JP3744875B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP3744875B2
JP3744875B2 JP2002105010A JP2002105010A JP3744875B2 JP 3744875 B2 JP3744875 B2 JP 3744875B2 JP 2002105010 A JP2002105010 A JP 2002105010A JP 2002105010 A JP2002105010 A JP 2002105010A JP 3744875 B2 JP3744875 B2 JP 3744875B2
Authority
JP
Japan
Prior art keywords
current
terminal
changeover switch
sensor
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002105010A
Other languages
Japanese (ja)
Other versions
JP2003302429A (en
JP2003302429A5 (en
Inventor
勝也 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2002105010A priority Critical patent/JP3744875B2/en
Publication of JP2003302429A publication Critical patent/JP2003302429A/en
Publication of JP2003302429A5 publication Critical patent/JP2003302429A5/ja
Application granted granted Critical
Publication of JP3744875B2 publication Critical patent/JP3744875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は電流測定装置に関し、詳しくは、電流センサまたはその周辺部分における電圧降下の補正に関するものである。
【0002】
【従来の技術】
電力計の電流測定部をはじめ、電流計、デジタルマルチメータなどの電流測定機能を有する電流測定装置では、電流センサまたはその周辺部分における電圧降下が測定対象における電圧降下に加算されることになり、電流センサを接続しない実際の使用状態と同じ状態で測定対象に流れる電流を測定することは困難である。
【0003】
そのため、電流測定装置では、従来からこのような機器自体における電圧降下を補正するためのパラメータを「計器損失」として□Ω、□□H、□□Fなどの入力インピーダンスで表記することが行われている。
【0004】
図3は、従来のこのような電流測定装置の一例を示す構成ブロック図であり、電力計をV−I接続した例を示している。図において、電圧入力部10の高圧端子11には抵抗12を介してアンプ13が接続されている。アンプ13の入力端子と出力端子間には抵抗14が接続されている。低圧端子15は共通電位点に接続されている。
【0005】
電流入力部20の電流端子21と共通端子22には、4端子の電流センサ23の端子a,bが接続されている。電流センサ23の端子cにはアンプ24が接続され、端子dは共通電位点に接続されている。
【0006】
電源30の一端は電圧入力部10の高圧端子11および負荷40の一端に接続され、電源30の他端は電圧入力部10の低圧端子15および電流入力部20の共通端子22に接続されている。負荷40の他端は電流入力部20の電流端子21に接続されている。
【0008】
このようなV−I接続構成によれば、負荷40に流れる電流は電流センサ23にも流れる。そして、電流センサ23がシャントの場合には、電流センサ23の電圧降下に基づいて電流値を測定する。電流センサ23がCT(変流器)の場合には、測定電流を適切な電流値に変えた(変流した)後、電圧に変換して電流値を測定する。
【0009】
【発明が解決しようとする課題】
ところで、図3の従来構成では、負荷40と直列に電流入力部20が接続されているので、電流センサ23における電圧降下も負荷40の電圧降下に加算されて測定されて誤差要因になっている。
【0010】
負荷40の電圧降下を正確に測定するためには、このような電流センサ23における電圧降下をはじめとする電流入力部20系統における誤差分を補正する必要があるが、このような電流センサ23における電圧降下は「計器損失」として定格仕様の一項目に表記しているのが一般的であり、各機器毎の個別値を記載することは測定条件が特定できないことなどから困難である。
【0011】
また、電流の測定範囲を広げるために、電流センサを複数個内蔵してそれらを切り換えることも行われているが、この場合には切換スイッチの損失も無視できない。切換スイッチの損失は切換スイッチのメーカー仕様に頼っているのが現状であり、実際の損失は把握できていない。このため、各機器の仕様で測定精度を落とさざるを得ないうえに、各機器の損失を確認できないという問題もある。
【0012】
本発明は、このような従来の問題点を解決するものであり、その目的は、電流センサまたはその周辺部分の計器損失を測定でき、高精度の電流測定が行える電流測定装置を提供することにある。
【0013】
【課題を解決するための手段】
このような目的を達成する請求項1の発明は、
測定電流が入出力され電流測定装置の入出力端子である電流端子および共通端子間に接続された電流センサを用いた電流測定装置において、
装置の内部に、電流センサまたはその周辺部分における電圧降下を測定する計器損失測定手段を設け、
前記計器損失測定手段は、前記電流端子または前記電流センサの出力端子に接続を切り換える切換スイッチを含み、
電流測定時は、前記切換スイッチを前記電流センサの出力端子側に接続して前記切換スイッチからの出力によって前記電流センサの電圧を測定し、
計器損失測定時は、前記切換スイッチを前記電流端子に接続して前記切換スイッチからの出力によって前記電流端子と前記共通端子間の電圧を測定することを特徴とする。
【0015】
請求項の発明は、請求項記載の電流測定装置において、電流センサは、前記電流端子および前記共通端子間に、低電流測定用のセンサと大電流測定用のセンサとが直列接続されたことを特徴とする。
【0016】
請求項の発明は、請求項記載の電流測定装置において、電流センサは、前記電流端子および前記共通端子間に、低電流測定用のセンサと大電流測定用のセンサとが並列接続されたことを特徴とする。
【0017】
請求項の発明は、請求項1から請求項のいずれかに記載の電流測定装置において、電流センサは、抵抗、変流器またはホール素子のいずれかであることを特徴とする。
【0018】
請求項の発明は、請求項1から請求項のいずれかに記載の電流測定装置において、電流測定装置は、電力計の電流入力部であることを特徴とする。
【0019】
請求項の発明は、請求項1から請求項のいずれかに記載の電流測定装置において、電流測定装置は、電流計であることを特徴とする。
【0020】
請求項の発明は、請求項1から請求項のいずれかに記載の電流測定装置において、電流測定装置は、デジタルマルチメータであることを特徴とする。
【0021】
これらにより、電流測定装置の内部における電流センサまたはその周辺部分における電圧降下を測定でき、高精度の電流測定が行える。
【0022】
【発明の実施の形態】
以下、図面を用いて本発明を詳しく説明する。
図1および図2はそれぞれ本発明の実施の形態の一例を示す主要部の構成ブロック図であり、図3と共通する部分には同一の符号を付けている。図1は低電流用の電流センサ25と大電流用の電流センサ26とを直列接続した例であり、図2は低電流用の電流センサ25と大電流用の電流センサ26とを並列接続した例である。
【0023】
図1において、電流センサ25の一端は電流端子21に接続されるとともに切換スイッチSW1の一方の固定接点aおよび切換スイッチSW2の固定接点aに接続され、他端は電流センサ26の一端に接続されるとともに切換スイッチSW1の可動接点cに接続され、電流センサ25の出力端子は切換スイッチSW2の固定接点bに接続されている。
【0024】
電流センサ26の他端は共通端子22に接続されるとともに切換スイッチSW3の固定接点a,bに接続され、電流センサ26の出力端子は切換スイッチSW2の固定接点cに接続されている。
【0025】
切換スイッチSW1の固定接点bは開放され、切換スイッチSW2の可動接点dはアンプ24に接続され、切換スイッチSW3の可動接点cは共通電位点に接続されている。
【0026】
これら切換スイッチSW1〜SW3の可動接点は、測定対象に応じて以下のように連動して切換駆動される。
【0027】
<低電流測定>
切換スイッチSW1→固定接点b
切換スイッチSW2→固定接点b
切換スイッチSW3→固定接点b
これにより、測定電流は、電流端子21と共通端子22間に直列接続された電流センサ25と電流センサ26を流れることになり、低電流を測定できる。
【0028】
<大電流測定>
切換スイッチSW1→固定接点a
切換スイッチSW2→固定接点c
切換スイッチSW3→固定接点b
これにより、測定電流は、電流端子21と共通端子22間に直列接続された電流センサ25と電流センサ26のうち電流センサ26のみを流れることになり、大電流を測定できる。
【0029】
<低電流測定時の計器損失測定>
切換スイッチSW1→固定接点b
切換スイッチSW2→固定接点a
切換スイッチSW3→固定接点a
これにより、測定電流が電流端子21と共通端子22間に直列接続された電流センサ25と電流センサ26を流れる状態で、直列接続された電流センサ25と電流センサ26に起因する計器損失を測定できる。
【0030】
<大電流測定時の計器損失測定>
切換スイッチSW1→固定接点a
切換スイッチSW2→固定接点a
切換スイッチSW3→固定接点a
これにより、測定電流が電流端子21と共通端子22間に直列接続された電流センサ25と電流センサ26のうち電流センサ26のみを流れる状態で、電流センサ26に起因する計器損失を測定できる。
【0031】
図2において、電流端子21は、切換スイッチSW1の可動接点cに接続されるとともに切換スイッチSW2の固定接点aに接続されている。
【0032】
電流センサ25の一端は切換スイッチSW1の一方の固定接点aに接続され、電流センサ25の他端は共通端子22および切換スイッチSW3の固定接点a,bに接続され、電流センサ25の出力端子は切換スイッチSW2の他方の固定接点bに接続されている。
【0033】
電流センサ26の一端は切換スイッチSW1の他方の固定接点bに接続され、電流センサ26の他端は共通端子22および切換スイッチSW3の固定接点a,bに接続され、電流センサ26の出力端子は切換スイッチSW2の他方の固定接点cに接続されている。
【0034】
これら切換スイッチSW1〜SW3の可動接点は、測定対象に応じて以下のように連動して切換駆動される。
【0035】
<低電流測定>
切換スイッチSW1→固定接点a
切換スイッチSW2→固定接点b
切換スイッチSW3→固定接点b
これにより、測定電流は、電流端子21と共通端子22間に並列接続された電流センサ25と電流センサ26のうちの電流センサ25を流れることになり、低電流を測定できる。
【0036】
<大電流測定>
切換スイッチSW1→固定接点b
切換スイッチSW2→固定接点c
切換スイッチSW3→固定接点b
これにより、測定電流は、電流端子21と共通端子22間に並列接続された電流センサ25と電流センサ26のうちの電流センサ26を流れることになり、大電流を測定できる。
【0037】
<低電流測定時の計器損失測定>
切換スイッチSW1→固定接点a
切換スイッチSW2→固定接点a
切換スイッチSW3→固定接点a
これにより、測定電流が電流端子21と共通端子22間に並列接続された電流センサ25と電流センサ26のうちの電流センサ25を流れる状態で、電流センサ25に起因する計器損失を測定できる。
【0038】
<大電流測定時の計器損失測定>
切換スイッチSW1→固定接点b
切換スイッチSW2→固定接点a
切換スイッチSW3→固定接点a
これにより、測定電流が電流端子21と共通端子22間に並列接続された電流センサ25と電流センサ26のうちの電流センサ26を流れる状態で、電流センサ26に起因する計器損失を測定できる。
【0039】
ここで、これら通常測定における電力値をW1として電流値をA1とし、計器損失測定における電力値をW2として電流値をA2とし、電流センサのインピーダンスをPとすると、電流端子21と共通端子22間の電圧Vは、
V=A2×P
となる。
また、電流値をA1とし、電力値W1とW2の位相差をθとすると、計器損失Wrは、 Wr=V×A1×cosθ
となる。
【0040】
なお、切換スイッチSW3は、電流センサ25,26から共通端子22までのインピーダンスが十分低いと判断できる場合には省略してもよい。
【0041】
このように電流センサに起因する計器損失を測定する手段を設けることにより、電流測定装置の仕様における計器損失を明確にできる。
【0042】
また、実際の測定使用状態において必要に応じて計器損失を測定でき、これら損失測定値に基づいて測定値を補正することにより高精度の測定が行える。
【0043】
また、これらの切換測定を行うことにより、測定装置を構成する切換スイッチの接点の接触状態を的確に把握でき、接点の劣化や接触不良などに起因する誤動作や誤測定の発生を防止できる。
【0044】
さらに、実際の接続状態における計器損失が測定できることから、特に電力測定においてI−V接続にすべきかV−I接続にすべきかの判断がつきかねる場合に、その判断を補助するための情報が得られる
【0045】
なお、上記実施例では電力計の電流入力部について説明したが、本発明は電流値を測定する電流測定機器全般に適用可能である。
【0046】
すなわち、電流測定時の計器損失がわかることにより、電流センサを接続しない実際の使用状態で負荷に流れる電流値を正確に測定できる。
【0047】
そして、電力発生側の負荷変動特性も正確に測定できる。電流発生器の場合には損失を含めて電流で制御できるので変動がほとんど現われることはないが、出力電圧に上限があるので上限に達しているかいないかなどの確認も容易になり、系全体の効率測定もより正確にできる。
【0048】
【発明の効果】
以上説明したように、本発明によれば、電流センサまたはその周辺部分の計器損失を測定でき、実使用状態での高精度の電流測定が行える電流測定装置が実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示す構成ブロック図である。
【図2】本発明の実施の形態の他の例を示す構成ブロック図である。
【図3】従来の電流測定装置の一例を示す構成ブロック図である。
【符号の説明】
20 電流入力部
21 電流端子
22 共通端子
23 電流センサ
24 アンプ
SW1〜SW3 切換スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a current measuring apparatus, and more particularly to correction of a voltage drop in a current sensor or its peripheral part.
[0002]
[Prior art]
In a current measuring device having a current measuring function, such as a current measuring unit of a wattmeter, an ammeter, a digital multimeter, etc., the voltage drop in the current sensor or its peripheral part is added to the voltage drop in the measurement target, It is difficult to measure the current flowing through the object to be measured in the same state as the actual usage state where no current sensor is connected.
[0003]
For this reason, in current measurement devices, parameters for correcting voltage drop in such devices have been conventionally expressed as input impedances such as □ Ω, □□ H, and □□ F as “instrument loss”. ing.
[0004]
FIG. 3 is a configuration block diagram showing an example of such a conventional current measuring apparatus, and shows an example in which a wattmeter is connected to VI. In the figure, an amplifier 13 is connected to the high voltage terminal 11 of the voltage input unit 10 via a resistor 12. A resistor 14 is connected between the input terminal and the output terminal of the amplifier 13. The low voltage terminal 15 is connected to a common potential point.
[0005]
The terminals a and b of the four-terminal current sensor 23 are connected to the current terminal 21 and the common terminal 22 of the current input unit 20. The amplifier 24 is connected to the terminal c of the current sensor 23, and the terminal d is connected to the common potential point.
[0006]
One end of the power source 30 is connected to the high voltage terminal 11 of the voltage input unit 10 and one end of the load 40, and the other end of the power source 30 is connected to the low voltage terminal 15 of the voltage input unit 10 and the common terminal 22 of the current input unit 20. . The other end of the load 40 is connected to the current terminal 21 of the current input unit 20.
[0008]
According to such a V-I connection configuration, the current flowing through the load 40 also flows through the current sensor 23. When the current sensor 23 is a shunt, the current value is measured based on the voltage drop of the current sensor 23. When the current sensor 23 is a CT (current transformer), the measurement current is changed to an appropriate current value (transformed), and then converted into a voltage to measure the current value.
[0009]
[Problems to be solved by the invention]
By the way, in the conventional configuration of FIG. 3, since the current input unit 20 is connected in series with the load 40, the voltage drop in the current sensor 23 is also added to the voltage drop of the load 40 and measured, which is an error factor. .
[0010]
In order to accurately measure the voltage drop of the load 40, it is necessary to correct errors in the current input unit 20 system including the voltage drop in the current sensor 23. The voltage drop is generally described as one of the rated specifications as “instrument loss”, and it is difficult to describe individual values for each device because the measurement conditions cannot be specified.
[0011]
Further, in order to widen the current measurement range, a plurality of current sensors are incorporated and switched, but in this case, the loss of the changeover switch cannot be ignored. The loss of the changeover switch currently depends on the manufacturer's specifications of the changeover switch, and the actual loss cannot be grasped. For this reason, there is a problem that the measurement accuracy must be lowered according to the specifications of each device, and the loss of each device cannot be confirmed.
[0012]
The present invention solves such a conventional problem, and an object of the present invention is to provide a current measuring device capable of measuring the instrument loss of the current sensor or its peripheral portion and performing highly accurate current measurement. is there.
[0013]
[Means for Solving the Problems]
The invention of claim 1 which achieves such an object,
In the current measuring device using the current sensor connected between the current terminal and the common terminal, which is the input / output terminal of the current measuring device and the measurement current is input and output ,
Inside the device, instrument loss measuring means for measuring the voltage drop at the current sensor or its peripheral part is provided,
The instrument loss measuring means includes a changeover switch for switching connection to the current terminal or the output terminal of the current sensor ,
When measuring the current, connect the changeover switch to the output terminal side of the current sensor, measure the voltage of the current sensor by the output from the changeover switch,
When measuring instrument loss, the changeover switch is connected to the current terminal, and the voltage between the current terminal and the common terminal is measured by the output from the changeover switch .
[0015]
The invention of claim 2 is the current measuring device according to claim 1, current sensor, between the current terminals and said common terminal, and the sensor for low current measurements and the sensor for large current measurement are connected in series It is characterized by that.
[0016]
A third aspect of the present invention, the current measuring device according to claim 1, current sensor, between the current terminals and said common terminal, and the sensor for low current measurements and the sensor for large current measurement are connected in parallel It is characterized by that.
[0017]
According to a fourth aspect of the present invention, in the current measuring device according to any one of the first to third aspects, the current sensor is any one of a resistor, a current transformer, and a Hall element.
[0018]
According to a fifth aspect of the present invention, in the current measuring device according to any one of the first to fourth aspects, the current measuring device is a current input unit of a wattmeter.
[0019]
The invention of claim 6 is the current measuring device according to any one of claims 1 to 4 , wherein the current measuring device is an ammeter.
[0020]
According to a seventh aspect of the present invention, in the current measuring device according to any one of the first to fourth aspects, the current measuring device is a digital multimeter.
[0021]
As a result, the voltage drop in the current sensor in the current measuring device or the peripheral portion thereof can be measured, and highly accurate current measurement can be performed.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 and FIG. 2 are block diagrams of the main part showing an example of the embodiment of the present invention, and the same reference numerals are given to the parts common to FIG. FIG. 1 shows an example in which a current sensor 25 for low current and a current sensor 26 for large current are connected in series, and FIG. 2 shows that a current sensor 25 for low current and a current sensor 26 for large current are connected in parallel. It is an example.
[0023]
In FIG. 1, one end of the current sensor 25 is connected to the current terminal 21 and connected to one fixed contact a of the changeover switch SW1 and the fixed contact a of the changeover switch SW2, and the other end is connected to one end of the current sensor 26. And connected to the movable contact c of the changeover switch SW1, and the output terminal of the current sensor 25 is connected to the fixed contact b of the changeover switch SW2.
[0024]
The other end of the current sensor 26 is connected to the common terminal 22 and connected to the fixed contacts a and b of the changeover switch SW3. The output terminal of the current sensor 26 is connected to the fixed contact c of the changeover switch SW2.
[0025]
The fixed contact b of the changeover switch SW1 is opened, the movable contact d of the changeover switch SW2 is connected to the amplifier 24, and the movable contact c of the changeover switch SW3 is connected to a common potential point.
[0026]
The movable contacts of the change-over switches SW1 to SW3 are switched and driven in conjunction with each other as follows according to the measurement object.
[0027]
<Low current measurement>
Changeover switch SW1 → Fixed contact b
Changeover switch SW2 → fixed contact b
Changeover switch SW3 → fixed contact b
As a result, the measurement current flows through the current sensor 25 and the current sensor 26 connected in series between the current terminal 21 and the common terminal 22, and a low current can be measured.
[0028]
<Large current measurement>
Changeover switch SW1 → Fixed contact a
Changeover switch SW2 → fixed contact c
Changeover switch SW3 → fixed contact b
As a result, the measurement current flows only through the current sensor 26 among the current sensor 25 and the current sensor 26 connected in series between the current terminal 21 and the common terminal 22, and a large current can be measured.
[0029]
<Measurement loss at low current measurement>
Changeover switch SW1 → Fixed contact b
Changeover switch SW2 → Fixed contact a
Changeover switch SW3 → fixed contact a
Thereby, in a state where the measurement current flows through the current sensor 25 and the current sensor 26 connected in series between the current terminal 21 and the common terminal 22, the instrument loss caused by the current sensor 25 and the current sensor 26 connected in series can be measured. .
[0030]
<Measurement of instrument loss during high current measurement>
Changeover switch SW1 → Fixed contact a
Changeover switch SW2 → Fixed contact a
Changeover switch SW3 → fixed contact a
Thus, the instrument loss caused by the current sensor 26 can be measured in a state where only the current sensor 26 flows among the current sensor 25 and the current sensor 26 connected in series between the current terminal 21 and the common terminal 22.
[0031]
In FIG. 2, the current terminal 21 is connected to the movable contact c of the changeover switch SW1 and to the fixed contact a of the changeover switch SW2.
[0032]
One end of the current sensor 25 is connected to one fixed contact a of the changeover switch SW1, the other end of the current sensor 25 is connected to the common terminal 22 and the fixed contacts a and b of the changeover switch SW3, and the output terminal of the current sensor 25 is It is connected to the other fixed contact b of the changeover switch SW2.
[0033]
One end of the current sensor 26 is connected to the other fixed contact b of the changeover switch SW1, the other end of the current sensor 26 is connected to the common terminal 22 and the fixed contacts a and b of the changeover switch SW3, and the output terminal of the current sensor 26 is It is connected to the other fixed contact c of the changeover switch SW2.
[0034]
The movable contacts of the change-over switches SW1 to SW3 are switched and driven in conjunction with each other as follows according to the measurement object.
[0035]
<Low current measurement>
Changeover switch SW1 → Fixed contact a
Changeover switch SW2 → fixed contact b
Changeover switch SW3 → fixed contact b
As a result, the measurement current flows through the current sensor 25 of the current sensor 25 and the current sensor 26 connected in parallel between the current terminal 21 and the common terminal 22, and a low current can be measured.
[0036]
<Large current measurement>
Changeover switch SW1 → Fixed contact b
Changeover switch SW2 → fixed contact c
Changeover switch SW3 → fixed contact b
As a result, the measurement current flows through the current sensor 26 of the current sensor 25 and the current sensor 26 connected in parallel between the current terminal 21 and the common terminal 22, and a large current can be measured.
[0037]
<Measurement loss at low current measurement>
Changeover switch SW1 → Fixed contact a
Changeover switch SW2 → Fixed contact a
Changeover switch SW3 → fixed contact a
Accordingly, the instrument loss caused by the current sensor 25 can be measured in a state where the measurement current flows through the current sensor 25 of the current sensor 25 and the current sensor 26 connected in parallel between the current terminal 21 and the common terminal 22.
[0038]
<Measurement of instrument loss during high current measurement>
Changeover switch SW1 → Fixed contact b
Changeover switch SW2 → Fixed contact a
Changeover switch SW3 → fixed contact a
Thus, the instrument loss caused by the current sensor 26 can be measured in a state where the measurement current flows through the current sensor 26 of the current sensor 25 and the current sensor 26 connected in parallel between the current terminal 21 and the common terminal 22.
[0039]
Here, assuming that the power value in these normal measurements is W1, the current value is A1, the power value in the instrument loss measurement is W2, the current value is A2, and the impedance of the current sensor is P, the current terminal 21 and the common terminal 22 are connected. The voltage V of
V = A2 × P
It becomes.
Also, assuming that the current value is A1 and the phase difference between the power values W1 and W2 is θ, the instrument loss Wr is Wr = V × A1 × cos θ.
It becomes.
[0040]
The change-over switch SW3 may be omitted when it can be determined that the impedance from the current sensors 25 and 26 to the common terminal 22 is sufficiently low.
[0041]
Thus, by providing a means for measuring the instrument loss caused by the current sensor, the instrument loss in the specification of the current measuring device can be clarified.
[0042]
In addition, the instrument loss can be measured as necessary in the actual measurement use state, and high-precision measurement can be performed by correcting the measurement value based on these loss measurement values.
[0043]
Further, by performing these switching measurements, it is possible to accurately grasp the contact state of the contacts of the selector switch constituting the measuring apparatus, and it is possible to prevent malfunctions and erroneous measurements due to contact deterioration or contact failure.
[0044]
Furthermore, since the instrument loss in the actual connection state can be measured, information for assisting the determination can be obtained particularly when it is impossible to determine whether to make the IV connection or the VI connection in the power measurement. [0045]
In addition, although the said Example demonstrated the electric current input part of the wattmeter, this invention is applicable to the electric current measurement apparatus generally which measures an electric current value.
[0046]
That is, by knowing the instrument loss at the time of current measurement, it is possible to accurately measure the value of the current flowing through the load in the actual usage state where no current sensor is connected.
[0047]
The load fluctuation characteristics on the power generation side can also be accurately measured. In the case of a current generator, it can be controlled with current including loss, so there is almost no fluctuation, but there is an upper limit on the output voltage, so it is easy to check whether the upper limit has been reached and Efficiency can be measured more accurately.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a current measuring apparatus that can measure the instrument loss of the current sensor or its peripheral portion and perform highly accurate current measurement in an actual use state.
[Brief description of the drawings]
FIG. 1 is a configuration block diagram showing an example of an embodiment of the present invention.
FIG. 2 is a configuration block diagram showing another example of the embodiment of the present invention.
FIG. 3 is a configuration block diagram showing an example of a conventional current measuring apparatus.
[Explanation of symbols]
20 Current Input Unit 21 Current Terminal 22 Common Terminal 23 Current Sensor 24 Amplifier SW1 to SW3 Changeover Switch

Claims (7)

測定電流が入出力され電流測定装置の入出力端子である電流端子および共通端子間に接続された電流センサを用いた電流測定装置において、
装置の内部に、電流センサまたはその周辺部分における電圧降下を測定する計器損失測定手段を設け、
前記計器損失測定手段は、前記電流端子または前記電流センサの出力端子に接続を切り換える切換スイッチを含み、
電流測定時は、前記切換スイッチを前記電流センサの出力端子側に接続して前記切換スイッチからの出力によって前記電流センサの電圧を測定し、
計器損失測定時は、前記切換スイッチを前記電流端子に接続して前記切換スイッチからの出力によって前記電流端子と前記共通端子間の電圧を測定することを特徴とする電流測定装置。
In the current measuring device using the current sensor connected between the current terminal and the common terminal, which is the input / output terminal of the current measuring device and the measurement current is input and output ,
Inside the device, instrument loss measuring means for measuring the voltage drop at the current sensor or its peripheral part is provided,
The instrument loss measuring means includes a changeover switch for switching connection to the current terminal or the output terminal of the current sensor ,
When measuring the current, connect the changeover switch to the output terminal side of the current sensor, measure the voltage of the current sensor by the output from the changeover switch,
At the time of measuring instrument loss , the current measuring device is characterized in that the changeover switch is connected to the current terminal and the voltage between the current terminal and the common terminal is measured by the output from the changeover switch .
電流センサは、前記電流端子および前記共通端子間に、低電流測定用のセンサと大電流測定用のセンサとが直列接続されたことを特徴とする請求項1記載の電流測定装置。2. The current measuring device according to claim 1, wherein the current sensor includes a low current measuring sensor and a large current measuring sensor connected in series between the current terminal and the common terminal. 電流センサは、前記電流端子および前記共通端子間に、低電流測定用のセンサと大電流測定用のセンサとが並列接続されたことを特徴とする請求項1記載の電流測定装置 2. The current measuring device according to claim 1, wherein a low current measuring sensor and a high current measuring sensor are connected in parallel between the current terminal and the common terminal . 電流センサは、抵抗、変流器またはホール素子のいずれかであることを特徴とする請求項1から請求項3のいずれかに記載の電流測定装置。The current measuring device according to claim 1, wherein the current sensor is any one of a resistor, a current transformer, and a Hall element. 電流測定装置は、電力計の電流入力部であることを特徴とする請求項1から請求項4のいずれかに記載の電流測定装置。The current measuring device according to any one of claims 1 to 4, wherein the current measuring device is a current input unit of a wattmeter. 電流測定装置は、電流計であることを特徴とする請求項1から請求項4のいずれかに記載の電流測定装置。The current measuring device according to any one of claims 1 to 4, wherein the current measuring device is an ammeter. 電流測定装置は、デジタルマルチメータであることを特徴とする請求項1から請求項4のいずれかに記載の電流測定装置。The current measuring device according to any one of claims 1 to 4, wherein the current measuring device is a digital multimeter.
JP2002105010A 2002-04-08 2002-04-08 Current measuring device Expired - Fee Related JP3744875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002105010A JP3744875B2 (en) 2002-04-08 2002-04-08 Current measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002105010A JP3744875B2 (en) 2002-04-08 2002-04-08 Current measuring device

Publications (3)

Publication Number Publication Date
JP2003302429A JP2003302429A (en) 2003-10-24
JP2003302429A5 JP2003302429A5 (en) 2004-11-18
JP3744875B2 true JP3744875B2 (en) 2006-02-15

Family

ID=29389915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002105010A Expired - Fee Related JP3744875B2 (en) 2002-04-08 2002-04-08 Current measuring device

Country Status (1)

Country Link
JP (1) JP3744875B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901865A (en) * 2012-10-31 2013-01-30 北京经纬恒润科技有限公司 Motor phase current detection circuit

Also Published As

Publication number Publication date
JP2003302429A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
US7952327B2 (en) Assembled battery total voltage detection and leak detection apparatus
EP2270520B1 (en) Resistance bridge architecture and method
CN103323642B (en) internal self-check resistance bridge and method
CN103443638B (en) Power consumption management system
JP5571486B2 (en) Voltage detection device for battery pack
JP4719972B2 (en) Charge / discharge current measuring device
JP3744875B2 (en) Current measuring device
JP2002243771A (en) Battery voltage detecting circuit
JP3624190B2 (en) DC insulation monitoring device
CN112834974A (en) Method for testing a battery sensor, and battery sensor
JP3691364B2 (en) Current detection device and battery device including current detection device
JP2002040064A (en) Battery voltage detector
JP2003282158A (en) Battery voltage measuring circuit
JP2937796B2 (en) Method for measuring charge / discharge current of secondary battery for power storage, method for measuring remaining power, and measuring device
CN111693878B (en) Storage battery open-circuit voltage detection circuit and measurement method
CN213398688U (en) Multifunctional tester and testing system
JPH0384475A (en) Measurement of insulation resistance for dc circuit
JP4040908B2 (en) Impedance measuring device
JP3805478B2 (en) Method and apparatus for measuring equivalent series resistance of capacitive element
JP3964654B2 (en) Electrical circuit diagnostic equipment
JPH0641174Y2 (en) Voltage-current measuring device
RU2468334C1 (en) Method of correction of results of measurement by strain gage bridge transducer with tool amplifier
JPH0514935U (en) Watt meter
JPH0354486A (en) Method and instrument for locating accident point
JP6472204B2 (en) Charge / discharge power supply

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3744875

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees