JP3745523B2 - Connecting structure of steel or synthetic segments - Google Patents

Connecting structure of steel or synthetic segments Download PDF

Info

Publication number
JP3745523B2
JP3745523B2 JP36629097A JP36629097A JP3745523B2 JP 3745523 B2 JP3745523 B2 JP 3745523B2 JP 36629097 A JP36629097 A JP 36629097A JP 36629097 A JP36629097 A JP 36629097A JP 3745523 B2 JP3745523 B2 JP 3745523B2
Authority
JP
Japan
Prior art keywords
steel
segment
bolt insertion
bolt
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP36629097A
Other languages
Japanese (ja)
Other versions
JPH11190195A (en
Inventor
健一郎 今福
規行 広沢
正人 三宅
実 鰰田
陽一 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP36629097A priority Critical patent/JP3745523B2/en
Publication of JPH11190195A publication Critical patent/JPH11190195A/en
Application granted granted Critical
Publication of JP3745523B2 publication Critical patent/JP3745523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、上下水道,地下鉄,電信ケーブル収容のトンネル,放水トンネル、あるいは共同溝などの管渠をシールド工法などで構築する場合に使用する鋼製セグメントまたは合成セグメントの連結構造に関するものである。
【0002】
【従来の技術】
従来、鋼製または合成セグメントにより構築される耐内水圧用や、楕円形断面や矩形断面などのトンネルでは、セグメント間を連結する継手構造には、大きな引張力が作用し、止水性および強度を確保するために、引張剛性および引張強度の高い継手が必要である。
【0003】
従来の鋼製または合成セグメントにおいて、セグメント間の継手に大きな引張耐力および剛性が必要となる場合、継手板の厚さを大きくしたり、特殊形状の継手金物を用いて継手部の強度および剛性を高めることで対処していたが、この対処方法では強度、剛性が十分確保できないなど後述の諸問題がある。
【0004】
また、従来の鋼製または合成セグメントには、地震時にトンネルが管軸方向に変形する際に作用する管軸方向の引張力を伝達するために縦リブ鋼板が設置されているが、この従来の縦リブ構造についても高加工コストで、溶接量の増加によるセグメントの製作精度の低下をまねくなど後述の諸問題がある。
【0005】
図を参照して説明すると、図19〜図25には、従来の鋼製または合成セグメントが示されている。図19(A)に線図で示すように、2本の主桁2(外主桁2A)の間が継手板5で結合され、これらにスキンプレート7が装着されたセグメント1において、トンネル円周方向に隣り合うセグメント間を連結するために、継手板5のボルト挿通孔に挿通して設けられる3本のボルト3が図示の配置位置の場合、トンネル円周方向に接合したセグメント間に引張力が作用したときには、前記3本の各ボルト3と継手板5の各部や、主桁2に作用する反力や軸力は、図19(B)に図示のようになる。なおこのセグメント1では、中間の主桁(中主桁)は設けられていない。
【0006】
図19(B)から分かるように、図示の継手部構造では、セグメント間に引張力が作用すると、3本のボルト3のうち、中間の1本のボルト3aの反力は0である一方、両外側の2本のボルト3には、この2本のボルト3と中間のボルト3aの間における継手板5に作用する矢印のてこ作用による反力と、主桁軸力の合力が作用する。
【0007】
図20のセグメント1では、主桁2間に1本の中主桁2Bが設けられており、この中主桁2Bと外主桁2Aの間において、継手板5には、図示の配置で合計4本のボルト3が配設されている。
【0008】
図示の継手構造では、4本の各ボルト3には、中主桁2Bと外主桁2Aの軸力Tと、てこ作用による反力の合力が作用する。
【0009】
図21のセグメント1では、両側の主桁2(外主桁2A)間に等間隔で2本の中主桁2Bが設けられており、両側と中間の合計4本の各主桁2の間において、継手板5には、図示の配置で各主桁間に2本ずつのボルト3で合計6本のボルト3が配設されている。
【0010】
図示の継手構造では、6本の各ボルト3には、2本の中主桁2Bと外主桁2Aの軸力と、てこ反力の合力が作用する。
【0011】
前述のように、図19〜図21に示す従来のセグメント1における継手部構造では、外主桁2Aと、中主桁2Bに対してボルト3が偏心配置されているために、ボルト3には、てこ作用による反力と、主桁2に作用する引張力の合力が作用する。このため、継手用のボルト3を有効活用できないので、継手の引張剛性・引張強度が低く、セグメント1のトンネル円周方向の継手部における止水性および、強度が確保できない。また、継手板の曲げ剛性が小さいため、継手板5には大きな曲げ変形が生じ、継手の引張剛性を低下せしめているという問題があった。
【0012】
図22〜図25には従来のセグメントの他例が示されている。図22,図23,図25のセグメント1は、2本の主桁2と継手板5とスキンプレート7と縦リブ鋼板8とを結合して構成されている。さらに、主桁2と継手板5の内側で、かつこれらに設けられるボルト挿通孔9を取囲む位置に、合成セグメントとして構築する場合におけるコンクリートあるいはモルタル等の経時硬化性充填材10が入り込まず、その囲い部においてボルト挿通孔9に挿通したボルト3,33にナット12,32を円滑に締結して、図25に示すようにセグメント1をトンネル円周方向とトンネル軸方向に連結すべくボルトボックス13が設けられている。図24のセグメント1では、図23のセグメント1に比べて中間に主桁2が設けられていて、他は図23のセグメント1と同じである。
【0013】
図22〜図25に示すように、これらの鋼製または合成セグメント1では、縦リブ鋼板8を主桁2に溶接しなければならないため、非常にコストが高く、かつ高い加工精度が要求され、主桁2が多主桁になればこれらの傾向は一層顕著になる。また、2次覆工を省略した場合に、縦リブ鋼板8に沿ってコンクリートまたはモルタル等の経時硬化性充填材10にひび割れが集中し、鋼材の防食上問題となる。
【0014】
次に、図示省略するが、セグメント間の継手部に大きな引張耐力および剛性が必要となる場合においては、継手板5の厚さを大きくしたり、特殊形状の継手金物を用いて継手部の強度および剛性を高めている。
【0015】
しかし、継手の高強度および高剛性化を図ろうとすると、継手板5をセグメントの幅全体にわたって厚くしなければならないため、コストが高くなる。さらには、セグメントの製作精度を確保するために、主桁2と継手板5の間の溶接を隅肉溶接にしなければならないという制約がある。そのため、継手板5を厚くしてもボルトから主桁2に引張力を伝達する機構において、伝達できる引張力は、主桁2と継手板5の間の隅肉溶接の溶接量によって決まるため、継手の高強度化・高剛性化には限界があった。
【0016】
さらに、このような構造では、ボルト3に導入された軸力によって、継手板5に作用するプレストレスが抜ける前に主桁2と交差する部分の継手板5の目開きが発生するので、継手部自体の剛性は小さい。また、てこ作用による反力が生じボルトを有効に活用できない。
【0017】
さらに、継手部にアーチ型の高剛性継手用の金物を用いたセグメントがあり(図示せず)、これはタイドアーチの働きにより高強度かつ高剛性の継手構造を提供するものであるが、製造コストが高いという問題点がある。また、アーチ型の高剛性継手用の金物では、金物が曲率を持っているため、ボルトを数列にわたって配置できないうえ加工コストが高い。
【0018】
【発明が解決しようとする課題】
前述のように、従来の鋼製または合成セグメントでは次の諸問題がある。
1)ボルトと主桁との偏心のため、てこ作用によりボルトを有効活用できないうえ、継手板には大きな曲げ変形が生じ、継手の引張剛性を低下せしめている問題があり、セグメント間における引張剛性および引張強度の高い継手部として、最適の継手部構造とはいえないという問題があった。
2)地震時に、トンネルが管軸方向に変形する際に作用する管軸方向の引張力を伝達するために、主桁間に縦リブ鋼板が設けられるが、縦リブ鋼板を主桁に溶接するのに非常に加工コストが高く、かつ溶接量の増加によるセグメントの製作精度の低下をまねく。また、2次覆工を省略した場合に、縦リブ鋼板に沿って、コンクリート等の経時硬化性充填材にひび割れが集中し、鋼材の防食上問題となる。
3)セグメント間の継手部に大きな引張耐力および引張剛性が必要となる場合、継手板の厚さを大きくしたり、特殊な形状の継手金物を用いて強度および剛性を高めているが、これらは構造の複雑化や、コスト高,制作精度の確保の問題,継手板の主桁に対する隅肉溶接の問題,高強度化,高剛性化の限界等の問題があった。
【0019】
本発明は、施工性と前記1),2),3)の諸問題を解決した鋼製または合成セグメントと、そのセグメント間及び、セグメントリング間の継手構造を提供することを目的とする。
【0020】
【課題を解決するための手段】
本発明に係る請求項1記載の鋼製または合成セグメントの連結構造は、外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくは前記セグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板に、ボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を重ね合わせ、この補強鋼材を、前記ボルト挿通孔に挿通するボルトの両隣りに位置する主桁に溶接し、トンネル周方向に隣接する各セグメントにおける前記継手板と前記補強鋼材に設けられたボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする。
【0021】
本発明の請求項2に係る鋼製または合成セグメントの連結構造は、外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と前記主桁とにより形成される隅角内部に設置した棒鋼を主桁に溶接し、ボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を前記棒鋼に押し当て、隣接する各セグメントの前記継手板と前記補強鋼材とに設けられた各ボルト挿通孔に挿通したボルトを緊締して前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする。
【0022】
本発明の請求項3に係る鋼製または合成セグメントの連結構造は、外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と隙間を設けて設置した鋼板または角鋼または溝型鋼からなる補強鋼材を前記主桁に溶接し、前記継手板のボルト挿通孔と前記補強鋼材に設けられたボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする。
【0023】
本発明の請求項4に係る鋼製または合成セグメントの連結構造は、外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と隙間を設けて前記主桁に棒鋼を溶接し、さらにボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を前記棒鋼に押し当て、隣接するセグメントの前記継手板と前記補強鋼材とに設けられた各ボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする。
【0024】
本発明の請求項5に係る鋼製または合成セグメントの連結構造は、請求項1〜4のいずれか1項に記載の鋼製または合成セグメントの連結構造において、前記最外側の中主桁間に長ボルト,ネジ切り加工鉄筋等のネジ付き連結杆を配置し、該最外側の中主桁と外主桁との間に位置する前記連結杆のネジ部にナットを締結したことを特徴とする。
【0025】
本発明の請求項6に係る合成セグメントの連結構造は、請求項5記載の合成セグメントの連結構造において、前記最外側の中主桁間にコンクリート等の経時硬化性充填材を充填,硬化させ、当該連結杆に軸力を導入したことを特徴とする。
【0026】
本発明の請求項7に係る合成セグメントの連結構造は、請求項1〜6のいずれか1項に記載の合成セグメントの連結構造において、前記セグメントの外主桁と最外側の中主桁間には、予めボルト挿通孔を形成した経時硬化性充填材が充填,硬化されていて、トンネル軸方向に隣り合う各セグメントリングにおける前記ボルト挿通孔に長ボルト,ネジ切り加工鉄筋等のネジ付き連結杆を挿通し、前記ボルト挿通孔から突出した前記連結杆のネジ部にナットを締結することで、当該連結杆に軸力を導入したことを特徴とする。
【0027】
【0028】
請求項1の発明によると、継手板に配設されるボルトの左右に位置する主桁間隔aを、スキンプレートの厚さの60倍以下かつボルト軸径の10倍以下にすることにより、主桁に作用する引張力に対して継手板の曲げ変形が小さくなり、セグメント間を連結する継手の引張剛性が大きくなる。
【0029】
さらに、ボルトがその左右の主桁の中央部に配置されているので、主桁に作用する引張力の合力の軸心とボルトの軸心が一致するため、ボルトには、てこ作用による反力が作用しないのでボルトを有効に活用できる。その結果、セグメント間の継手部の引張強度および引張剛性を高め、止水性および強度を確保できる。
さらに、ボルト挿通孔を有する主桁間の継手板部だけを重ね梁構造とするので加工コストが低く、さらにボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を主桁に溶接することにより、この補強鋼材からも直接主桁に引張力を伝達するため、主桁と継手板との溶接量を増やすことなく、高強度かつ高剛性な継手構造とすることができる。また、特殊な継手金物を用いないため、加工コストを抑えることができる。
【0030】
また、請求項2の発明によると、セグメント間を連結するボルトの軸力を、主桁と継手板の隅角部に集中的に作用させることにより、ボルトの導入軸力以上の引張力が作用するまで継手板に目開きがおきず、高剛性な継手構造を得ることができる。さらに、ボルトの軸引張力を補強鋼材から棒鋼に伝達し、前記ボルトの軸引張力を継手板だけからだけでなく棒鋼と主桁との溶接部からも直接主桁に伝達するため継手板を薄くすることができるうえ、特殊な継手金物を必要とせず、主桁間だけの補強で継手全体の剛性を高くでき、さらには主桁間にボルトを数列にわたって配置してもてこ反力が生じないのでボルトを有効に活用でき、継手板と主桁との溶接量を増やすことなく低コストで高強度かつ高剛性な継手構造を得ることができ、大きな曲げモーメントあるいは軸力に対しても抵抗可能である。
【0031】
また、請求項3の発明によると、セグメント間を連結するボルトの軸引張力を、補強鋼材から直接主桁に伝達させることにより、ボルトの導入軸力以上の引張力が作用するまで目開きがおきず、高剛性な継手部構造を得ることが出来る。さらに、継手板と主桁との溶接量を減らすことが可能なためさらに高い加工精度を確保できる。
【0032】
また、請求項4の発明によると、セグメント間を連結するボルトの軸引張力を、補強鋼材から主桁に溶接した棒鋼から主桁に作用させることにより、ボルトの導入軸力以上の引張力が作用するまで目開きがおきず、高剛性な継手部構造を得ることが出来る。さらに、継手板と主桁との溶接量を減らすことが可能なためさらに高い加工精度を確保できる。その上、継手板に溶接する前記棒鋼を適当に選ぶことにより、前記棒鋼と主桁との溶接量を増やすことが出来るため、ボルトの軸力を効率的に主桁に伝達可能とすることが出来る。
【0033】
また、請求項5の発明によると、請求項1〜4のいずれか1項に記載の鋼製または合成セグメントの連結構造において、最も外側の中主桁間の縦リブ鋼板の代わりに、長ボルトまたはネジ鉄筋または両端をネジ切り加工した鉄筋等のネジ付き連結杆により、地震時などに作用するトンネル軸方向の引張力を前記最も外側の中主桁間において伝達することができるので、最も外側の中主桁間の縦リブ鋼板を省略することができる。このため、溶接量を大幅に低減できるので、加工コストを下げることができ、溶接による熱影響がないので高い加工精度を確保できる。さらに、前記最も外側の中主桁間にコンクリート等の経時硬化性充填材を充填した場合には、ネジ付き連結杆をネジ鉄筋または、両端をネジ切り加工した異形鉄筋にすることにより、ひび割れを分散させることができ、主桁に沿ったひび割れが発生しないので高い防食性能を確保できる。
【0034】
また、請求項6の発明によると、請求項5に記載の合成セグメントの連結構造において、最も外側の中主桁間に予めコンクリート等の経時硬化性充填材を充填し、この経時硬化性充填材が硬化してから最も外側の中主桁間を連結する長ボルトまたは、ネジ鉄筋または両端をねじ切り加工した鉄筋等のネジ付き連結杆に軸力を導入することにより、コンクリート等の経時硬化性充填材には均等に圧縮力が作用しているので、さらに、ひび割れの発生を防ぐことが可能となるため、より高い防食性能を確保できる。
また、請求項7の発明によると、請求項1〜6のいずれか1項に記載の合成セグメントの連結構造において、ネジ付き連結杆はセグメントリング間を連結し、かつトンネル軸方向の引張力を外主桁と、最も外側の中主桁まで伝達するため、外主桁と、最も外側の中主桁を結ぶ縦リブが不要となり、セグメントの加工量を下げることが可能となる。また、コンクリート等の経時硬化性充填材に形成されるボルト挿通孔に挿通したネジ付き連結杆に軸力が導入されて、外主桁と経時硬化性充填材と、最も外側の中主桁とにより合成梁が構成され、外主桁と最も外側の中主桁間のコンクリート等の経時硬化性充填材には、均等に圧縮力が作用するためひび割れが発生しにくい。
【0035】
【発明の実施の形態】
以下本発明の実施形態を図を参照して説明する。
図1(A),(B)には本発明に係る鋼製または合成セグメント11の連結構造を説明するための図が線図で示されている。同図に示すように、2本の外主桁2と2本の中主桁2の合計4本の主桁間が継手板5で結合され、これらにスキンプレート7が装着されたセグメント11において、トンネル円周方向に隣り合うセグメント間を連結するために、継手板5のボルト挿通孔に挿通して2本のボルト3が図示の位置に配設されており、かつ、このボルト3の左右に位置する主桁2の間隔aを、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とする。なお、この数値は本発明者が実験、試作を繰返した結果、有効性が認められものとして導き出されたものである。さらに、前記ボルト3はその左右に位置する主桁2の中央部に配設されている。
【0036】
同図から分かるように、本発明に係るセグメント11の連結構造では、ボルト3の左右の主桁2に作用する軸引張力の合力の軸心と、ボルト3の軸心が一致するために、ボルト3には、てこ作用による反力が作用しないので、ボルト3を有効に活用できる。その結果、継手の引張強度および引張剛性を高め、セグメント間の継手部における止水性および強度を確保できる。また、ボルト3の左右の主桁間隔aを、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とすることにより、主桁2に作用する引張力に対して継手板5の曲げ変形が小さくなり、セグメント11間を連結する継手の引張剛性が大きくなる。
【0037】
図2(A),(B)には、本発明に係る鋼製または合成セグメント11の連結構造を説明するための図が線図で示されている。この第2実施形態に係るセグメント11は、第1実施形態に係るセグメント11の4本の主桁に追加して幅方向中間部にさらに、2本の主桁2が設けられた構成とされている。すなわち、図2に示すように、2本の外主桁2と、4本の中主桁2の合計6本の主桁間が継手板5で結合され、これらにスキンプレート7が装着されたセグメント11において、トンネル円周方向に隣り合うセグメント間を連結するために、継手板5のボルト挿通孔に挿通して3本のボルト3が図示の位置に配設されており、かつ、各ボルト3の左右に位置する主桁2の間隔aをスキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、さらに前記ボルト3は、その左右に位置する主桁2の中央部に配設されている。
【0038】
同図から分かるように、本発明に係るセグメント11における連結構造では、図1で説明した場合と同様、セグメント間に引張力が作用するとき、ボルト3の左右の主桁2に作用する軸引張力の合力の軸心と、ボルト3の軸心が一致するために、ボルト3には、てこ作用による反力が作用しないので、ボルト3を有効に活用できる。その結果、継手の引張強度および引張剛性を高め、止水性および強度を確保できる。また、ボルト3の左右の主桁間隔aをスキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とすることにより、主桁2に作用する引張力に対して継手板5の曲げ変形が小さくなり、セグメント1間を連結する継手の引張剛性が大きくなる。
【0039】
また、本発明において、前記ボルトの左右に位置して設けられる主桁の間隔aを、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とするとし、かつ当該ボルト3を、その左右に位置する主桁の中央に配設する条件が満たされるならば、主桁2の本数は制限されず、4本以上であればよい。
【0040】
図3と図4にはそれぞれ本発明に係るセグメント11の連結構造を説明する図が示されている。図3に示されるセグメント11の主桁2は、図1に示されるセグメント11の主桁2と同様の配置で、かつ同じ本数の主桁2が設けられ、また、継手板5の小間隔aの中央位置にセグメント間を連結するボルト3が設けられている。
【0041】
図3のセグメント11において、セグメントリング間を連結する継手部構造を構築するため、外主桁2Aと最も外側の中主桁2B-1間には予めコンクリート等の経時硬化性充填材10を充填し、この経時硬化性充填材10が硬化した後に、この経時硬化性充填材10に形成されたシース管などのボルト挿通孔6を通して、長ボルトまたはネジ鉄筋または両端をネジ切り加工した鉄筋等からなるネジ付き連結杆14を配置し、最も外側の中主桁2B-1の内側からナット12を締めて軸力を導入し、トンネル軸方向に隣接するセグメントリング間を緊締できるように構成されている。第3実施形態のセグメント11では、最も外側の中主桁2B-1の間には経時硬化性充填材10は充填されていなくても、充填されていてもよい。また、この最外側の中主桁2B-1間には、前記ネジ付き連結杆14が中央部に位置するようにして複数の縦リブ鋼板8が設けられている。
【0042】
前記のセグメント11は、図9に示されるように継手板5に設けられたボルト3によりトンネル円周方向に隣接したセグメント間が緊締される。また、経時硬化性充填材10に形成されるボルト挿通孔6に通した長ボルト,ネジ切り加工した加工鉄筋などのネジ付き連結杆14のネジ部に、最も外側の中主桁2B-1の内側からナット17を締めて軸力を導入することで、トンネル軸方向に隣接したセグメントリング間が緊締される。
【0043】
図4に示されるセグメント11は、図3に示されるセグメント11の4本主桁2に加え、中間部に小間隔aをおいて2本の主桁2が設けられ、かつ継手板5の3個所の小間隔aの中央位置にセグメント間を連結するボルト3が設けられている。なお、外主桁2Aとその隣りの中主桁2B-1間に予めコンクリートまたはモルタル等の経時硬化性充填材10を充填し、他の場所には充填してもしなくてもよいこと、前記経時硬化性充填材10のボルト挿通孔6に挿通したネジ付き連結杆14によってセグメントリング間を連結することは、図3に示す第3実施形態に係るセグメント11と同じである。
【0044】
図4に示すセグメント11は、図3に示すセグメント11に比べて、主桁2の数が多いのでそのぶんセグメント11のトンネル円周方向の引張強度および引張剛性が増大する。
【0045】
図5,図6には本発明に係るセグメント11の連結構造を説明する図が示されている。図5のセグメント11は、外主桁2Aと最も外側の中主桁2B−1の間及び、最も外側の中主桁2B-1間にネジ付き連結杆14,16が埋まるようにしてセメント,モルタル等の経時硬化性充填材10が充填されている。また、このセグメント11は、継手板5に設けたボルト3により、トンネル円周方向に隣接するセグメント間が連結され、トンネル軸方向に隣接のセグメント間はネジ付き連結杆14で連結される。
【0046】
図5のセグメント11は、セグメント内側の全面にセメント,モルタル等の経時硬化性充填材10が充填されているので、その分、セグメントの耐圧縮強度が向上する。なお、図12は図5のセグメント11を斜視図で示している。
【0047】
また、図13には本発明に係るセグメント11の連結構造を説明するセグメント11の鋼殻の斜視図が示されている。このセグメント11において、最も外側の中主桁2B-1の外側からナット17を緊締する。前記ネジ付き連結杆16に軸力を導入してもしなくてもよく、軸力を導入することにより最も外側の中主桁2B-1間にひびわれが発生しにくくなる。
【0048】
この図13に示されるセグメント11は、図5に示すように、継手板5に設けたボルト3により、トンネル円周方向に隣接するセグメント間が連結され、トンネル軸方向に隣接のセグメント間はネジ付き連結杆14で連結される。
【0049】
この図13のセグメント11において、セグメントリング間にトンネル軸方向に引張力が作用するとき、その引張力は、リング間を連結するネジ付き連結杆14に伝達され、最も外側の中主桁2B-1間を結ぶ長ボルトまたはネジ鉄筋または両端をネジ切り加工した鉄筋からなるネジ付き連結杆16に伝達することができ、このネジ付き連結杆16が縦リブ鋼板と同様の機能を果たすので、この縦リブ鋼板を省略できる。
【0050】
前記の各実施形態におけるネジ付き連結杆16は、縦リブ鋼板に比べ、主桁2に溶接しないため、溶接量を大幅に低減できるので、加工コストを下げることができ、溶接による熱影響がないので高い加工精度を確保できる。また、トンネル軸方向34の引張力を均等に伝達するためには、最も外側の中主桁B-1間を結ぶ長ボルト等のネジ付き連結杆16を、リング間を連結する長ボルトまたはネジ鉄筋または、両端をネジ切り加工した鉄筋等のネジ付き連結杆14の左右に対称に配置することが好ましい。
【0051】
図6の本発明に係るセグメント11の連結構造を説明するセグメント11は、図5に示すセグメント11より中主桁2Bの本数が多く、合計4本の中主桁2Bが設けられている。このセグメント11において、各中主桁2Bの間及び、外主桁2Aと最も外側の中主桁2B-1間に各ネジ付き連結杆16,14が埋まるようにしてセメント,モルタル等の経時硬化性充填材10が充填されている。図6に示されるセグメント11がトンネル円周方向とトンネル軸方向に連結された状態は図11に示されている。
【0052】
図6のセグメント11は、図5のセグメント11に比べて、中主桁2Bの本数が多いので、その分、さらにセグメント11のトンネル円周方向の引張強度および引張剛性が向上する。
【0053】
図7、図8には本発明に係るセグメント11の連結構造を説明する図が示されている。図7のセグメント11は最も外側の中主桁2B−1の間にネジ付き連結杆16が挿入され、ナット17で締結されている。また、外主桁2Aと最も外側の中主桁2B−1との間に対をなして縦リブ鋼板19が複数組設けられており、この対なす縦リブ鋼板19の間に、前記ネジ付き連結杆16のナット17が配設されると共に、セグメント11をトンネル軸方向に連結するため外主桁2Aのボルト挿通孔に挿通したネジ付き連結杆14に締結するナット17が配設されている。
【0054】
図7のセグメント11は、最も外側の中主桁2B−1間がネジ付き連結杆16で連結されてトンネル軸方向の伝達強度が向上すると共に、トンネル軸方向に隣接のセグメント11間はネジ付き連結杆14で連結され、かつ、縦リブ鋼板19で補強されている。
【0055】
図8のセグメント11の鋼殻構造は、第7実施形態に係るセグメント11と同じであり、最も外側の中主桁2B−1間の空間に経時硬化性充填材10が充填されている点が第7実施形態に係るセグメント11と相異する。
【0056】
図8のセグメント11は、図7のセグメント11の有するトンネル軸方向強度向上の作用、効果に加えて、最も外側の中主桁2B−1の間に配設のネジ付き連結杆16がコンクリート10に埋設されているのでセグメントリング間の引張剛性と引張強度を著しく増大する。
【0057】
図14〜図18には、本発明に係る鋼製または合成セグメント11の連結構造を説明するための図が示され、かつ、各図(A),(C)が要部縦断面図、各図(B),(D)が各図(A),(C)の横断面図として図示されている。これらの各図に共通な特徴的構造は、セグメント間の継手に大きな引張耐力および剛性が必要となる場合において、継手板の厚さを大きくしたり、特殊な形状の継手金物を用いたりしないで、簡潔な構造でかつ低加工コストで継手部の強度および剛性を高めたことである。
【0058】
以下順に説明すると、図14(A),(B)では、セグメント11のボルト挿通孔18を有する継手板5に、ボルト挿通孔20を有する角鋼材21の前方(つまり継手板に向けた側)端面を当接し、かつ角鋼材21の両端をボルト3の左右側に位置する両主桁2に溶接35により固着する。
【0059】
図14(A),(B)に示すように、トンネル円周方向に隣接する各セグメント11の各継手板5のボルト挿通孔18と角鋼材21のボルト挿通孔20にボルト3を挿通し、ナット12を緊締することで、隣接するセグメント間を連結できる。前記構成により、特殊な継手金物を必要としないでセグメント11間を連結するボルト3の左右の主桁間の継手板5の部分だけを重ね梁構造とするので、加工コストを低くおさえられ、しかも、補強用の角鋼材21を主桁2に溶接することにより、継手板5からだけだなくこの角鋼材21からも主桁2に直接引張力を伝達するので、主桁2と継手板5の溶接量を増やすことなく、ボルトの引張力を有効に主桁に伝達できるので、高強度かつ高剛性な継手構造とすることができる。
【0060】
図14(C),(D)では、図14(A),(B)に示す角鋼材21に代えて厚板の鋼板22が使用される。つぎに、図15(A),(B)では、前記角鋼材21や鋼板22に代えて、溝型鋼23が使用されていて、いずれも継手板5に当接され、かつボルト3の左右に位置する主桁2に溶接されている。これら本発明に係る図14(C),(D)、図15(A),(B)の継手部構造の作用,効果は、図14(A),(B)における作用,効果と同じであるので、重複説明を省略する。
【0061】
図15(C),(D)では、セグメント11の継手板5と、主桁2より形成される隅角内部に設置した棒鋼24を当該主桁2に溶接35してある。
【0062】
さらに、この図15(C),(D)では、トンネル円周方向に隣接する各セグメント11の各継手板5同士を当接し、かつ、ボルト挿通孔20を有する鋼板25を前記棒鋼24に押し当て、前記鋼板25のボルト挿通孔20と前記継手板5に設けられたボルト挿通孔18に挿通したボルト3にナット12を緊締して、隣接するセグメント11同士を接合する。
【0063】
前記の各継手構造によると、ボルト3の軸力を主桁2と継手板5の隅角部に集中的に作用させることにより、ボルト3の導入軸力以上の引張力が作用するまで継手板5の間に目開きが起きず、高剛性な継手構造を得ることができる。さらに、ボルト3の導入軸力を補強用の鋼板25から棒鋼24に伝達し、継手板5だけからだけでなく棒鋼24と主桁2との溶接部からも直接主桁に伝達するため、継手板5を薄くすることができる。そのうえ、特殊な継手金物を必要とせず、継手板5と主桁4の溶接量を減らすことができる。さらに、セグメント11間を連結するボルト3の左右に位置する主桁2間のみを補強するだけで継手全体の剛性を高くできる。
【0064】
図16(A),(B)では、図15(C),(D)の鋼板25に代えて、角棒26が棒鋼24の背面に当てがわれ、角棒26のボルト挿通孔27を通してボルト3が緊締されている。図16(A),(B)では、図15(C),(D)の作用,効果に加え、角棒26により、継手部における継手板5の曲げ変形に対する強度が一層向上している。
【0065】
図16(C),(D)では、図15(C),(D)の1本のボルト3に比べボルト本数が増加しているので、その分ボルト3をより有効に活用でき、低コストで高強度かつ高剛性な継手構造を得ることができる。さらには主桁2間にボルト3をこのように数列にわたって配置してもてこ反力が生じないので、ボルト3を有効に活用でき、この点でも低コストで高強度かつ高剛性な継手構造を得ることができ、大きな曲げモーメントあるいは軸力に対しても抵抗可能である。
【0066】
図17(A),(B)では、図15(A),(B)と同じ溝型鋼23が使用されているが、この溝型鋼23は継手板5から所定距離はなして設けられ、かつボルト3の左右に位置する主桁2に溶接35されている。この図17(A),(B)の継手構造は、図15(A),(B)と異なり、溝型鋼23から継手板5ではなく、直接主桁2に力を伝達できる高強度の継手構造となっている。
【0067】
図17(C),(D)では、図17(A),(B)と同様セグメント11のボルト挿通孔18を有する継手板5から離間して図14(C),(D)と同じ厚板の鋼板22を配設し、これをボルト3の左右に位置する主桁2に溶接35されている。他の構成は図14(C),(D)と同でである。
【0068】
図18(A),(B)では、図14(A),(B)に示すものと同じ角鋼材21が継手板5から離して配置され、かつ端面がボルト3の左右に位置する主桁2に溶接35され、角鋼材21のボルト挿通孔27を通してボルト3が緊締されている。この第17実施形態では、角鋼材21により継手板5に直接曲げ応力を伝達しないで、主桁2に伝達する構成としてあり、より高強度の接合構造とされている。
【0069】
図18(C),(D)では、セグメント11の継手板5から離れた位置において、ボルト3の両側に位置する主桁2の側面に棒鋼24を溶接35してある。
【0070】
さらに、この図18(C),(D)では、トンネル円周方向に隣接する各セグメント11の各継手板5同士を当接し、かつ、ボルト挿通孔20を有する鋼板25を前記棒鋼24に押し当て、前記鋼板25のボルト挿通孔20と前記継手板5に設けられたボルト挿通孔18に挿通したボルト3にナット12を緊締して、隣接するセグメント11同士を接合する。
【0071】
前記の継手構造によると、図17以下に示す図と同様にボルト3の軸力を主桁2に集中的に作用させることにより、ボルト3の導入軸力以上の引張力が作用するまで継手板5の間に目開きが起きず、高剛性な継手構造を得ることができる。
【0072】
図10は、本発明に係るセグメント11の連結構造を説明する図として図9の鋼殻に複数本の縦リブを加えたセグメント11を示し、これをトンネル円周方向とトンネル軸方向に接合した状態を平面図で示す図である。
【0073】
なお、本発明は、前記の図に限定されず各図を適宜組合わせることにより、さらに他のセグメント連結構造を構成できる。
【0074】
【発明の効果】
以上説明したように本発明によると、極めて簡潔な構成により、トンネル円周方向に接合するセグメント間の継手部における引張剛性と引張強度及び、トンネル軸方向に接合するセグメントリング間の継手部における引張剛性と引張強度を著しく増大した鋼製または合成セグメントの連結構造を提供できる。
【図面の簡単な説明】
【図1】(A)は本発明に係る鋼製または合成セグメントの連結構造を説明する線図で示す平面図、(B)は図Aにおいて、セグメント間の継手部に作用する引張力の作用説明図である。
【図2】(A)は本発明に係る鋼製または合成セグメントの連結構造を説明する線図で示す平面図、(B)は図Aにおいて、セグメント間の継手部に作用する引張力の作用説明図である。
【図3】本発明に係るセグメントの連結構造を説明する平面図である。
【図4】本発明に係るセグメントの連結構造を説明する平面図である。
【図5】本発明に係るセグメントの連結構造を説明する平面図である。
【図6】本発明に係るセグメントの連結構造を説明する平面図である。
【図7】本発明に係るセグメントの連結構造を説明する平面図である。
【図8】本発明に係るセグメントの連結構造を説明する平面図である。
【図9】図3と同じ鋼殻のセグメントにコンクリートを充填し、トンネル軸方向に接合した状態を示す平面説明図である。
【図10】図9に示す鋼殻に複数本の縦リブを加えたセグメントをトンネル円周方向とトンネル軸方向に接合した状態を示す平面説明図である。
【図11】図6に示すセグメントをトンネル円周方向とトンネル軸方向に接合した状態を示す平面説明図である。
【図12】図5のセグメントの鋼殻の内面全体に経時硬化性充填材を充填した例を示す斜視図である。
【図13】本発明に係るセグメントの連結構造を説明するセグメントの鋼殻構造を示す斜視図である。
【図14】(A)、(B)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図、(C)、(D)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図である。
【図15】(A)、(B)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図、(C)、(D)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図である。
【図16】(A)、(B)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図、(C)、(D)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図である。
【図17】(A)、(B)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図、(C)、(D)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図である。
【図18】(A)、(B)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図、(C)、(D)は本発明に係る鋼製または合成セグメントの連結構造を説明する縦断面図と横断面図である。
【図19】(A)は第1従来例に係るセグメントを線図で示す平面図、(B)は同図(A)おいて、セグメント間の継手部に作用する引張力の作用説明図である。
【図20】(A)は第2従来例に係るセグメントを線図で示す平面図、(B)は同図(A)において、セグメント間の継手部に作用する引張力の作用説明図である。
【図21】(A)は第3従来例に係るセグメントを線図で示す平面図、(B)は同図(A)において、セグメント間の継手部に作用する引張力の作用説明図である。
【図22】第4従来例に係るセグメントの斜視図である。
【図23】第5従来例に係るセグメントの斜視図である。
【図24】第6従来例に係るセグメントの斜視図である。
【図25】図24に示すセグメントをトンネル円周方向とトンネル軸方向に接合した状態を示す平面説明図である。
【符号の説明】
1 セグメント
2 主桁
2A 外主桁
2B−1 最も外側の中主桁
2B−22B−1以外の中主桁
3 ボルト
5 継手板
6 ボルト挿通孔
7 スキンプレート
8 縦リブ鋼板
9 ボルト挿通孔
10 経時硬化性充填材
11 セグメント
12 ナット
13 ボルトボックス
14 ネジ付き連結杆
16 ネジ付き連結杆
17 ナット
18 ボルト挿通孔
19 縦リブ鋼板
20 ボルト挿通孔
21 角鋼材
22 鋼板
23 溝型鋼
24 棒鋼
25 鋼板
26 角棒
27 ボルト挿通孔
28 ボルト挿通孔
29 枠板
30 モルタル
31 ボルト挿通孔
32 ナット
33 ボルト
34 トンネル軸方向
35 溶接
以上
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a connecting structure of steel segments or synthetic segments used in the construction of pipes such as water and sewage systems, subways, telecom cable-accommodating tunnels, water discharge tunnels, and joint grooves.
[0002]
[Prior art]
Traditionally, in tunnels with internal water pressure constructed of steel or synthetic segments, and tunnels with elliptical and rectangular cross sections, joint structures connecting the segments have been subjected to large tensile forces to reduce water tightness and strength. In order to ensure, a joint with high tensile rigidity and tensile strength is required.
[0003]
In conventional steel or synthetic segments, when large tensile strength and rigidity are required for joints between segments, the thickness of the joint plate can be increased or the joint part strength and rigidity can be increased using specially shaped joint hardware. Although it was dealt with by raising, there are various problems described later, such as insufficient strength and rigidity.
[0004]
Also, conventional steel or synthetic segments are equipped with longitudinal rib steel plates to transmit the tensile force in the tube axis direction that acts when the tunnel is deformed in the tube axis direction during an earthquake. The vertical rib structure also has the following problems such as high processing cost and reduced segment manufacturing accuracy due to increased welding amount.
[0005]
Referring to the figures, FIGS. 19-25 show conventional steel or synthetic segments. As shown by a diagram in FIG. 19A, in a segment 1 in which two main girders 2 (outer main girders 2A) are connected by a joint plate 5 and a skin plate 7 is attached thereto, a tunnel circle is provided. In order to connect the segments adjacent to each other in the circumferential direction, when the three bolts 3 inserted through the bolt insertion holes of the joint plate 5 are in the illustrated positions, the segments are pulled between the segments joined in the tunnel circumferential direction. When a force is applied, the reaction force and the axial force acting on each part of the three bolts 3 and the joint plate 5 and the main girder 2 are as shown in FIG. In segment 1, no intermediate main girder (medium main girder) is provided.
[0006]
As can be seen from FIG. 19B, in the illustrated joint structure, when a tensile force acts between the segments, among the three bolts 3, the reaction force of the middle one bolt 3a is zero, The reaction force due to the lever action of the arrow acting on the joint plate 5 between the two bolts 3 and the intermediate bolt 3a and the resultant force of the main girder axial force act on the two outer bolts 3.
[0007]
In the segment 1 of FIG. 20, one middle main girder 2B is provided between the main girder 2, and between the middle main girder 2B and the outer main girder 2A, the joint plate 5 has a total in the arrangement shown in the figure. Four bolts 3 are provided.
[0008]
In the illustrated joint structure, the four bolts 3 are subjected to the resultant force of the axial force T of the middle main girder 2B and the outer main girder 2A and the reaction force due to the lever action.
[0009]
In segment 1 of FIG. 21, two middle main beams 2B are provided at equal intervals between main beams 2 (outer main beams 2A) on both sides, and a total of four main beams 2 between both sides and the middle. The joint plate 5 is provided with a total of six bolts 3 with two bolts 3 between each main beam in the illustrated arrangement.
[0010]
In the illustrated joint structure, the axial force of the two middle main girders 2B and the outer main girder 2A and the resultant force of the lever reaction force act on each of the six bolts 3.
[0011]
As described above, in the joint structure in the conventional segment 1 shown in FIGS. 19 to 21, the bolt 3 is eccentrically arranged with respect to the outer main girder 2A and the middle main girder 2B. The resultant force of the lever action and the resultant tensile force acting on the main girder 2 act. For this reason, since the joint bolt 3 cannot be effectively utilized, the tensile rigidity and tensile strength of the joint are low, and the water stoppage and strength at the joint portion in the tunnel circumferential direction of the segment 1 cannot be ensured. In addition, since the bending rigidity of the joint plate is small, a large bending deformation occurs in the joint plate 5 and there is a problem that the tensile rigidity of the joint is lowered.
[0012]
22 to 25 show other examples of conventional segments. The segment 1 in FIGS. 22, 23, and 25 is configured by joining two main girders 2, a joint plate 5, a skin plate 7, and a longitudinal rib steel plate 8. Furthermore, the time-hardening filler 10 such as concrete or mortar in the case of constructing as a synthetic segment does not enter the position inside the main beam 2 and the joint plate 5 and surrounding the bolt insertion hole 9 provided in these, The nuts 12 and 32 are smoothly fastened to the bolts 3 and 33 inserted through the bolt insertion holes 9 at the enclosed portion, and the bolt box is used to connect the segment 1 in the tunnel circumferential direction and the tunnel axial direction as shown in FIG. 13 is provided. The segment 1 in FIG. 24 is provided with a main girder 2 in the middle as compared with the segment 1 in FIG. 23, and the others are the same as the segment 1 in FIG.
[0013]
As shown in FIGS. 22 to 25, in these steel or synthetic segments 1, the longitudinal rib steel plate 8 must be welded to the main girder 2, so that the cost is very high and high processing accuracy is required. These trends become even more pronounced when the main girder 2 becomes a multi-main girder. Further, when the secondary lining is omitted, cracks concentrate on the time-hardening filler 10 such as concrete or mortar along the longitudinal rib steel plate 8, which causes a problem in corrosion prevention of the steel material.
[0014]
Next, although not shown in the drawings, when large tensile strength and rigidity are required at the joint portion between the segments, the thickness of the joint plate 5 is increased, or the strength of the joint portion is determined by using a specially shaped joint hardware. And increasing rigidity.
[0015]
However, when trying to increase the strength and rigidity of the joint, the joint plate 5 must be thickened over the entire width of the segment, which increases the cost. Furthermore, in order to ensure the manufacturing accuracy of the segment, there is a restriction that the weld between the main beam 2 and the joint plate 5 must be fillet weld. Therefore, in the mechanism that transmits the tensile force from the bolt to the main beam 2 even if the joint plate 5 is thickened, the tensile force that can be transmitted is determined by the amount of fillet welding between the main beam 2 and the connection plate 5, There were limits to increasing the strength and rigidity of joints.
[0016]
Further, in such a structure, since the axial force introduced into the bolt 3 causes opening of the joint plate 5 at a portion intersecting with the main beam 2 before the prestress acting on the joint plate 5 is released, The rigidity of the part itself is small. In addition, a reaction force due to the lever action is generated and the bolt cannot be used effectively.
[0017]
In addition, there is a segment (not shown) using a metal fitting for an arch-type high-rigidity joint in the joint, which provides a high-strength and high-rigidity joint structure by the action of the tide arch. There is a problem that is high. Moreover, in the metal for an arch type high-rigidity joint, since the metal has a curvature, the bolts cannot be arranged in several rows and the processing cost is high.
[0018]
[Problems to be solved by the invention]
As described above, the conventional steel or synthetic segment has the following problems.
1) Due to the eccentricity of the bolt and main girder, the bolt cannot be used effectively due to the lever action, and there is a problem that the joint plate has a large bending deformation and the tensile rigidity of the joint is lowered. In addition, there is a problem that it cannot be said to be an optimum joint structure as a joint part having high tensile strength.
2) In order to transmit the tensile force in the tube axis direction that acts when the tunnel is deformed in the tube axis direction during an earthquake, vertical rib steel plates are provided between the main beams, but the vertical rib steel plates are welded to the main beam. However, the processing cost is very high, and the production accuracy of the segment is lowered due to an increase in the welding amount. Further, when the secondary lining is omitted, cracks concentrate on the time-hardening filler such as concrete along the longitudinal rib steel plate, which causes a problem in corrosion prevention of the steel material.
3) When large tensile strength and tensile rigidity are required for joints between segments, the thickness of the joint plate is increased or the strength and rigidity are increased by using specially shaped joint hardware. There were problems such as complicated structure, high cost, securing production accuracy, fillet welding problem with main girder of joint plate, limit of high strength and high rigidity.
[0019]
An object of the present invention is to provide a steel or synthetic segment in which the workability and the problems 1), 2) and 3) are solved, and a joint structure between the segments and between the segment rings.
[0020]
[Means for Solving the Problems]
The connection structure of steel or synthetic segments according to claim 1 according to the present invention includes a middle main girder in addition to the outer main girder. 4 or 6 The main girder and the joint plate with bolt insertion holes are combined In a steel segment, or a synthetic segment in which at least one of the outermost middle main beam or between the outer main beam and the outermost middle main beam of the segment is filled and hardened with time. , The distance between the main girders provided on the left and right sides of the bolt insertion holes provided in the joint plate to connect the adjacent segments in the tunnel circumferential direction is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, The bolt insertion hole has a space that allows the bolt to be inserted, and the bolt insertion hole is disposed at a central portion between the left and right main girders, and the joint plate has a steel plate, a square steel, or a grooved steel having the bolt insertion hole. Overlap the reinforcing steel material consisting of, welded to the main girder located on both sides of the bolt inserted through the bolt insertion hole, to the joint plate and the reinforcing steel material in each segment adjacent in the tunnel circumferential direction Tighten the bolt inserted through the provided bolt insertion hole to connect the adjacent segments in the tunnel circumferential direction is doing It is characterized by that.
[0021]
The steel or synthetic segment connecting structure according to claim 2 of the present invention includes a middle main girder in addition to the outer main girder. 4 or 6 Made of steel and a joint plate with bolt insertion holes In a synthetic segment in which a time-curable filler is filled and cured at least one of the segments, or between the outermost middle main beams or between the outer main beam and the outermost middle main beam of the segment, The distance between the main girders provided on the left and right sides of the bolt insertion holes provided in the joint plate to connect the adjacent segments in the tunnel circumferential direction is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, The bolt insertion hole has an interval at which the bolt can be inserted, and the bolt insertion hole is disposed at the center between the left and right main girders, and inside the corner formed by the joint plate and the main girders. The installed bar steel is welded to the main girder, a steel plate having a bolt insertion hole or a reinforcing steel material made of square steel or channel steel is pressed against the steel bar, and each of the joint plates and the reinforcing steel materials provided in each adjacent segment Tighten the bolts inserted in the bolt insertion holes to connect the adjacent segments in the tunnel circumferential direction. is doing It is characterized by that.
[0022]
The connection structure of steel or synthetic segments according to claim 3 of the present invention includes a middle main beam in addition to the outer main beam. 4 or 6 Made of steel and a joint plate with bolt insertion holes In a synthetic segment in which a time-curable filler is filled and cured at least one of the segments, or between the outermost middle main beams or between the outer main beam and the outermost middle main beam of the segment, The distance between the main girders provided on the left and right sides of the bolt insertion holes provided in the joint plate to connect the adjacent segments in the tunnel circumferential direction is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, A steel plate or square steel or grooved steel that has a space through which the bolt can be inserted into the bolt insertion hole, and the bolt insertion hole is disposed at the center between the left and right main girders and provided with a gap from the joint plate Welding the reinforcing steel material comprising the main girder, tightening the bolt insertion hole of the joint plate and the bolt insertion hole provided in the reinforcing steel material, and connecting the adjacent segments in the tunnel circumferential direction is doing It is characterized by that.
[0023]
The connection structure of steel or synthetic segments according to claim 4 of the present invention includes a middle main beam in addition to the outer main beam. 4 or 6 Made of steel and a joint plate with bolt insertion holes In a synthetic segment in which a time-curable filler is filled and cured at least one of the segments, or between the outermost middle main beams or between the outer main beam and the outermost middle main beam of the segment, The distance between the main girders provided on the left and right sides of the bolt insertion holes provided in the joint plate to connect the adjacent segments in the tunnel circumferential direction is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, The bolt insertion hole has an interval at which the bolt can be inserted, and the bolt insertion hole is disposed at the center between the left and right main girders, and a bar is welded to the main girder by providing a gap with the joint plate. Further, a steel plate having a bolt insertion hole or a reinforcing steel material made of square steel or channel steel is pressed against the steel bar, and the bolts inserted into the bolt insertion holes provided in the joint plate and the reinforcing steel material of adjacent segments are tightened. And connect adjacent segments in the tunnel circumferential direction is doing It is characterized by that.
[0024]
The steel or synthetic segment connection structure according to claim 5 of the present invention is the steel or synthetic segment connection structure according to any one of claims 1 to 4, The outermost A threaded connecting rod such as a long bolt or threaded reinforcing bar is placed between the middle main girders, and a nut is fastened to the threaded portion of the connecting rod located between the outermost middle main girders and the outer main girders. It is characterized by that.
[0025]
The synthetic segment connection structure according to claim 6 of the present invention is the synthetic segment connection structure according to claim 5, wherein a time-curable filler such as concrete is filled and cured between the outermost middle main beams. , In the connected fence It is characterized by the introduction of axial force.
[0026]
The synthetic segment connection structure according to claim 7 of the present invention is the composite segment connection structure according to any one of claims 1 to 6, wherein the segment is between the outer main girder and the outermost middle main girder. Is filled with a time-curing filler having a bolt insertion hole formed in advance and hardened, and the bolt insertion hole in each segment ring adjacent in the tunnel axis direction is connected to a threaded connecting rod such as a long bolt or threaded rebar. And an axial force is introduced into the connecting rod by fastening a nut to the threaded portion of the connecting rod protruding from the bolt insertion hole.
[0027]
[0028]
According to the invention of claim 1, the distance between the main girders a located on the left and right of the bolts arranged on the joint plate is 60 times or less the thickness of the skin plate And less than 10 times the bolt shaft diameter By doing so, the bending deformation of the joint plate is reduced with respect to the tensile force acting on the main girder, and the tensile rigidity of the joint connecting the segments is increased.
[0029]
In addition, since the bolt is arranged in the center of the left and right main girders, the axial center of the resultant force of the tensile force acting on the main gird coincides with the axial center of the bolt. Can not be used effectively because the bolt does not work. As a result, it is possible to increase the tensile strength and tensile rigidity of the joint portion between the segments, and to ensure water stopping and strength.
Furthermore, since only the joint plate part between the main girders having bolt insertion holes is made into a laminated beam structure, the processing cost is low, and further, a reinforcing steel material made of a steel plate, square steel or channel steel having bolt insertion holes is welded to the main girders. Therefore, since the tensile force is transmitted directly from the reinforcing steel material to the main girder, a high-strength and high-rigidity joint structure can be obtained without increasing the welding amount between the main girder and the joint plate. Further, since no special fitting hardware is used, the processing cost can be suppressed.
[0030]
Further, according to the invention of claim 2, by applying the axial force of the bolt connecting the segments to the corners of the main girder and the joint plate in a concentrated manner, a tensile force greater than the introducing axial force of the bolt is applied. Until this is done, the joint plate does not open, and a highly rigid joint structure can be obtained. In addition, the bolt's axial tensile force is transmitted from the reinforcing steel to the steel bar, and the bolt's axial tensile force is transmitted not only from the joint plate but also from the welded portion between the steel bar and the main beam to the main beam. The joint can be made thin, no special fitting hardware is required, the rigidity of the entire joint can be increased by reinforcement only between the main girders, and even if bolts are arranged in several rows between the main girders , Since there is no leverage reaction force, the bolt can be used effectively, and a high-strength and high-rigidity joint structure can be obtained at a low cost without increasing the welding amount between the joint plate and the main girder. Can also resist.
[0031]
According to the invention of claim 3, by transmitting the axial tensile force of the bolts connecting the segments directly from the reinforcing steel material to the main girder, the opening is kept until a tensile force greater than the axial force of the bolt is applied. Of course, a highly rigid joint structure can be obtained. Furthermore, since it is possible to reduce the welding amount between the joint plate and the main girder, higher processing accuracy can be ensured.
[0032]
According to the invention of claim 4, by applying the axial tensile force of the bolt connecting the segments to the main girder from the steel bar welded from the reinforcing steel material to the main girder, the tensile force equal to or greater than the introduced axial force of the bolt is obtained. Opening does not occur until it acts, and a highly rigid joint part structure can be obtained. Furthermore, since it is possible to reduce the welding amount between the joint plate and the main girder, higher processing accuracy can be ensured. In addition, by appropriately selecting the steel bar to be welded to the joint plate, the welding amount between the steel bar and the main girder can be increased, so that the axial force of the bolt can be efficiently transmitted to the main girder. I can do it.
[0033]
According to the invention of claim 5, in the steel or synthetic segment connection structure according to any one of claims 1 to 4, a long bolt is used instead of the longitudinal rib steel plate between the outermost middle main girders. Alternatively, by using a threaded rebar or a threaded connection rod such as a rebar that has been threaded at both ends, the tensile force in the tunnel axial direction acting during an earthquake can be transmitted between the outermost middle main girders. The vertical rib steel plate between the middle main girders can be omitted. For this reason, since the amount of welding can be reduced significantly, processing cost can be reduced, and since there is no heat influence by welding, high processing accuracy can be secured. Furthermore, when the outermost middle main girder is filled with a time-hardening filler such as concrete, cracks can be generated by making the threaded connecting rods into threaded reinforcing bars or deformed reinforcing bars with threaded ends. Since it can be dispersed and cracks along the main beam do not occur, high anticorrosion performance can be secured.
[0034]
According to a sixth aspect of the present invention, in the synthetic segment connecting structure according to the fifth aspect, a time-curable filler such as concrete is previously filled between the outermost middle main beams, and this time-curable filler is filled. Aging filling of concrete, etc. by introducing axial force into long bolts that connect between the outermost middle main girders or threaded reinforcing bars or threaded reinforcing rods that are threaded at both ends. Since the compressive force acts equally on the material, it is possible to further prevent the occurrence of cracks, so that higher anticorrosion performance can be ensured.
Further, according to the invention of claim 7, in the connecting structure of the synthetic segments according to any one of claims 1 to 6, the threaded connecting rod connects the segment rings and has a tensile force in the tunnel axis direction. Since the transmission is made to the outer main girder and the outermost middle main girder, the vertical ribs connecting the outer main girder and the outermost middle main girder are not necessary, and the processing amount of the segment can be reduced. In addition, axial force is introduced into a threaded connecting rod inserted into a bolt insertion hole formed in a time-curable filler such as concrete, so that an outer main girder, a time-curable filler, and an outermost middle main girder Thus, a composite beam is formed, and cracks are hardly generated in the time-hardening filler such as concrete between the outer main girder and the outermost middle main girder because the compressive force acts evenly.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
In FIGS. 1A and 1B, diagrams for explaining a connecting structure of steel or synthetic segments 11 according to the present invention are shown in a diagram. As shown in the figure, in a segment 11 in which a total of four main girders of two outer main girders 2 and two middle main girders 2 are connected by a joint plate 5 and a skin plate 7 is attached thereto. In order to connect the segments adjacent to each other in the tunnel circumferential direction, two bolts 3 are disposed at the illustrated positions through the bolt insertion holes of the joint plate 5, and The distance a between the main girders 2 located at is less than 60 times the skin plate thickness, And less than 10 times the bolt shaft diameter, The interval is such that the bolt can be inserted into the bolt insertion hole. This numerical value was derived as a result of repeated experiments and trial manufactures by the present inventor, and the effectiveness was recognized. Further, the bolt 3 is disposed at the center of the main girder 2 located on the left and right sides thereof.
[0036]
As can be seen from the figure, in the connecting structure of the segments 11 according to the present invention, the axial center of the resultant force of the axial tension acting on the left and right main girders 2 of the bolt 3 coincides with the axial center of the bolt 3. Since the reaction force due to the lever action does not act on the bolt 3, the bolt 3 can be used effectively. As a result, the tensile strength and tensile rigidity of the joint can be increased, and the waterproofness and strength at the joint between the segments can be ensured. Further, the distance between the left and right main girders of the bolt 3 is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, By setting the interval at which the bolt can be inserted into the bolt insertion hole, the bending deformation of the joint plate 5 is reduced with respect to the tensile force acting on the main girder 2, and the tensile rigidity of the joint connecting the segments 11 is increased.
[0037]
In FIGS. 2A and 2B, diagrams for explaining the connection structure of the steel or synthetic segments 11 according to the present invention are shown in a diagram. The segment 11 according to the second embodiment has a configuration in which two main girders 2 are further provided in the middle portion in the width direction in addition to the four main girders of the segment 11 according to the first embodiment. Yes. That is, as shown in FIG. 2, a total of six main girders, that is, two outer main girders 2 and four middle main girders 2 are connected by a joint plate 5, and a skin plate 7 is attached thereto. In the segment 11, in order to connect the adjacent segments in the tunnel circumferential direction, three bolts 3 are disposed at the illustrated positions through the bolt insertion holes of the joint plate 5, and each bolt The distance a between the main girders 2 located on the left and right of 3 is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, The bolt insertion hole has an interval at which the bolt can be inserted, and the bolt 3 is disposed at the center of the main girder 2 positioned on the left and right of the bolt 3.
[0038]
As can be seen from the figure, in the connecting structure in the segment 11 according to the present invention, as in the case described with reference to FIG. 1, the axial tension acting on the left and right main girders 2 of the bolt 3 when a tensile force acts between the segments. Since the axial center of the resultant force coincides with the axial center of the bolt 3, the bolt 3 can be used effectively because the bolt 3 does not receive a reaction force due to the lever action. As a result, it is possible to increase the tensile strength and tensile rigidity of the joint, and to ensure water stopping and strength. Moreover, the main girder spacing a on the left and right of the bolt 3 is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, By setting the interval through which the bolt can be inserted into the bolt insertion hole, the bending deformation of the joint plate 5 is reduced with respect to the tensile force acting on the main girder 2, and the tensile rigidity of the joint connecting the segments 1 is increased.
[0039]
In the present invention, the distance a between the main girders provided on the left and right sides of the bolt is 60 times or less the skin plate thickness, And less than 10 times the bolt shaft diameter, The number of main girders 2 is not limited as long as the conditions for disposing the bolts 3 in the center of the main girders located on the left and right of the bolt 3 are satisfied, assuming that the bolts can be inserted into the bolt insertion holes. What is necessary is just four or more.
[0040]
FIGS. 3 and 4 are diagrams for explaining the connecting structure of the segments 11 according to the present invention. The main girder 2 of the segment 11 shown in FIG. 3 has the same arrangement as the main girder 2 of the segment 11 shown in FIG. 1 and the same number of main girder 2 is provided. The bolt 3 which connects between segments is provided in the center position.
[0041]
In the segment 11 of FIG. 3, in order to construct a joint structure that connects the segment rings, a space-curable filler 10 such as concrete is previously filled between the outer main girder 2A and the outermost middle main girder 2B-1. Then, after the time-curable filler 10 is cured, it passes through a bolt insertion hole 6 such as a sheath tube formed in the time-curable filler 10 from a long bolt, a screw reinforcing bar, or a reinforcing bar threaded at both ends. The threaded connecting rod 14 is arranged, and the nut 12 is tightened from the inside of the outermost middle main beam 2B-1 to introduce the axial force, so that the segment rings adjacent in the tunnel axial direction can be tightened. Yes. In the segment 11 of the third embodiment, the outermost middle main beam 2B-1 may or may not be filled with the time-curable filler 10. A plurality of vertical rib steel plates 8 are provided between the outermost middle main beam 2B-1 so that the threaded connecting rod 14 is located at the center.
[0042]
As shown in FIG. 9, the segments 11 are fastened between adjacent segments in the tunnel circumferential direction by bolts 3 provided on the joint plate 5. Further, the outermost middle main girder 2B-1 is attached to the threaded portion of the threaded connecting rod 14 such as a long bolt passed through the bolt insertion hole 6 formed in the time-curable filler 10 or a threaded processed reinforcing bar. By tightening the nut 17 from the inside and introducing axial force, the segment rings adjacent in the tunnel axial direction are tightened.
[0043]
The segment 11 shown in FIG. 4 is provided with two main girders 2 with a small interval a in the middle portion in addition to the four main girders 2 of the segment 11 shown in FIG. Bolts 3 for connecting the segments are provided at the central positions of the small intervals a. The outer main beam 2A and the adjacent middle main beam 2B-1 are preliminarily filled with a time-curable filler 10 such as concrete or mortar, and may not be filled in other places. It is the same as the segment 11 according to the third embodiment shown in FIG. 3 that the segment rings are connected by the threaded connecting rod 14 inserted through the bolt insertion hole 6 of the time-curable filler 10.
[0044]
Since the segment 11 shown in FIG. 4 has a larger number of main girders 2 than the segment 11 shown in FIG. 3, the tensile strength and tensile rigidity of the segment 11 in the tunnel circumferential direction are increased.
[0045]
5 and 6 are diagrams for explaining the connecting structure of the segments 11 according to the present invention. The segment 11 in FIG. 5 is cemented with threaded connecting rods 14 and 16 embedded between the outer main beam 2A and the outermost middle main beam 2B-1 and between the outermost middle main beam 2B-1. A curable filler 10 such as mortar is filled. In addition, the segments 11 are connected between the segments adjacent in the tunnel circumferential direction by bolts 3 provided on the joint plate 5, and the segments adjacent in the tunnel axial direction are connected by a threaded connecting rod 14.
[0046]
The segment 11 in FIG. 5 is filled with the time-curable filler 10 such as cement or mortar over the entire inner surface of the segment, so that the compression resistance of the segment is improved accordingly. FIG. 12 is a perspective view of the segment 11 of FIG.
[0047]
FIG. 13 is a perspective view of the steel shell of the segment 11 for explaining the connecting structure of the segment 11 according to the present invention. In this segment 11, the nut 17 is tightened from the outside of the outermost middle main beam 2B-1. An axial force may or may not be introduced to the threaded connecting rod 16, and cracks are less likely to occur between the outermost middle main beams 2B-1 by introducing the axial force.
[0048]
As shown in FIG. 5, the segment 11 shown in FIG. 13 is connected between adjacent segments in the tunnel circumferential direction by bolts 3 provided on the joint plate 5, and between adjacent segments in the tunnel axial direction. It is connected with the attached connecting rod 14.
[0049]
In the segment 11 of FIG. 13, when a tensile force acts between the segment rings in the tunnel axial direction, the tensile force is transmitted to the threaded connecting rod 14 connecting the rings, and the outermost middle main girder 2B- Can be transmitted to a threaded connecting rod 16 made of a long bolt or threaded reinforcing bar connecting between 1 or a reinforcing bar threaded at both ends, and this threaded connecting rod 16 performs the same function as a vertical rib steel plate. The vertical rib steel plate can be omitted.
[0050]
Since the threaded connecting rod 16 in each of the above embodiments is not welded to the main girder 2 as compared with the longitudinal rib steel plate, the welding amount can be significantly reduced, so that the processing cost can be reduced and there is no thermal effect due to welding. Therefore, high processing accuracy can be secured. Further, in order to transmit the tensile force in the tunnel axial direction 34 evenly, a threaded connecting rod 16 such as a long bolt connecting the outermost middle main beam B-1 is connected to a long bolt or screw connecting the rings. It is preferable to arrange symmetrically on the left and right of the threaded connecting rod 14 such as a reinforcing bar or a reinforcing bar threaded at both ends.
[0051]
The segment 11 for explaining the connecting structure of the segments 11 according to the present invention in FIG. 6 has a larger number of middle main girders 2B than the segment 11 shown in FIG. 5, and a total of four middle main girders 2B are provided. In this segment 11, cemented and mortar hardened over time so that the threaded connecting rods 16 and 14 are buried between the middle main beams 2B and between the outer main beam 2A and the outermost middle main beam 2B-1. The filler 10 is filled. FIG. 11 shows a state where the segments 11 shown in FIG. 6 are connected in the tunnel circumferential direction and the tunnel axis direction.
[0052]
The segment 11 in FIG. 6 has a larger number of middle main girders 2B than the segment 11 in FIG. 5, and accordingly, the tensile strength and tensile rigidity of the segment 11 in the tunnel circumferential direction are further improved.
[0053]
7 and 8 are diagrams for explaining the connecting structure of the segments 11 according to the present invention. In the segment 11 of FIG. 7, a threaded connecting rod 16 is inserted between the outermost middle main beam 2 </ b> B- 1 and fastened with a nut 17. A plurality of vertical rib steel plates 19 are provided in pairs between the outer main girder 2A and the outermost middle main girder 2B-1, and the threaded ribs 19 are provided between the paired vertical rib steel plates 19. A nut 17 for the connecting rod 16 is provided, and a nut 17 for fastening to the threaded connecting rod 14 inserted through the bolt insertion hole of the outer main beam 2A is provided for connecting the segment 11 in the tunnel axial direction. .
[0054]
In the segment 11 of FIG. 7, the outermost middle main girder 2B-1 is connected with a threaded coupling rod 16 to improve the transmission strength in the tunnel axis direction, and between adjacent segments 11 in the tunnel axis direction is threaded. They are connected by a connecting rod 14 and reinforced by vertical rib steel plates 19.
[0055]
The steel shell structure of the segment 11 of FIG. 8 is the same as the segment 11 according to the seventh embodiment, and the space between the outermost middle main beams 2B-1 is filled with the time-curable filler 10. It differs from the segment 11 which concerns on 7th Embodiment.
[0056]
The segment 11 in FIG. 8 has a threaded connecting rod 16 disposed between the outermost middle main beams 2B-1 in addition to the action and effect of improving the tunnel axial strength of the segment 11 in FIG. The tensile rigidity and tensile strength between the segment rings are remarkably increased.
[0057]
FIGS. 14 to 18 are views for explaining the connection structure of the steel or synthetic segment 11 according to the present invention, and FIGS. Drawings (B) and (D) are shown as cross-sectional views of the respective drawings (A) and (C). The characteristic structure common to these figures is that when joints between segments require large tensile strength and rigidity, do not increase the thickness of the joint plate or use specially shaped joint hardware. In other words, the strength and rigidity of the joint are increased with a simple structure and low processing cost.
[0058]
14A and 14B, the joint plate 5 having the bolt insertion hole 18 of the segment 11 and the front of the square steel member 21 having the bolt insertion hole 20 (that is, the side facing the joint plate) are shown in FIGS. The both ends of the square steel material 21 are fixed to the two main girders 2 positioned on the left and right sides of the bolt 3 by welding 35 while abutting the end surfaces.
[0059]
As shown in FIGS. 14A and 14B, the bolt 3 is inserted through the bolt insertion hole 18 of each joint plate 5 of each segment 11 adjacent to the circumferential direction of the tunnel and the bolt insertion hole 20 of the square steel material 21, By tightening the nut 12, adjacent segments can be connected. With the above configuration, only the joint plate 5 between the left and right main girders of the bolt 3 that connects the segments 11 without the need for a special joint hardware is formed as a laminated beam structure, so that the processing cost can be reduced. By welding the reinforcing square steel material 21 to the main girder 2, not only the joint plate 5 but also the square steel material 21 directly transmits the tensile force to the main girder 2, so that the main girder 2 and the joint plate 5 Since the tensile force of the bolt can be effectively transmitted to the main girder without increasing the welding amount, a joint structure with high strength and high rigidity can be obtained.
[0060]
14C and 14D, a thick steel plate 22 is used instead of the square steel material 21 shown in FIGS. 14A and 14B. Next, in FIGS. 15A and 15B, a grooved steel 23 is used in place of the square steel material 21 and the steel plate 22, both of which are in contact with the joint plate 5 and on the left and right of the bolt 3. It is welded to the main girder 2 located. 14 (C), (D), FIGS. 15 (A) and 15 (B) according to the present invention have the same functions and effects as those in FIGS. 14 (A) and 14 (B). Because of this, duplicate explanation is omitted.
[0061]
15 (C) and 15 (D), the steel bar 24 installed inside the corner formed by the joint plate 5 of the segment 11 and the main girder 2 is welded 35 to the main girder 2.
[0062]
Further, in FIGS. 15C and 15D, the steel plate 25 having the bolt insertion holes 20 is pressed against the steel bar 24 while the joint plates 5 of the segments 11 adjacent in the tunnel circumferential direction are in contact with each other. The nuts 12 are fastened to the bolts 3 inserted through the bolt insertion holes 20 of the steel plate 25 and the bolt insertion holes 18 provided in the joint plate 5 to join the adjacent segments 11 together.
[0063]
According to each joint structure described above, the axial force of the bolt 3 is concentrated on the corners of the main girder 2 and the joint plate 5 until the tensile force greater than the introduced axial force of the bolt 3 is applied. No opening occurs between 5 and a highly rigid joint structure can be obtained. Further, since the introduction axial force of the bolt 3 is transmitted from the reinforcing steel plate 25 to the steel bar 24 and is transmitted not only from the joint plate 5 but also from the welded portion between the steel bar 24 and the main girder 2, the joint The plate 5 can be made thin. In addition, the amount of welding between the joint plate 5 and the main girder 4 can be reduced without requiring special joint hardware. Furthermore, the rigidity of the entire joint can be increased only by reinforcing the space between the main girders 2 positioned on the left and right of the bolts 3 connecting the segments 11.
[0064]
In FIGS. 16A and 16B, instead of the steel plate 25 of FIGS. 15C and 15D, a square bar 26 is applied to the back surface of the steel bar 24, and the bolt is inserted through the bolt insertion hole 27 of the square bar 26. 3 is tightened. 16 (A) and 16 (B), the strength against bending deformation of the joint plate 5 in the joint portion is further improved by the square bar 26 in addition to the actions and effects of FIGS. 15 (C) and 15 (D).
[0065]
16 (C) and (D), the number of bolts is increased as compared with the single bolt 3 in FIGS. 15 (C) and (D), so that the bolt 3 can be used more effectively and the cost can be reduced. Thus, a joint structure with high strength and high rigidity can be obtained. Further, even if the bolts 3 are arranged between the main girders 2 in such a row, no leverage reaction force is generated, so that the bolts 3 can be used effectively. In this respect, a joint structure having high strength and high rigidity can be obtained at low cost. It can be obtained and can resist a large bending moment or axial force.
[0066]
17 (A) and 17 (B), the same grooved steel 23 as in FIGS. 15 (A) and 15 (B) is used. The grooved steel 23 is provided at a predetermined distance from the joint plate 5 and is bolted. The main girder 2 located on the left and right of 3 is welded 35. The joint structure of FIGS. 17A and 17B differs from FIGS. 15A and 15B in that it is a high-strength joint that can transmit force directly from the grooved steel 23 to the main girder 2 instead of the joint plate 5. It has a structure.
[0067]
17 (C) and (D), the same thickness as that of FIGS. 14 (C) and (D) is separated from the joint plate 5 having the bolt insertion holes 18 of the segments 11 as in FIGS. 17 (A) and 17 (B). A plate steel plate 22 is disposed and welded 35 to the main girder 2 positioned on the left and right of the bolt 3. Other configurations are the same as those in FIGS. 14C and 14D.
[0068]
18 (A) and 18 (B), the same steel bars 21 as shown in FIGS. 14 (A) and 14 (B) are arranged apart from the joint plate 5 and the main girders whose end faces are located on the left and right of the bolt 3 are shown. 2, and the bolt 3 is tightened through the bolt insertion hole 27 of the square steel material 21. In the seventeenth embodiment, a bending stress is not directly transmitted to the joint plate 5 by the square steel material 21, but is transmitted to the main girder 2, and a higher-strength joint structure is provided.
[0069]
18C and 18D, a steel bar 24 is welded 35 to the side surfaces of the main beam 2 located on both sides of the bolt 3 at a position away from the joint plate 5 of the segment 11.
[0070]
Further, in FIGS. 18C and 18D, the steel plate 25 having the bolt insertion holes 20 is pressed against the steel bar 24 while the joint plates 5 of the segments 11 adjacent in the tunnel circumferential direction are in contact with each other. The nuts 12 are fastened to the bolts 3 inserted through the bolt insertion holes 20 of the steel plate 25 and the bolt insertion holes 18 provided in the joint plate 5 to join the adjacent segments 11 together.
[0071]
According to the joint structure described above, the joint plate is applied until a tensile force greater than the introduction axial force of the bolt 3 is applied by concentrating the axial force of the bolt 3 on the main girder 2 in the same manner as shown in FIG. No opening occurs between 5 and a highly rigid joint structure can be obtained.
[0072]
FIG. 10 shows the segment 11 in which a plurality of vertical ribs are added to the steel shell of FIG. 9 as a diagram for explaining the connecting structure of the segments 11 according to the present invention, and these are joined in the tunnel circumferential direction and the tunnel axis direction. It is a figure which shows a state with a top view.
[0073]
In addition, this invention is not limited to the said figure, By combining each figure suitably, another segment connection structure can be comprised.
[0074]
【The invention's effect】
As described above, according to the present invention, the tensile rigidity and tensile strength at the joint portion between the segments joined in the tunnel circumferential direction and the tensile force at the joint portion between the segment rings joined in the tunnel axial direction are achieved with a very simple configuration. It is possible to provide a connection structure of steel or synthetic segments with significantly increased rigidity and tensile strength.
[Brief description of the drawings]
FIG. 1A is a plan view showing a connection structure of steel or synthetic segments according to the present invention, and FIG. 1B is a plan view showing the connection structure between segments in FIG. It is explanatory drawing.
2A is a plan view showing a connection structure of steel or synthetic segments according to the present invention, and FIG. 2B is a plan view showing the connection structure between segments in FIG. It is explanatory drawing.
FIG. 3 is a plan view illustrating a connecting structure of segments according to the present invention.
FIG. 4 is a plan view illustrating a connecting structure of segments according to the present invention.
FIG. 5 is a plan view illustrating a connecting structure of segments according to the present invention.
FIG. 6 is a plan view illustrating a connecting structure of segments according to the present invention.
FIG. 7 is a plan view illustrating a connecting structure of segments according to the present invention.
FIG. 8 is a plan view illustrating a connecting structure of segments according to the present invention.
9 is an explanatory plan view showing a state in which the same steel shell segment as that in FIG. 3 is filled with concrete and joined in the tunnel axis direction. FIG.
10 is an explanatory plan view showing a state in which a segment obtained by adding a plurality of vertical ribs to the steel shell shown in FIG. 9 is joined in the tunnel circumferential direction and the tunnel axial direction. FIG.
11 is an explanatory plan view showing a state in which the segments shown in FIG. 6 are joined in the tunnel circumferential direction and the tunnel axial direction. FIG.
12 is a perspective view showing an example in which the entire inner surface of the steel shell of the segment of FIG. 5 is filled with a time-curable filler.
FIG. 13 is a perspective view showing a steel shell structure of segments for explaining a connecting structure of segments according to the present invention.
FIGS. 14A and 14B are a longitudinal sectional view and a transverse sectional view for explaining a connecting structure of steel or synthetic segments according to the present invention, and FIGS. 14C and 14D are made of steel according to the present invention. It is the longitudinal cross-sectional view explaining the connection structure of a synthetic segment, and a cross-sectional view.
FIGS. 15A and 15B are a longitudinal sectional view and a transverse sectional view for explaining a connecting structure of steel or synthetic segments according to the present invention, and FIGS. 15C and D are made of steel according to the present invention. It is the longitudinal cross-sectional view explaining the connection structure of a synthetic segment, and a cross-sectional view.
FIGS. 16A and 16B are a longitudinal sectional view and a transverse sectional view for explaining a connecting structure of steel or synthetic segments according to the present invention, and FIGS. 16C and D are made of steel according to the present invention. It is the longitudinal cross-sectional view explaining the connection structure of a synthetic segment, and a cross-sectional view.
FIGS. 17A and 17B are a longitudinal sectional view and a transverse sectional view for explaining a connecting structure of steel or synthetic segments according to the present invention, and FIGS. 17C and 17D are made of steel according to the present invention. It is the longitudinal cross-sectional view explaining the connection structure of a synthetic segment, and a cross-sectional view.
18 (A) and (B) are longitudinal sectional views for explaining a connecting structure of steel or synthetic segments according to the present invention, and (C) and (D) are connections of steel or synthetic segments according to the present invention. It is the longitudinal cross-sectional view explaining a structure, and a cross-sectional view.
19A is a plan view showing a segment according to the first conventional example in a diagram, and FIG. 19B is an explanatory diagram of the action of a tensile force acting on a joint portion between the segments in FIG. is there.
20A is a plan view showing segments according to a second conventional example, and FIG. 20B is a diagram for explaining the action of a tensile force acting on a joint portion between segments in FIG. .
FIG. 21 (A) is a plan view showing segments according to a third conventional example, and FIG. 21 (B) is a diagram for explaining the action of a tensile force acting on a joint portion between segments in FIG. .
FIG. 22 is a perspective view of a segment according to a fourth conventional example.
FIG. 23 is a perspective view of a segment according to a fifth conventional example.
FIG. 24 is a perspective view of a segment according to a sixth conventional example.
25 is an explanatory plan view showing a state in which the segments shown in FIG. 24 are joined in the tunnel circumferential direction and the tunnel axis direction. FIG.
[Explanation of symbols]
1 segment
2 Main digits
2A Outer main girder
2B-1 Outermost middle main girder
Middle main digits other than 2B-22B-1
3 bolts
5 Joint plate
6 Bolt insertion hole
7 Skin plate
8 Vertical rib steel plate
9 Bolt insertion hole
10 Time-curing filler
11 segments
12 nuts
13 Bolt box
14 Threaded connecting rod
16 Threaded connecting rod
17 Nut
18 Bolt insertion hole
19 Longitudinal rib steel plate
20 Bolt insertion hole
21 square steel
22 Steel plate
23 Channel steel
24 Steel bar
25 Steel plate
26 square bars
27 Bolt insertion hole
28 Bolt insertion hole
29 Frame board
30 mortar
31 Bolt insertion hole
32 nuts
33 volts
34 Tunnel axial direction
35 Welding
more than

Claims (7)

外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板に、ボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を重ね合わせ、この補強鋼材を、前記ボルト挿通孔に挿通するボルトの両隣りに位置する主桁に溶接し、トンネル周方向に隣接する各セグメントにおける前記継手板と前記補強鋼材に設けられたボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする鋼製または合成セグメントの連結構造。A steel segment formed by combining four or six main girders including the middle main girder in addition to the outer main girder and a joint plate having a bolt insertion hole , or between the outermost middle main girder or the segment In the synthetic segment in which at least one of the outer main beam and the outermost middle main beam is filled and cured with a time-curable filler, the joint plate is used to connect the adjacent segments in the tunnel circumferential direction. The distance between the main girders provided on the left and right sides of the bolt insertion hole disposed on the screw plate is not more than 60 times the skin plate thickness and not more than 10 times the bolt shaft diameter. Reinforced steel material made of a steel plate, square steel, or grooved steel having bolt insertion holes is provided in the joint plate with an interval at which bolts can be inserted and the bolt insertion holes are disposed in the center between the left and right main beams. Overlap, this Reinforced steel was welded to the main girder located on both sides of the bolt inserted through the bolt insertion hole, and inserted into the joint plate in each segment adjacent to the tunnel circumferential direction and the bolt insertion hole provided in the reinforcing steel. by tightening the bolts, the coupling structure of steel or synthetic segment, characterized by linking the segments adjacent to each other in the tunnel circumferential direction. 外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と前記主桁とにより形成される隅角内部に設置した棒鋼を主桁に溶接し、ボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を前記棒鋼に押し当て、隣接する各セグメントの前記継手板と前記補強鋼材とに設けられた各ボルト挿通孔に挿通したボルトを緊締して前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする鋼製または合成セグメントの連結構造。A steel segment formed by combining four or six main girders including the middle main girder in addition to the outer main girder and a joint plate having a bolt insertion hole , or between the outermost middle main girder or the segment In the synthetic segment in which at least one of the outer main beam and the outermost middle main beam is filled and cured with a time-curable filler, the joint plate is used to connect the adjacent segments in the tunnel circumferential direction. The distance between the main girders provided on the left and right sides of the bolt insertion hole disposed on the screw plate is not more than 60 times the skin plate thickness and not more than 10 times the bolt shaft diameter. The bolts are inserted in the center between the left and right main girders, and the steel bars installed inside the corners formed by the joint plates and the main girders are arranged at intervals where bolts can be inserted. Welded to girders and has bolt insertion holes Reinforced steel material made of steel plate, square steel, or grooved steel is pressed against the bar steel, and the bolts inserted in the bolt insertion holes provided in the joint plate and the reinforcing steel material of each adjacent segment are tightened to tighten the tunnel circumference. A steel or synthetic segment connection structure characterized in that segments adjacent in a direction are connected to each other. 外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と隙間を設けて設置した鋼板または角鋼または溝型鋼からなる補強鋼材を前記主桁に溶接し、前記継手板のボルト挿通孔と前記補強鋼材に設けられたボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする鋼製または合成セグメントの連結構造。A steel segment formed by combining four or six main girders including the middle main girder in addition to the outer main girder and a joint plate having a bolt insertion hole , or between the outermost middle main girder or the segment In the synthetic segment in which at least one of the outer main beam and the outermost middle main beam is filled and cured with a time-curable filler, the joint plate is used to connect the adjacent segments in the tunnel circumferential direction. The distance between the main girders provided on the left and right sides of the bolt insertion hole disposed on the screw plate is not more than 60 times the skin plate thickness and not more than 10 times the bolt shaft diameter. Reinforced steel made of a steel plate, a square steel or a grooved steel with a space through which the bolt can be inserted and the bolt insertion hole disposed in the center between the left and right main girders and provided with a gap from the joint plate Welded to the main girder By tightening the bolts inserted through the bolt insertion holes provided in the bolt insertion hole and the reinforcing steel of the joint plate, steel or synthetic, characterized in that connecting the segments adjacent to each other in the tunnel circumferential direction Segment connection structure. 外主桁に加えて中主桁を含む4本又は6本の主桁とボルト挿通孔を有する継手板とが組合わされてなる鋼製セグメント、又は、最外側の前記中主桁間若しくはセグメントの外主桁と最外側の中主桁間の少なくともいずれか一方に経時硬化性充填材が充填、硬化されている合成セグメントにおいて、トンネル円周方向に隣り合うセグメント間を連結するために前記継手板に配設される該ボルト挿通孔の左右に位置して設けられる主桁の間隔を、スキンプレート厚さの60倍以下で、かつボルト軸径の10倍以下であって、該ボルト挿通孔にボルトを挿通できる間隔とし、かつ該ボルト挿通孔を、その左右の主桁間の中央部に配設すると共に、前記継手板と隙間を設けて前記主桁に棒鋼を溶接し、さらにボルト挿通孔を有する鋼板または角鋼または溝型鋼からなる補強鋼材を前記棒鋼に押し当て、隣接するセグメントの前記継手板と前記補強鋼材とに設けられた各ボルト挿通孔に挿通したボルトを緊締して、前記トンネル周方向に隣接するセグメント同士を連結していることを特徴とする鋼製または合成セグメントの連結構造。A steel segment formed by combining four or six main girders including the middle main girder in addition to the outer main girder and a joint plate having a bolt insertion hole , or between the outermost middle main girder or the segment In the synthetic segment in which at least one of the outer main beam and the outermost middle main beam is filled and cured with a time-curable filler, the joint plate is used to connect the adjacent segments in the tunnel circumferential direction. The distance between the main girders provided on the left and right sides of the bolt insertion hole disposed on the screw plate is not more than 60 times the skin plate thickness and not more than 10 times the bolt shaft diameter. The bolt insertion hole is provided at a central portion between the left and right main girders, and a steel plate is welded to the main girder by providing a gap with the joint plate. Steel plate or square steel or Segments adjacent to each other in the circumferential direction of the tunnel by pressing a reinforcing steel material made of channel steel against the steel bar, tightening bolts inserted into the respective bolt insertion holes provided in the joint plate and the reinforcing steel material of adjacent segments connection structure of steel or synthetic segment, characterized in that are connected to each other. 前記最外側の中主桁間に長ボルト,ネジ切り加工鉄筋等のネジ付き連結杆を配置し、該最外側の中主桁と外主桁との間に位置する前記連結杆のネジ部にナットを締結したことを特徴とする請求項1〜4のいずれか1項に記載の鋼製または合成セグメントの連結構造。 The long bolt between outermost Chunushi digit place a threaded connecting rod, such as thread cutting process rebar, the threaded portion of the connecting rod which is located between the main girder and the outer main beam in the outermost outer The connection structure of steel or a synthetic segment according to any one of claims 1 to 4, wherein a nut is fastened. 前記最外側の中主桁間にコンクリート等の経時硬化性充填材を充填,硬化させ、当該連結杆に軸力を導入したことを特徴とする請求項5記載の合成セグメントの連結構造。6. The synthetic segment coupling structure according to claim 5 , wherein an aging filler such as concrete is filled and cured between the outermost middle main beams, and axial force is introduced into the coupling rod . 前記セグメントの外主桁と最外側の中主桁間には、予めボルト挿通孔を形成した経時硬化性充填材が充填、硬化されていて、トンネル軸方向に隣り合う各セグメントリングにおける前記ボルト挿通孔に長ボルト,ネジ切り加工鉄筋等のネジ付き連結杆を挿通し、前記ボルト挿通孔から突出した前記連結杆のネジ部にナットを締結することで、当該連結杆に軸力を導入したことを特徴とする請求項1〜6のいずれか1項に記載の合成セグメントの連結構造。Between the outer main girder of the segment and the outermost middle main girder, a time-curing filler having a bolt insertion hole formed in advance is filled and cured, and the bolt insertion in each segment ring adjacent in the tunnel axis direction is performed. An axial force was introduced to the connecting rod by inserting a connecting rod with a screw such as a long bolt or threaded reinforcing bar into the hole and fastening a nut to the threaded portion of the connecting rod protruding from the bolt insertion hole. The connecting structure of the synthetic segment according to any one of claims 1 to 6.
JP36629097A 1997-12-25 1997-12-25 Connecting structure of steel or synthetic segments Expired - Fee Related JP3745523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36629097A JP3745523B2 (en) 1997-12-25 1997-12-25 Connecting structure of steel or synthetic segments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36629097A JP3745523B2 (en) 1997-12-25 1997-12-25 Connecting structure of steel or synthetic segments

Publications (2)

Publication Number Publication Date
JPH11190195A JPH11190195A (en) 1999-07-13
JP3745523B2 true JP3745523B2 (en) 2006-02-15

Family

ID=18486409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36629097A Expired - Fee Related JP3745523B2 (en) 1997-12-25 1997-12-25 Connecting structure of steel or synthetic segments

Country Status (1)

Country Link
JP (1) JP3745523B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834028B2 (en) * 2008-04-08 2011-12-07 新日本製鐵株式会社 Synthetic segment
CN108571328B (en) * 2018-06-29 2023-08-04 西南交通大学 Stratum juncture shield tunnel segment lining structure and design method

Also Published As

Publication number Publication date
JPH11190195A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
US3442542A (en) Method and means for joining h-form structural columns and beams
JP4740029B2 (en) Manufacturing method of floor slab or lining board
JP2009154400A (en) Composite segment
JP2007211507A (en) Beam structure
JP2009281066A (en) Building structure using composite structural beam having pc structure on its ends
JP3745523B2 (en) Connecting structure of steel or synthetic segments
JP4709786B2 (en) Synthetic segment
JPH10140670A (en) Reinforcement connecting structure between precast concrete blocks and method thereof
JP2698959B2 (en) Rigid joint of underground continuous wall
JP2000038803A (en) Slippage prevention structure for both members in composite structural body of steel plate and concrete
JP2000002095A (en) Segment
JPH1122007A (en) Joining structure of steel pipe column and reinforced concrete beam
WO2021014616A1 (en) Steel reinforced joint, steel reinforced assembly, and precast steel reinforced concrete body
JP3449236B2 (en) Joint structure and joint method of steel segment
JPH09268890A (en) Segment for tunnel lining
WO1999035354A1 (en) Coupling metal of odd-shaped bar steels
JPH0474520B2 (en)
JP2015078534A (en) Composite segment and producing method of composite segment
KR100375499B1 (en) Joining structure of concrete filled steel pipe column-beam
JP2009138390A (en) Joint and its fastening method
JP3310389B2 (en) Segment for tunnel lining
JP6921413B2 (en) Reinforcing bar joints and rebar assemblies, as well as precast reinforced concrete bodies
JP3235494B2 (en) Construction method of large section tunnel using short bolt and long bolt combined type segment
JP4920626B2 (en) Synthetic segment
JP4381567B2 (en) Joint structure of concrete structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050621

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081202

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees