste liquid supply means)
6 Pump (waste liquid supply means)
7 Flow meter (flow rate detecting means)
8 Preheater 9 Preheater drain (1st drain circulation means)
10 Heat exchanger 11 Heater 11a, 11b Heater drain 11c Heater Drain system on-off valve (drain circulation means)
12 First thermometer (first temperature detecting means)
13 Cage 13a Cage drain 13b Cage drain system on-off valve 14 Drain system on-off valve 15 Second thermometer (second temperature detecting means)
16 Precooler 16a Precooler drain (second drain circulation means)
17 Cooler 17a Cooler drain 17b Cooler drain system on-off valve 18 Pressure gauge (pressure detecting means)
19 Control valve 20 Boiler (steam generator)
20a, 20b, 20c, 20d Steam-based on-off valve 20e, 20f Steam-based on-off valve (strainer cleaning means)
21a, 21b, 21c Cooling system on-off valve 22 Waste liquid circulation system on-off valve (waste liquid circulation means)
23 Discharge system on-off valve (waste liquid circulation means)
24 Chemical circulation system on-off valve (chemical circulation means)
25 Chemical solution storage tank (chemical solution circulation means)
25a Chemical solution supply system on-off valve (chemical solution circulation means)
26 Alkaline storage tank 26a Alkaline supply system on-off valve 27 Acid storage tank 27a Acid supply system on-off valve 90 Control device 100 Decontamination system

Claims (10)

  1.  微生物及び/又はウィルスを含有する廃液を連続的に不活化処理する除染システムであって、
     前記廃液を排出する設備から前記廃液を受ける廃液受槽と、
     蒸気を生成する蒸気生成装置と、
     前記廃液受槽から供給される前記廃液を、前記蒸気生成装置により生成された前記蒸気との熱交換により加熱する熱交換装置と、
     前記廃液受槽から前記熱交換装置に前記廃液を供給する廃液供給手段と、
     前記廃液受槽、前記蒸気生成装置、前記熱交換装置及び前記廃液供給手段を制御して、前記廃液を連続的に不活化処理する制御装置と、を備え、
     前記熱交換装置は、
     コイル状の管式熱交換器を有し、前記蒸気生成装置により生成された前記蒸気との熱交換により前記廃液を所定の第1温度以上に加熱する加熱器と、
     コイル状の管式熱交換器を有し、前記加熱器により前記第1温度以上に加熱された前記廃液を、前記蒸気生成装置により生成された前記蒸気と熱交換しながら前記第1温度以上に所定時間保持する保持器と、を有する、微生物及び/又はウィルス含有廃液の除染システム。
    A decontamination system that continuously inactivates waste liquids containing microorganisms and / or viruses.
    A waste liquid receiving tank that receives the waste liquid from the equipment that discharges the waste liquid, and
    A steam generator that generates steam and
    A heat exchange device that heats the waste liquid supplied from the waste liquid receiving tank by heat exchange with the steam generated by the steam generator.
    A waste liquid supply means for supplying the waste liquid from the waste liquid receiving tank to the heat exchange device, and
    A control device for controlling the waste liquid receiving tank, the vapor generating device, the heat exchange device, and the waste liquid supply means to continuously inactivate the waste liquid is provided.
    The heat exchange device is
    A heater having a coiled tube heat exchanger and heating the waste liquid to a predetermined first temperature or higher by heat exchange with the steam generated by the steam generator.
    It has a coiled tube heat exchanger, and the waste liquid heated to the first temperature or higher by the heater is heated to the first temperature or higher while exchanging heat with the steam generated by the steam generator. A decontamination system for microbial and / or virus-containing waste liquids, comprising a cage that holds for a predetermined time.
  2.  前記廃液受槽と前記加熱器の間の流路に設けられ、該流路を流通する廃液の流量を検出する流量検出手段と、
     前記加熱器と前記保持器の間の流路に設けられ、該流路を流通する廃液の温度を検出する第1温度検出手段と、
     前記保持器の下流側の流路に設けられ、該流路を流通する廃液の温度を検出する第2温度検出手段と、を備え、
     前記制御装置は、前記流量検出手段により検出された流量、前記第1温度検出手段により検出された温度及び前記第2温度検出手段により検出された温度に基づいて、前記廃液受槽、前記廃液供給手段、前記蒸気生成装置及び前記熱交換装置を制御する、請求項1に記載の微生物及び/又はウィルス含有廃液の除染システム。
    A flow rate detecting means provided in the flow path between the waste liquid receiving tank and the heater and detecting the flow rate of the waste liquid flowing through the flow path,
    A first temperature detecting means provided in the flow path between the heater and the cage and detecting the temperature of the waste liquid flowing through the flow path, and
    A second temperature detecting means provided in the flow path on the downstream side of the cage and detecting the temperature of the waste liquid flowing through the flow path is provided.
    The control device includes the waste liquid receiving tank and the waste liquid supply means based on the flow rate detected by the flow rate detecting means, the temperature detected by the first temperature detecting means, and the temperature detected by the second temperature detecting means. The microbial and / or virus-containing waste liquid decontamination system according to claim 1, which controls the steam generator and the heat exchange device.
  3.  前記熱交換装置から排出される廃液を前記廃液受槽に循環させる廃液循環手段をさらに備え、
     前記制御装置は、前記第2温度検出手段により検出された温度が前記第1温度未満である場合には、前記廃液循環手段を制御して、前記熱交換装置から排出される廃液を前記廃液受槽に循環させる、請求項2に記載の微生物及び/又はウィルス含有廃液の除染システム。
    A waste liquid circulation means for circulating the waste liquid discharged from the heat exchange device to the waste liquid receiving tank is further provided.
    When the temperature detected by the second temperature detecting means is lower than the first temperature, the control device controls the waste liquid circulation means and collects the waste liquid discharged from the heat exchange device into the waste liquid receiving tank. The decontamination system for the microbial and / or virus-containing waste liquid according to claim 2, which is circulated in the water.
  4.  前記熱交換装置は、前記廃液受槽と前記加熱器との間の流路に設けられ、前記廃液受槽から前記加熱器に供給される前記廃液を予熱する予熱器をさらに有し、
     前記予熱器には、前記加熱器から排出されるドレン水が供給される、請求項1から3いずれかに記載の微生物及び/又はウィルス含有廃液の除染システム。
    The heat exchange device is provided in a flow path between the waste liquid receiving tank and the heater, and further has a preheater for preheating the waste liquid supplied from the waste liquid receiving tank to the heater.
    The microbial and / or virus-containing waste liquid decontamination system according to any one of claims 1 to 3, wherein drain water discharged from the heater is supplied to the preheater.
  5.  前記予熱器から排出されるドレン水を前記蒸気生成装置に循環させるドレン循環手段をさらに備える、請求項4に記載の微生物及び/又はウィルス含有廃液の除染システム。 The microbial and / or virus-containing waste liquid decontamination system according to claim 4, further comprising a drain circulation means for circulating the drain water discharged from the preheater to the steam generator.
  6.  前記熱交換装置は、
     コイル状の管式熱交換器を有し、前記保持器により前記第1温度以上に所定時間保持された前記廃液を、冷却水との熱交換により所定の第2温度以下に冷却する冷却器をさらに有する、請求項1から5いずれかに記載の微生物及び/又はウィルス含有廃液の除染システム。
    The heat exchange device is
    A cooler having a coiled tube heat exchanger and cooling the waste liquid held at the first temperature or higher for a predetermined time by the cage to a predetermined second temperature or lower by heat exchange with cooling water. The system for decontaminating the microbial and / or virus-containing waste liquid according to any one of claims 1 to 5, further comprising.
  7.  前記熱交換装置は、前記保持器と前記冷却器との間の流路に設けられ、前記保持器により前記第1温度以上に所定時間保持された後に前記冷却器に供給される前記廃液を予冷する予冷器をさらに有し、
     前記予冷器には、前記冷却器から排出されるドレン水が供給される、請求項6に記載の微生物及び/又はウィルス含有廃液の除染システム。
    The heat exchange device is provided in a flow path between the cage and the cooler, and precools the waste liquid supplied to the cooler after being held at the first temperature or higher for a predetermined time by the cage. Have more precoolers to
    The microbial and / or virus-containing waste liquid decontamination system according to claim 6, wherein drain water discharged from the cooler is supplied to the precooler.
  8.  前記冷却器の下流側の流路に設けられ、該流路内の圧力を検出する圧力検出手段と、
     前記圧力検出手段よりも下流側の流路に設けられ、該流路内の圧力を調整可能な調整弁と、をさらに備え、
     前記制御装置は、前記圧力検出手段により検出された圧力に基づいて、前記調整弁の開閉を制御する、請求項6又は7に記載の微生物及び/又はウィルス含有廃液の除染システム。
    A pressure detecting means provided in the flow path on the downstream side of the cooler to detect the pressure in the flow path, and
    A regulating valve provided in the flow path on the downstream side of the pressure detecting means and capable of adjusting the pressure in the flow path is further provided.
    The microbial and / or virus-containing waste liquid decontamination system according to claim 6 or 7, wherein the control device controls the opening and closing of the regulating valve based on the pressure detected by the pressure detecting means.
  9.  薬液を貯留する薬液貯留槽と、
     前記薬液貯留槽に貯留されている薬液を前記熱交換装置に供給するとともに、該熱交換装置に供給された薬液を前記薬液貯留槽に循環させる薬液循環手段と、をさらに備える、請求項1から8いずれかに記載の微生物及び/又はウィルス含有廃液の除染システム。
    A chemical storage tank for storing chemicals and
    According to claim 1, the chemical solution stored in the chemical solution storage tank is supplied to the heat exchange device, and the chemical solution circulating means for circulating the chemical solution supplied to the heat exchange device to the chemical solution storage tank is further provided. 8. The decontamination system for microbial and / or virus-containing waste liquids according to any one.
  10.  前記廃液を排出する設備から前記廃液受槽に廃液を導入する廃液導入路に設けられ、前記廃液を濾過するストレーナと、
     前記蒸気生成装置により生成された前記蒸気を前記ストレーナに供給することにより、前記ストレーナを熱洗浄するストレーナ洗浄手段と、をさらに備える、請求項1から9いずれかに記載の微生物及び/又はウィルス含有廃液の除染システム。
    A strainer provided in the waste liquid introduction path for introducing the waste liquid from the facility for discharging the waste liquid into the waste liquid receiving tank, and a strainer for filtering the waste liquid.
    The microorganism and / or virus according to any one of claims 1 to 9, further comprising a strainer cleaning means for thermally cleaning the strainer by supplying the steam generated by the steam generator to the strainer. Waste liquid decontamination system.
PCT/JP2020/000694 2020-01-10 2020-01-10 Decontamination system for microbe- and/or virus-containing waste fluid WO2021140656A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/000694 WO2021140656A1 (en) 2020-01-10 2020-01-10 Decontamination system for microbe- and/or virus-containing waste fluid
SG11202013147VA SG11202013147VA (en) 2020-01-10 2020-01-10 System for decontaminating liquid waste containing microorganism and/or virus
JP2020526652A JP6761149B1 (en) 2020-01-10 2020-01-10 Decontamination system for microbial and / or virus-containing waste liquids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/000694 WO2021140656A1 (en) 2020-01-10 2020-01-10 Decontamination system for microbe- and/or virus-containing waste fluid

Publications (1)

Publication Number Publication Date
WO2021140656A1 true WO2021140656A1 (en) 2021-07-15

Family

ID=72517980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/000694 WO2021140656A1 (en) 2020-01-10 2020-01-10 Decontamination system for microbe- and/or virus-containing waste fluid

Country Status (3)

Country Link
JP (1) JP6761149B1 (en)
SG (1) SG11202013147VA (en)
WO (1) WO2021140656A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112944371B (en) * 2021-04-16 2024-06-14 重庆贯通生物科技有限公司 Harmless treatment method and treatment equipment for organic waste liquid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354578A (en) * 1991-05-30 1992-12-08 Shiraimatsu Kikai Kk Sterilizing equipment for waste water generated from dissecting room or the like
JP2000015241A (en) * 1998-06-29 2000-01-18 Plantec Inc Medical waste water treatment equipment and treatment method thereof
JP2001340844A (en) * 2000-06-02 2001-12-11 Kajima Corp Method and apparatus for sterilizing wastewater containing microorganism and/or virus
JP2003103252A (en) * 2001-09-28 2003-04-08 Kajima Corp Method and apparatus for heat sterilization of to-be- treated liquid
JP2003164855A (en) * 2001-11-30 2003-06-10 Kajima Corp Heating sterilization method and equipment for waste water
JP2004057951A (en) * 2002-07-29 2004-02-26 Aqua Research:Kk Sewage sterilizing apparatus
WO2013054390A1 (en) * 2011-10-11 2013-04-18 鹿島建設株式会社 Wastewater inactivation method and system
CN108114305A (en) * 2017-06-05 2018-06-05 浙江易健生物制品有限公司 GMP workshops contain viral waste liquid steam inactivation energy conserving system and its method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0731016B2 (en) * 1987-03-05 1995-04-10 日本電装株式会社 Heat exchanger assembly structure
JP2005321156A (en) * 2004-05-10 2005-11-17 Teigu:Kk Heat transfer tube and heat exchanger

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04354578A (en) * 1991-05-30 1992-12-08 Shiraimatsu Kikai Kk Sterilizing equipment for waste water generated from dissecting room or the like
JP2000015241A (en) * 1998-06-29 2000-01-18 Plantec Inc Medical waste water treatment equipment and treatment method thereof
JP2001340844A (en) * 2000-06-02 2001-12-11 Kajima Corp Method and apparatus for sterilizing wastewater containing microorganism and/or virus
JP2003103252A (en) * 2001-09-28 2003-04-08 Kajima Corp Method and apparatus for heat sterilization of to-be- treated liquid
JP2003164855A (en) * 2001-11-30 2003-06-10 Kajima Corp Heating sterilization method and equipment for waste water
JP2004057951A (en) * 2002-07-29 2004-02-26 Aqua Research:Kk Sewage sterilizing apparatus
WO2013054390A1 (en) * 2011-10-11 2013-04-18 鹿島建設株式会社 Wastewater inactivation method and system
CN108114305A (en) * 2017-06-05 2018-06-05 浙江易健生物制品有限公司 GMP workshops contain viral waste liquid steam inactivation energy conserving system and its method

Also Published As

Publication number Publication date
JPWO2021140656A1 (en) 2021-07-15
SG11202013147VA (en) 2021-08-30
JP6761149B1 (en) 2020-09-23

Similar Documents

Publication Publication Date Title
US5906800A (en) Steam delivery system for a decontamination apparatus
KR102114400B1 (en) Fluid sterilization systems and methods
US8025807B2 (en) Method for treating rinse water in decontamination devices
US20110042322A1 (en) Apparatus and methods for variably sterilizing aqueous liquids
WO2021140656A1 (en) Decontamination system for microbe- and/or virus-containing waste fluid
US9211351B2 (en) Methods for variably sterilizing aqueous liquids
KR102381979B1 (en) Wastewater Sterilization System and Wastewater Sterilization Method Using
JP7190703B2 (en) Continuous sterilizer and continuous sterilization method
CN1625529A (en) Self-sanitising water treatment apparatus with a reserv Dir for treated water that includes heating element
JP5110493B1 (en) Wastewater inactivation method and system
JP3297419B2 (en) Method and apparatus for sterilizing wastewater containing microorganisms and / or viruses
JP3676728B2 (en) Waste water heat sterilization method and apparatus
JP2000015241A (en) Medical waste water treatment equipment and treatment method thereof
JP3919161B2 (en) Method and apparatus for heat sterilization of liquid to be treated
RU2779942C1 (en) Continuous operation water steriliser
CN113975419B (en) Oral cavity inspection instrument degassing unit for department of stomatology
AU2011203220B2 (en) Heat recovery in biowaste sterilization
CN215023049U (en) Aseptic discharge type translation door vertical sterilizer
JP6955306B2 (en) Processing equipment
JPH10180241A (en) Medical waste water treating system
JP2607525Y2 (en) Sterilizer
JPH04354578A (en) Sterilizing equipment for waste water generated from dissecting room or the like
AU2002329302B2 (en) Method and apparatus for the sterilization of biological waste
JPH0487678A (en) Sterilizing equipment for waste water produced in dissection room or the like
KR20230018392A (en) Multi-functional molecular energizer device and its use method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526652

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912020

Country of ref document: EP

Kind code of ref document: A1