JP3747592B2 - Lactic acid polymer molded product and method for producing the same - Google Patents

Lactic acid polymer molded product and method for producing the same Download PDF

Info

Publication number
JP3747592B2
JP3747592B2 JP27237697A JP27237697A JP3747592B2 JP 3747592 B2 JP3747592 B2 JP 3747592B2 JP 27237697 A JP27237697 A JP 27237697A JP 27237697 A JP27237697 A JP 27237697A JP 3747592 B2 JP3747592 B2 JP 3747592B2
Authority
JP
Japan
Prior art keywords
lactic acid
wax
temperature
weight
crystallization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27237697A
Other languages
Japanese (ja)
Other versions
JPH11106628A (en
Inventor
健志 金森
英一 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27237697A priority Critical patent/JP3747592B2/en
Publication of JPH11106628A publication Critical patent/JPH11106628A/en
Application granted granted Critical
Publication of JP3747592B2 publication Critical patent/JP3747592B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、成形性の良好な耐熱性ポリ乳酸系ポリマー組成物に関する。
【0002】
【従来の技術】
近年、自然環境保護の見地から、自然環境中で分解する生分解性ポリマー及びその成型品が求められ、脂肪族ポリエステルなどの自然分解性樹脂の研究が活発に行われている。特に、乳酸系ポリマーは融点が170〜180℃と十分に高く、しかも透明性に優れる為、包装材料や透明性を生かした成型品等として大いに期待されている。
【0003】
しかしながら、乳酸系ポリマーの射出成形等による容器は、剛性には優れているが、耐熱性が低く、あるいは耐熱性と耐衝撃性が共に低く、例えば包装容器で熱湯又は電子レンジを使用する事ができず、用途が限定されている。
【0004】
耐熱性を有するには成形加工時に金型冷却を長時間にするか、又、成形後に成型品をアニール処理して高度に結晶化する必要があった。しかし、成形時に長時間の冷却工程は、実用的でなく、かつ、結晶化が不十分になり易く、又、アニールによる後結晶化は成型品が結晶化する過程で変形しやすい欠点が有る。
【0005】
結晶化速度を上げる方法として、PETの結晶化を促進するため特開昭60−86156号公報には、結晶核剤としてテレフタル酸とレゾルシンを主な構成単位とする全芳香族ポリエステル微粉末を添加する事が記載されているように、結晶化を促進させるための核剤を添加する方法が知られている。
【0006】
それに対し、生分解性を有するポリマーにこのような添加剤を加える例として、特開平5−70696号公報、特表平4−504731号公報、USP5180765号公報、特表平6−504799号公報、特開平4−220456号公報があげられる。特開平5−70696号公報には、プラスチック製容器の材料としてポリ−3−ヒドロキシブチレート/ポリ−3−ヒドロキシバリレート共重合体、ポリカプロラクトンあるいはポリ乳酸のような生分解性プラスチックに平均粒径20ミクロン以下の炭酸カルシウム、含水珪酸マグネシウム(タルク)を重量比で10〜40%混合する事が開示されている。しかし、この技術は多量の無機充填剤の添加により廃棄後の生分解性プラスチックの分解を促進するものであり、ポリマーを結晶化させて耐熱性を向上させるものではない。又、特表平4−504731号公報(WO 90/01521号公報)には、ラクチド熱可塑性プラスチックにシリカ、カオリナイトのような無機化合物の充填剤の添加により硬度、強度、温度抵抗性の性質を変える事が記載されており、その実施例には、L、DL−ラクチド共重合体に核剤として乳酸カルシウム5重量%を温度170℃の加熱ロールで5分間ブレンドした所、そのシートは剛性、強度がありかつ曇っていて、結晶化度が増加した事が記載されている。
【0007】
また、特表平6−504799号公報には、核剤として乳酸塩、安息香酸塩が記載されており、その実施例には、ポリラクチドコポリマーに1%の乳酸カルシウムを配合し、2分間の滞留時間で約85℃に保持した型で射出成形したが、結晶化が不十分のため、更に型中で約110〜135℃でアニーリングした例が記載されている。
【0008】
また、特開平8−193165号公報には、実際に乳酸系ポリマーに核剤として通常のタルク、シリカ、乳酸カルシウム等を使用して射出成形を試みたが、結晶化速度が遅く、また成型物が脆いため、実用に耐えうる成型物を得ることができない。従って、このような乳酸系ポリマーは、通常のタルク、シリカ等を用いて一般の射出成形、ブロー成形、圧縮成形に使用しても、結晶化速度が遅く、得られる成型物の実用耐熱性が100℃以下と低く耐衝撃性も強くない為に用途面に制約があると記載されている。また、特開平4−220456号公報には、核剤としてポリグリコール酸及びその誘導体をポリL−ラクチド等に加え、結晶化速度を上昇させる事により、射出成形サイクル時間を短縮させ、かつ、優れた力学的性質を有する事が記載されている。射出成形の例として、核剤なしの場合の結晶化温度は、冷却時間60秒で22.6%、核剤添加で45.5%が例示されている。
【0009】
しかし、特開平8−193165号公報によると、実際に乳酸系ポリマーに核剤を入れないで射出成形を試みた所、特開平4−220456号公報に記載されているような、金型温度がTg点以上の条件では、成形する事ができなかったと記載されている。
【0010】
【発明が解決しようとする課題】
本発明の目的は、上記の問題に対し、乳酸系ポリマーよりなる耐熱性や耐衝撃性に優れた成型物を得ることを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、結晶核及び結晶化促進剤としてワックスを用いる事により、上記目的を達成し得ることを見いだし、本発明を完成するに至った。
【0012】
すなわち本発明は、乳酸系ポリマー100重量部にワックス0.01〜1.0重量部を含み、動的粘弾性の温度依存性に関する試験(JIS−K−7198B法)での貯蔵弾性率(E´)の100℃以下での最低値が107 Pa以上である組成物及び成型品、乳酸系ポリマー100重量部にワックス0.01〜1.0重量部を混合、溶融し、85〜125℃に設定された成形機の金型に充填し、結晶化させながら成形することを特徴とする耐熱性乳酸系ポリマーの製造方法である。
【0013】
本発明において乳酸系ポリマーとは、ポリ乳酸ホモポリマーの他、乳酸コポリマー、ブレンドポリマーをも含むものである。
【0014】
乳酸系ポリマーの重量平均分子量は、一般に5〜50万である。また、乳酸系ポリマーにおけるL−乳酸単位、D−乳酸単位の構成モル比L/Dは、100/0〜0/100のいずれであっても良いが、高い融点を得るにはL乳酸あるいはD乳酸いずれかの単位を75モル%以上、更に高い融点を得るにはL乳酸あるいはD乳酸のいずれかの単位を90モル以上含む事が好ましい。
【0015】
乳酸コポリマーは、乳酸モノマー又はラクチドと共重合可能な他の成分とが共重合されたものである。このような他の成分としては、2個以上のエステル結合形成性の官能基を持つジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトン等、及びこれら種々の構成成分より成る各種ポリエステル、各種ポリエーテル、各種ポリカーボネート等が挙げられる。
【0016】
ジカルボン酸としては、コハク酸、アジピン酸、アゼライン酸、セバシン酸、テレフタル酸、イソフタル酸等が挙げられる。
【0017】
多価アルコールの例としては、ビスフェノールにエチレンオキサイドを付加反応させたものなどの芳香族多価アルコール、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、オクタンジオール、グリセリン、ソルビタン、トリメチロールプロパン、ネオペンチルグリコールなどの脂肪族多価アルコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のエーテルグリコール等が挙げられる。ヒドロキシカルボン酸の例としては、グリコール酸、ヒドロキシブチルカルボン酸、その他特開平6−184417号公報に記載されているもの等が挙げられる。
【0018】
ラクトンとしては、グリコリド、ε−カプロラクトングリコリド、ε−カプロラクトン、β−プロピオラクトン、δ−ブチロラクトン、β−またはγ−ブチロラクトン、ピバロラクトン、δ−バレロラクトン等が挙げられる。
【0019】
乳酸系ポリマーは、従来公知の方法で合成させたものである。すなわち、特開平7−33861号公報、特開昭59−96123号公報、高分子討論会予稿集44巻3198−3199頁に記載のような乳酸モノマーからの直接脱水縮合、または乳酸環状二量体ラクチドの開環重合によって合成することが出来る。
【0020】
直接脱水縮合を行う場合、L−乳酸、D−乳酸、DL−乳酸、又はこれらの混合物のいずれの乳酸を用いても良い。又、開環重合を行う場合においても、L−ラクチド、D−ラクチド、DL−ラクチド、又はこれらの混合物のいずれのラクチドを用いても良い。
ラクチドの合成、精製及び重合操作は、例えば米国特許4057537号明細書、公開欧州特許出願第261572号明細書、Polymer Bulletin, 14, 491-495 (1985)及び Makromol Chem., 187, 1611-1628 (1986)等の文献に様々に記載されている。
【0021】
この重合反応に用いる触媒は、特に限定されるものではないが、公知の乳酸重合用触媒を用いる事が出来る。例えば、乳酸錫スズ、酒石酸スズ、ジカプリル酸スズ、ジラウリル酸スズ、ジパルミチン酸スズ、ジステアリン酸スズ、ジオレイン酸スズ、α−ナフトエ酸スズ、β−ナフトエ酸スズ、オクチル酸スズ等のスズ系化合物、粉末スズ、酸化スズ; 亜鉛末、ハロゲン化亜鉛、酸化亜鉛、有機亜鉛系化合物; テトラプロピルチタネート等のチタン系化合物; ジルコニウムイソプロポキシド等のジルコニウム系化合物; 三酸化アンチモン等のアンチモン系化合物; 酸化ビスマス(III)等のビスマス系化合物; 酸化アルミニウム、アルミニウムイソプロポキシド等のアルミニウム系化合物等を挙げることができる。
これらの中でも、スズ又はスズ化合物からなる触媒が活性の点から特に好ましい。これらの触媒の使用量は、例えば開環重合を行う場合、ラクチドに対して0.001〜5重量%程度である。
【0022】
重合反応は、上記触媒の存在下、触媒種によって異なるが、通常100〜220℃の温度で行う事ができる。また、特開平7−247345号公報に記載のような2段階重合を行う事も好ましい。
【0023】
本発明においてワックスとは、天然ワックスと合成ワックスを含む。生分解性の観点より天然ワックスが好ましいが、特に限定されない。天然に得られるワックスには、動物系ワックス、植物系ワックス、鉱物系ワックスおよび石油ワックスがある(高分子大辞典より)。動物系ワックスは、昆虫あるいは哺乳類に由来するものである。商業的には、蜜蝋と羊毛蝋(未精製ラノリン)が重要である。植物系ワックスは、葉や幹あるいは果実から得られる。キャンデリラワックス、カルナウバワックス、ライスワックス等が重要な植物ワックスである。キャンデリラワックスおよびカルナウバワックスは、それぞれキャンデリラ草およびカルナウバの葉から得られる。ライスワックスは、玄米を保護している米ぬかにぬか油中のろう分を分取し、脱色精製したもので、後加工により水素添加したものも含まれる。これらの主成分は、脂肪酸(ワックス酸)と高級アルコールのエステルが主成分であり、脂肪酸としてはパルミチン酸、ステアリン酸、ペヘニン酸、リグノセリン酸、セロチン酸、ドトリアコンタン酸などがあり、主なアルコール成分としてはセリルアルコール、イソセリルアルコール、ミリシルアルコールなどがある。また、ミリシルアルコール、セリルアルコール、イソセリルアルコールなどを主成分とする不けん化物および若干の遊離酸、ステリン酸、スクワレン、リン脂質などが含まれる場合もある。
【0024】
本発明に用いられるワックスとしては、特に限定されないが、例えばライスワックスにはM−80,M−90、M−100、M−200、M−301、M−301A、M−307等(すべて(株)セラリカ野田製)などがあり、それぞれの使用目的に応じて種類、グレードを任意に選択することができる。
【0025】
本発明におけるワックスの添加量は、乳酸系ポリマー100重量部に対して、0.01〜1.0重量部が好ましい。0.01重量部未満の場合は、添加の効果が不十分となる場合があり、また1.0重量部を越えると乳酸系ポリマーに白濁が生じるため好ましくない。
【0026】
乳酸系ポリマー組成物を結晶化するには、成型物を結晶化温度でアニーリングする方法、組成物を成形するときに成形金型を結晶化温度に設定し、一定時間保持する方法が有る。
【0027】
本発明の組成物を成形するときに結晶化温度で一定時間保持する方法は、射出成形、ブロー成形及び圧縮成形機の金型温度をDSC法の結晶化開始温度から終了時温度の範囲に設定して、金型内にて結晶化を完了させる方法であり、これにより耐熱性・耐衝撃性に優れた乳酸系ポリマー組成物が得られる。金型温度の設定は、成形する乳酸系ポリマー組成物の種類により異なるので、あらかじめDSC法により結晶化温度を測定し、結晶化開始温度から終了時温度の範囲とする。この温度範囲であれば、容易に結晶化し、さらには寸法精度の良い成形品を得ることができる。この範囲をはずれると、結晶化が遅くなり、成形時の固化時間も長くなるため実用上適さない。
【0028】
乳酸系ポリマーにワックスを配合する方法は、特に制限されるものではなく、従来公知の方法によって行う事ができる。例えば、ミルロール、バンバリーミキサー、スーパーミキサー、単軸あるいは二軸押出機等を用いて混練すれば良い。この混合混練は、通常120〜220℃程度の温度で行われる。
【0029】
さらに本発明における乳酸系ポリマー組成物には、必要に応じて、従来公知の可塑剤、酸化防止剤、、熱安定剤、光安定剤、紫外線吸収剤、顔料、着色剤、各種フィラー、帯電防止剤、離型剤、香料、滑剤、難燃剤、発泡剤、充填剤、抗菌・抗カビ剤、他の核形成剤等の各種添加剤が配合されていても良い。
【0030】
本発明において、耐熱性の指標は、動的粘弾性の温度依存性に関する試験(JIS K 7198B法)での動的貯蔵弾性率(E´)を測定し、100℃以下の温度において動的貯蔵弾性率(E´)の最低値が107 Pa以上であることを条件とした。JIS K 7198B法での動的貯蔵弾性率(E´)とは、物理的にその組成物や成型品の剛性(硬さ、柔らかさ)を表しており、100℃以下の温度において動的貯蔵弾性率(E´)の最低値が107 Pa以下で有る場合、実際の使用時に容易に変形を生じる。
【0031】
本発明の乳酸系ポリマー組成物及び成型品の製造方法は、一般のプラスチックと同様の射出成形、真空成形、圧縮成形等の成形に応用できるため、棒、ビン、容器等の各種成形品を容易に得ることが出来る。
【0032】
本発明及び以下の実施例において、重合体の重量平均分子量(Mw)はGPC分析によるポリスチレン換算値、動的貯蔵弾性率の測定は、動的粘弾性の温度依存性に関する試験(JIS K 7198B法)に準じて行った。また、結晶化温度は走査型示差熱量計(DSC)により、昇温速度10℃/min.にて測定した。
【0033】
【実施例】
(実施例1)
ポリ乳酸((株)島津製作所製「ラクティ」、Mw=180000、以下PLA1)100重量部に対し、ライスワックス((株)セラリカ野田製「M−90」)を0.2重量部をドライブレンドし、200℃の二軸混練押出機にて平均4分間溶融混合し、口金よりストランド状に押出し、水冷後、切断しライスワックスを含む乳酸系ポリマー組成物のチップC1を得た。
得られたチップC1のDSCを測定した結果、結晶化ピーク温度は105℃、結晶化開始温度は85℃、結晶化終了温度は130℃、結晶化熱量は25J/gであった。
チップC1を80℃で真空乾燥し、絶乾状態にした後、金型温度を25℃に保ち、射出成形により名刺大プレート(1mmt)を得た。
【0034】
得られた1mm厚の名刺大プレートを10mm×50mmの短冊状に切り出し、動的粘弾性の温度依存性に関する試験(JIS K 7187B法)での動的貯蔵弾性率を測定した。
【0035】
(実施例2)
実施例1で得られたチップC1を80℃で真空乾燥し、絶乾状態にした後、金型温度を100℃に保ち、射出成形により名刺大プレート(1mmt)を得た。得られた1mm厚の名刺大プレートを10mm×50mmの短冊状に切り出し、動的粘弾性の温度依存性に関する試験(JIS K 7187B法)での動的貯蔵弾性率を測定した。
【0036】
(比較例1)
実施例1で用いたPLA1を80℃で真空乾燥し、絶乾状態にした後、金型温度を25℃に保ち、射出成形により名刺大プレート(1mmt)を得た。
得られた1mm厚の名刺大プレートを10mm×50mmの短冊状に切り出し、動的粘弾性の温度依存性に関する試験(JIS K 7187B法)での動的貯蔵弾性率を測定した。
【0037】
(比較例2)
実施例1で用いたPLA1のDSCを測定した結果、結晶化ピーク温度は130℃、結晶化開始温度は80℃、結晶化終了温度は140℃、結晶化熱量は5.8J/gであった。
PLA1を80℃で真空乾燥し、絶乾状態にした後、金型温度を100℃に保ち、射出成形により名刺大プレート(1mmt)を得た。
得られた1mm厚の名刺大プレートを10mm×50mmの短冊状に切り出し、動的粘弾性の温度依存性に関する試験(JIS K 7187B法)での動的貯蔵弾性率を測定した。
【0038】
動的貯蔵弾性率の測定結果を図1に示す。この結果より実施例1は、80℃以上の温度領域で急速に弾性率が高くなり、比較例に比べ明らかに結晶化が速く、弾性率も向上する事がわかる。又、実施例2の結果より金型内にて結晶化させることにより、80℃近傍での弾性率の落ち込みが低減でき成型品の耐熱性が上げられることがわかる。
【0039】
【発明の効果】
乳酸系ポリマーに、ワックスをブレンドすることにより乳酸系ポリマーの結晶化速度を速くでき、弾性率も向上できる。さらに、この組成物を金型内にて結晶化処理することにより耐熱性に優れた成型品が得られる。
【図面の簡単な説明】
【図1】動的貯蔵弾性率の測定結果を示す図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-resistant polylactic acid polymer composition having good moldability.
[0002]
[Prior art]
In recent years, from the viewpoint of protecting the natural environment, biodegradable polymers that can be decomposed in the natural environment and molded products thereof have been demanded, and research on natural degradable resins such as aliphatic polyesters has been actively conducted. In particular, a lactic acid-based polymer has a sufficiently high melting point of 170 to 180 ° C. and is excellent in transparency, and therefore is highly expected as a packaging material or a molded product utilizing the transparency.
[0003]
However, a container made by injection molding of a lactic acid-based polymer is excellent in rigidity, but has low heat resistance or both heat resistance and impact resistance. For example, hot water or a microwave oven may be used in a packaging container. It is not possible and the application is limited.
[0004]
In order to have heat resistance, it was necessary to cool the mold for a long time during the molding process, or to anneal the molded product after molding to highly crystallize. However, a long cooling process at the time of molding is not practical, and crystallization tends to be insufficient, and post-crystallization by annealing has a defect that the molded product tends to be deformed in the process of crystallizing.
[0005]
As a method for increasing the crystallization speed, in order to promote the crystallization of PET, Japanese Patent Application Laid-Open No. 60-86156 added a wholly aromatic polyester fine powder mainly composed of terephthalic acid and resorcin as a crystal nucleating agent. As it is described, a method of adding a nucleating agent for promoting crystallization is known.
[0006]
On the other hand, as an example of adding such an additive to a polymer having biodegradability, JP-A-5-70669, JP-A-4-504473, USP5180765, JP-A-6-504799, JP-A-4-220456 is cited. Japanese Patent Application Laid-Open No. 5-70696 discloses that the average particle size of a biodegradable plastic such as poly-3-hydroxybutyrate / poly-3-hydroxyvalerate copolymer, polycaprolactone or polylactic acid is used as a material for a plastic container. It is disclosed that calcium carbonate having a diameter of 20 microns or less and hydrous magnesium silicate (talc) are mixed by 10 to 40% by weight. However, this technique promotes the decomposition of the biodegradable plastic after disposal by adding a large amount of an inorganic filler, and does not improve the heat resistance by crystallizing the polymer. Japanese Patent Publication No. 4-504731 (WO 90/01521) discloses properties of hardness, strength and temperature resistance by adding fillers of inorganic compounds such as silica and kaolinite to lactide thermoplastics. In this example, 5% by weight of calcium lactate as a nucleating agent was blended with a L, DL-lactide copolymer as a nucleating agent for 5 minutes using a heating roll at 170 ° C., and the sheet was rigid. It is described that it is strong and cloudy and the crystallinity is increased.
[0007]
Japanese Patent Publication No. 6-504799 discloses lactate and benzoate as nucleating agents. In this example, 1% calcium lactate is blended in a polylactide copolymer and the residence time is 2 minutes. Although the injection molding was carried out with a mold kept at about 85 ° C. over time, crystallization was insufficient, so that an example of annealing at about 110 to 135 ° C. in the mold is described.
[0008]
Japanese Patent Laid-Open No. 8-193165 discloses injection molding using talc, silica, calcium lactate, etc. as a nucleating agent in a lactic acid-based polymer. Since it is brittle, it is impossible to obtain a molded product that can withstand practical use. Therefore, such a lactic acid-based polymer has a low crystallization rate even if it is used for general injection molding, blow molding and compression molding using ordinary talc, silica, etc., and the molded product obtained has a practical heat resistance. It is described that there is a restriction in application because it is low at 100 ° C. or lower and impact resistance is not strong. JP-A-4-220456 discloses that polyglycolic acid and its derivatives are added to poly L-lactide as a nucleating agent to increase the crystallization speed, thereby shortening the injection molding cycle time, and excellent It has been described as having mechanical properties. As an example of injection molding, the crystallization temperature without a nucleating agent is 22.6% when the cooling time is 60 seconds, and 45.5% when the nucleating agent is added.
[0009]
However, according to Japanese Patent Laid-Open No. 8-193165, when the injection molding was actually attempted without adding a nucleating agent to the lactic acid-based polymer, the mold temperature as described in Japanese Patent Laid-Open No. 4-220456 was reduced. It is described that molding could not be performed under the condition of Tg point or higher.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to obtain a molded article having excellent heat resistance and impact resistance, which is made of a lactic acid polymer, for the above problems.
[0011]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above object can be achieved by using wax as a crystal nucleus and a crystallization accelerator, and the present invention has been completed.
[0012]
That is, the present invention comprises 0.01 to 1.0 parts by weight of wax in 100 parts by weight of lactic acid-based polymer, and storage modulus (E) in a test on temperature dependence of dynamic viscoelasticity (JIS-K-7198B method). ′) A composition and molded product having a minimum value of 10 7 Pa or higher at 100 ° C. or lower, and 100 parts by weight of a lactic acid polymer are mixed and melted with 0.01 to 1.0 part by weight of wax to 85 to 125 ° C. It fills the mold of the molding machine set to, and molds while crystallizing, and is a method for producing a heat-resistant lactic acid-based polymer.
[0013]
In the present invention, the lactic acid-based polymer includes a polylactic acid homopolymer, a lactic acid copolymer, and a blend polymer.
[0014]
The weight average molecular weight of the lactic acid polymer is generally 5 to 500,000. In addition, the constituent molar ratio L / D of the L-lactic acid unit and D-lactic acid unit in the lactic acid-based polymer may be 100/0 to 0/100, but L lactic acid or D may be used to obtain a high melting point. In order to obtain 75 mol% or more of any unit of lactic acid and a higher melting point, it is preferable to contain 90 mol or more of either unit of L lactic acid or D lactic acid.
[0015]
The lactic acid copolymer is obtained by copolymerizing a lactic acid monomer or other component copolymerizable with lactide. Examples of such other components include dicarboxylic acids having two or more ester bond-forming functional groups, polyhydric alcohols, hydroxycarboxylic acids, lactones, etc., and various polyesters and various polyethers composed of these various components. And various polycarbonates.
[0016]
Examples of the dicarboxylic acid include succinic acid, adipic acid, azelaic acid, sebacic acid, terephthalic acid, and isophthalic acid.
[0017]
Examples of polyhydric alcohols include aromatic polyhydric alcohols such as those obtained by addition reaction of bisphenol with ethylene oxide, ethylene glycol, propylene glycol, butanediol, hexanediol, octanediol, glycerin, sorbitan, trimethylolpropane, neo Examples include aliphatic polyhydric alcohols such as pentyl glycol, ether glycols such as diethylene glycol, triethylene glycol, polyethylene glycol, and polypropylene glycol. Examples of the hydroxycarboxylic acid include glycolic acid, hydroxybutylcarboxylic acid, and others described in JP-A-6-184417.
[0018]
Examples of the lactone include glycolide, ε-caprolactone glycolide, ε-caprolactone, β-propiolactone, δ-butyrolactone, β- or γ-butyrolactone, pivalolactone, δ-valerolactone, and the like.
[0019]
The lactic acid-based polymer is synthesized by a conventionally known method. That is, a direct dehydration condensation from a lactic acid monomer or a lactic acid cyclic dimer as described in JP-A-7-33861, JP-A-59-96123, Polymer Proceedings Proceedings Vol. 44, pages 3198-3199 It can be synthesized by ring-opening polymerization of lactide.
[0020]
When performing direct dehydration condensation, any lactic acid of L-lactic acid, D-lactic acid, DL-lactic acid, or a mixture thereof may be used. Also, in the case of performing ring-opening polymerization, any lactide of L-lactide, D-lactide, DL-lactide, or a mixture thereof may be used.
The synthesis, purification and polymerization operations of lactide are described, for example, in US Pat. No. 4,057,537, published European Patent Application No. 261572, Polymer Bulletin, 14, 491-495 (1985) and Makromol Chem., 187, 1611-1628 ( 1986) and the like.
[0021]
The catalyst used in this polymerization reaction is not particularly limited, but a known lactic acid polymerization catalyst can be used. For example, tin compounds such as tin lactate, tin tartrate, dicaprylate, dilaurate, dipalmitate, tin distearate, dioleate, α-tin naphthoate, β-naphthoate, and octylate Zinc powder, zinc halide, zinc oxide, organic zinc compounds; titanium compounds such as tetrapropyl titanate; zirconium compounds such as zirconium isopropoxide; antimony compounds such as antimony trioxide; Examples thereof include bismuth compounds such as bismuth (III) oxide; aluminum compounds such as aluminum oxide and aluminum isopropoxide.
Among these, a catalyst made of tin or a tin compound is particularly preferable from the viewpoint of activity. The amount of these catalysts used is, for example, about 0.001 to 5% by weight based on lactide when ring-opening polymerization is performed.
[0022]
The polymerization reaction can be usually performed at a temperature of 100 to 220 ° C. in the presence of the catalyst, although it varies depending on the catalyst type. It is also preferable to perform two-stage polymerization as described in JP-A-7-247345.
[0023]
In the present invention, the wax includes natural wax and synthetic wax. Natural wax is preferable from the viewpoint of biodegradability, but is not particularly limited. Naturally obtained waxes include animal waxes, plant waxes, mineral waxes and petroleum waxes (from the Polymer Dictionary). Animal waxes are derived from insects or mammals. Commercially, beeswax and wool wax (unrefined lanolin) are important. Plant waxes are obtained from leaves, trunks or fruits. Candelilla wax, carnauba wax, rice wax and the like are important plant waxes. Candelilla wax and carnauba wax are obtained from candelilla grass and carnauba leaves, respectively. Rice wax is a rice bran oil that protects brown rice, which has been decolorized and refined, and includes those that are hydrogenated by post-processing. These main components are fatty acid (wax acid) and higher alcohol esters, and fatty acids include palmitic acid, stearic acid, pehenic acid, lignoceric acid, serotic acid, dotriacontanoic acid, etc. Examples of the alcohol component include ceryl alcohol, isoceryl alcohol, and myricyl alcohol. In addition, unsaponifiable matter mainly composed of myricyl alcohol, seryl alcohol, isoceryl alcohol and the like and some free acid, steric acid, squalene, phospholipid and the like may be contained.
[0024]
The wax used in the present invention is not particularly limited. For example, M-80, M-90, M-100, M-200, M-301, M-301A, M-307, etc. (all ( Etc.), and the type and grade can be arbitrarily selected according to the purpose of use.
[0025]
The addition amount of the wax in the present invention is preferably 0.01 to 1.0 part by weight with respect to 100 parts by weight of the lactic acid polymer. If the amount is less than 0.01 part by weight, the effect of addition may be insufficient. If the amount exceeds 1.0 part by weight, the lactic acid polymer will become cloudy, which is not preferable.
[0026]
In order to crystallize a lactic acid-based polymer composition, there are a method of annealing a molded product at a crystallization temperature, and a method of setting a molding die to a crystallization temperature when molding the composition and holding it for a certain time.
[0027]
When molding the composition of the present invention, the mold temperature of the injection molding, blow molding and compression molding machine is set in the range from the crystallization start temperature to the end temperature in the DSC method. Thus, the crystallization is completed in the mold, whereby a lactic acid polymer composition having excellent heat resistance and impact resistance can be obtained. Since the setting of the mold temperature varies depending on the type of lactic acid polymer composition to be molded, the crystallization temperature is measured in advance by the DSC method, and the temperature is set within the range from the crystallization start temperature to the end temperature. If it is this temperature range, it can crystallize easily and also a molded article with a high dimensional accuracy can be obtained. Outside this range, crystallization slows down and the solidification time during molding becomes longer, which is not suitable for practical use.
[0028]
The method for blending the lactic acid polymer with the wax is not particularly limited, and can be performed by a conventionally known method. For example, kneading may be performed using a mill roll, a Banbury mixer, a super mixer, a single-screw or twin-screw extruder, and the like. This mixing and kneading is usually performed at a temperature of about 120 to 220 ° C.
[0029]
Furthermore, in the lactic acid-based polymer composition of the present invention, conventionally known plasticizers, antioxidants, heat stabilizers, light stabilizers, ultraviolet absorbers, pigments, colorants, various fillers, antistatic agents, if necessary. Various additives such as agents, mold release agents, fragrances, lubricants, flame retardants, foaming agents, fillers, antibacterial / antifungal agents, and other nucleating agents may be blended.
[0030]
In the present invention, the heat resistance index is determined by measuring the dynamic storage elastic modulus (E ′) in a test on the temperature dependence of dynamic viscoelasticity (JIS K 7198B method), and dynamic storage at a temperature of 100 ° C. or less. The condition was that the minimum value of the elastic modulus (E ′) was 10 7 Pa or more. The dynamic storage elastic modulus (E ′) in the JIS K 7198B method physically represents the rigidity (hardness, softness) of the composition or molded product, and is dynamically stored at a temperature of 100 ° C. or less. When the minimum value of the elastic modulus (E ′) is 10 7 Pa or less, deformation easily occurs during actual use.
[0031]
The production method of the lactic acid-based polymer composition and molded product of the present invention can be applied to moldings such as injection molding, vacuum molding, and compression molding similar to general plastics, so various molded products such as rods, bottles, and containers can be easily used. Can be obtained.
[0032]
In the present invention and the following examples, the weight average molecular weight (Mw) of the polymer is a polystyrene equivalent value by GPC analysis, and the dynamic storage elastic modulus is measured by a test on the temperature dependence of dynamic viscoelasticity (JIS K 7198B method). ). The crystallization temperature was measured by a scanning differential calorimeter (DSC) at a heating rate of 10 ° C./min. Measured with
[0033]
【Example】
Example 1
Dry blend of 0.2 parts by weight of rice wax ("M-90" manufactured by Celarica Noda) with 100 parts by weight of polylactic acid ("Lacty" manufactured by Shimadzu Corporation, Mw = 180,000, hereinafter PLA1) Then, it was melt-mixed for 4 minutes on average in a 200 ° C. twin-screw kneading extruder, extruded into a strand form from a die, cooled with water, and cut to obtain a chip C1 of a lactic acid-based polymer composition containing rice wax.
As a result of measuring DSC of the obtained chip C1, the crystallization peak temperature was 105 ° C., the crystallization start temperature was 85 ° C., the crystallization end temperature was 130 ° C., and the crystallization heat amount was 25 J / g.
The chip C1 was vacuum-dried at 80 ° C. to make it completely dry, then the mold temperature was kept at 25 ° C., and a business card plate (1 mmt) was obtained by injection molding.
[0034]
The obtained 1 mm thick business card large plate was cut into a strip of 10 mm × 50 mm, and the dynamic storage elastic modulus was measured in a test on the temperature dependence of dynamic viscoelasticity (JIS K 7187B method).
[0035]
(Example 2)
The chip C1 obtained in Example 1 was vacuum-dried at 80 ° C. to make it completely dry, and then the mold temperature was kept at 100 ° C. to obtain a business card large plate (1 mmt) by injection molding. The obtained 1 mm thick business card large plate was cut into a strip of 10 mm × 50 mm, and the dynamic storage elastic modulus was measured in a test on the temperature dependence of dynamic viscoelasticity (JIS K 7187B method).
[0036]
(Comparative Example 1)
PLA1 used in Example 1 was vacuum-dried at 80 ° C. to make it completely dry, then the mold temperature was kept at 25 ° C., and a business card large plate (1 mmt) was obtained by injection molding.
The obtained 1 mm thick business card large plate was cut into a strip of 10 mm × 50 mm, and the dynamic storage elastic modulus was measured in a test on the temperature dependence of dynamic viscoelasticity (JIS K 7187B method).
[0037]
(Comparative Example 2)
As a result of measuring DSC of PLA1 used in Example 1, the crystallization peak temperature was 130 ° C., the crystallization start temperature was 80 ° C., the crystallization end temperature was 140 ° C., and the crystallization heat amount was 5.8 J / g. .
PLA1 was vacuum-dried at 80 ° C. to make it completely dry, and then the mold temperature was kept at 100 ° C. to obtain a large business card plate (1 mmt) by injection molding.
The obtained 1 mm thick business card large plate was cut into a strip of 10 mm × 50 mm, and the dynamic storage elastic modulus was measured in a test on the temperature dependence of dynamic viscoelasticity (JIS K 7187B method).
[0038]
The measurement result of the dynamic storage elastic modulus is shown in FIG. From this result, it can be seen that the elastic modulus of Example 1 rapidly increases in the temperature range of 80 ° C. or higher, and clearly crystallizes faster than the comparative example, and the elastic modulus is also improved. In addition, it can be seen from the results of Example 2 that by crystallizing in the mold, the drop in the elastic modulus near 80 ° C. can be reduced and the heat resistance of the molded product can be increased.
[0039]
【The invention's effect】
By blending the lactic acid polymer with wax, the crystallization rate of the lactic acid polymer can be increased and the elastic modulus can be improved. Furthermore, a molded product having excellent heat resistance can be obtained by crystallizing the composition in a mold.
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of dynamic storage elastic modulus.

Claims (7)

乳酸系ポリマー100重量部に、植物系ワックス0.01〜1.0重量部を含む組成物を、成形時に、走査型示差熱量計(DSC)における結晶化開始温度から結晶化終了時温度の範囲で保持することで得られた、乳酸系ポリマー成形品。  When a composition containing 0.01 to 1.0 part by weight of a plant-based wax in 100 parts by weight of a lactic acid-based polymer is molded, a range from the crystallization start temperature to the crystallization end temperature in a scanning differential calorimeter (DSC) Lactic acid-based polymer molded product obtained by holding in. 乳酸系ポリマー100重量部に、植物系ワックス0.01〜1.0重量部を含む組成物を、成形時に、走査型示差熱量計(DSC)における結晶化開始温度から結晶化終了時温度の範囲で保持することで得られた、動的粘弾性の温度依存性に関する試験(JIS−K−7198B法)での貯蔵弾性率(E´)の100℃以下での最低値が10Pa以上である、乳酸系ポリマー成形品。When a composition containing 0.01 to 1.0 part by weight of a plant-based wax in 100 parts by weight of a lactic acid-based polymer is molded, a range from the crystallization start temperature to the crystallization end temperature in a scanning differential calorimeter (DSC) The minimum value at 100 ° C. or lower of the storage elastic modulus (E ′) in the test on the temperature dependence of dynamic viscoelasticity (JIS-K-7198B method) obtained by holding at 10 7 Pa or higher. A lactic acid polymer molded product. 植物系ワックスがライスワックスである請求項1又は2記載の乳酸系ポリマー成形品。  The lactic acid polymer molded article according to claim 1 or 2, wherein the plant wax is rice wax. 乳酸系ポリマー100重量部に、ワックス0.01〜1.0重量部を混合溶融し、走査型示差熱量計(DSC)における結晶化開始温度から終了温度の範囲に温度設定された成形機の金型に充填し、結晶化させながら成形することを特徴とする乳酸系ポリマー成形品の製造方法。  Gold of a molding machine in which 0.01 to 1.0 part by weight of wax is mixed and melted with 100 parts by weight of a lactic acid polymer, and the temperature is set in the range of the crystallization start temperature to the end temperature in a scanning differential calorimeter (DSC). A method for producing a lactic acid-based polymer molded article, which comprises filling a mold and molding while crystallizing. ワックスが植物系ワックスである請求項4記載の乳酸系ポリマー成形品の製造方法。  The method for producing a lactic acid polymer molded article according to claim 4, wherein the wax is a vegetable wax. 植物系ワックスがライスワックスである請求項5記載の乳酸系ポリマー成形品の製造方法。  6. The method for producing a lactic acid polymer molded article according to claim 5, wherein the plant wax is rice wax. 請求項4〜6のいずれか一項記載の乳酸系ポリマー成形品の製造方法により得られた成形品。  The molded product obtained by the manufacturing method of the lactic acid-type polymer molded product as described in any one of Claims 4-6.
JP27237697A 1997-10-06 1997-10-06 Lactic acid polymer molded product and method for producing the same Expired - Fee Related JP3747592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27237697A JP3747592B2 (en) 1997-10-06 1997-10-06 Lactic acid polymer molded product and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27237697A JP3747592B2 (en) 1997-10-06 1997-10-06 Lactic acid polymer molded product and method for producing the same

Publications (2)

Publication Number Publication Date
JPH11106628A JPH11106628A (en) 1999-04-20
JP3747592B2 true JP3747592B2 (en) 2006-02-22

Family

ID=17513034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27237697A Expired - Fee Related JP3747592B2 (en) 1997-10-06 1997-10-06 Lactic acid polymer molded product and method for producing the same

Country Status (1)

Country Link
JP (1) JP3747592B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258302B2 (en) * 1999-10-26 2002-02-18 三菱樹脂株式会社 Biodegradable biaxially stretched film
JP4205497B2 (en) * 2003-06-23 2009-01-07 帝人株式会社 Polylactic acid resin composition and molded article containing phospholipid
JP4498783B2 (en) * 2004-03-17 2010-07-07 トヨタ紡織株式会社 Method for producing wooden molded body
US8062721B2 (en) 2005-09-08 2011-11-22 Unitika Ltd. Biodegradable resin and product molded or formed from the same
CN101268125B (en) * 2005-11-04 2013-03-27 尤尼吉可株式会社 Biodegradable resin foam sheet, biodegradable resin foam article and biodegradable resin molded container

Also Published As

Publication number Publication date
JPH11106628A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
AU2002357605B9 (en) Polylactic acid-based resin compositions, molded articles and process for producing the same
JP3960797B2 (en) Polylactic acid-based polymer composition, molded article and method for producing the same
JP5049281B2 (en) Polycarbonate resin composition having plant-derived components
JP6609667B2 (en) Polymer composition comprising PLLA and PDLA
US5691424A (en) Heat-resistant molded article of lactic acid-base polymer
JP5285834B2 (en) Method for producing polylactic acid
JP4580888B2 (en) Polylactic acid composition
JP4672409B2 (en) Aliphatic polyester resin composition
JP4042206B2 (en) Film and sheet comprising polylactic acid composition
JP2003192883A (en) Polylactic acid-based resin composition, molded article and method for producing the molded article
EP1477526A1 (en) Polyactic acid resin composition and molded article thereof, and process of producing the molded article
JP2003147180A (en) Lactic acid polymer composition and its molded article
JP3747592B2 (en) Lactic acid polymer molded product and method for producing the same
JPH11181262A (en) Lactic acid-based polymer composition and its molded product
JP3989406B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JP3773501B2 (en) Polylactic acid-based resin composition, molded article and method for producing the same
JPH1135808A (en) Lactic acid-based polymer composition and molding product therefrom
JP2008247956A (en) Polyester composition
US20090054602A1 (en) Thermoformed articles and compositions of poly (hydroxyalkanoic acid) and polyoxymethylene
JP2006089587A (en) Resin composition for lactic acid-based resin and its utilization
US8182734B1 (en) Thermoformed articles and compositions of poly(hydroxyalkanoic acid) and polyoxymethylene
JP2003231799A (en) Polylactic acid resin composition, molding and method for producing the same
JP2000136300A (en) Plasticized lactic acid-based polymer composition and its formed product
JP2006143829A (en) Polylactic acid-based resin molding and method for producing the same
JP3953773B2 (en) Biodegradable composite sheet and molded body using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees