JP3744804B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3744804B2
JP3744804B2 JP2001066914A JP2001066914A JP3744804B2 JP 3744804 B2 JP3744804 B2 JP 3744804B2 JP 2001066914 A JP2001066914 A JP 2001066914A JP 2001066914 A JP2001066914 A JP 2001066914A JP 3744804 B2 JP3744804 B2 JP 3744804B2
Authority
JP
Japan
Prior art keywords
fuel cell
polymer electrolyte
solid polymer
moisture absorbing
releasing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001066914A
Other languages
Japanese (ja)
Other versions
JP2002270199A (en
Inventor
哲也 米田
睦子 菰田
紀征 山本
和仁 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2001066914A priority Critical patent/JP3744804B2/en
Publication of JP2002270199A publication Critical patent/JP2002270199A/en
Application granted granted Critical
Publication of JP3744804B2 publication Critical patent/JP3744804B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、気体あるいは液体を燃料とする固体高分子型燃料電池に関する。詳しくは、固体高分子型燃料電池内の湿度が一定に保たれ、固体高分子電解質膜が適度に加湿されうる固体高分子型燃料電池に関する。
【0002】
【従来の技術】
燃料電池は、イオン伝導体である電解質の両側に電極を備え、一方の電極に酸素、空気などの酸化ガスを供給し、他方の電極に水素、炭化水素などの気体燃料、あるいはアルコールなどの液体燃料を供給し、電気化学反応を起こさせて電気と水を発生させる電池である。
【0003】
燃料電池には電解質の種類によって多種類が有り、例えばアルカリ水溶液型、酸水溶液型、溶融炭酸塩型、固体酸化物型および固体高分子型がある。それらのうち、固体高分子型のプロトン伝導性高分子を電解質とする高分子電解質燃料電池(PEFC)は、燃料として高純度水素ガスを用いるシステムである。
【0004】
特に、PEFCは低い温度においても作動させることが可能で、高い出力密度を低い動作温度領域においても有することから車輛用発電や小規模住宅用発電に実用化される可能性が高い。
なかでも、燃料としてメタノールを直接供給する直接型メタノール燃料電池(DMFC)は、電解質として固体高分子電解質を用いることができるため、100℃以下で動作させられる可能性があり、燃料が液体で輸送、貯蔵が容易であることなどから、小型・可搬用に適していると考えられ、将来の自動車用動力源、モバイル電子機器用電源として有力視されている。
【0005】
固体高分子電解質膜を使用した直接型メタノール燃料電池(PEM−DMFC)はスルホン酸基をもったフッ素系高分子膜で、例えばDu Pont社製のナフィオン(Nafion)膜等の薄膜両面を触媒に担持させた多孔質電極で挟んだ構造を有し、負極にメタノール水溶液を直接供給し、正極に酸素または空気を供給するものである。
ここで、固体高分子型燃料電池に用いられる固体高分子電解質膜はイオン伝導物質が水のため、常に一定の状態に加湿しておく必要があり、従来からその方法について検討されていた。一方、固体高分子型電池内での化学反応により、正極には水が生成されるので排水をしないと水が正極側触媒を覆ってしまい、酸素と接触できなくなる。従って、固体高分子型燃料電池内の湿度を適当に保つことは重要な課題である。
現時点では、固体高分子電解質膜を加湿するためには、水中でバブリングした加湿燃料を負極に供給する方法が知られている。
あるいは、特開平9−16180号公報において示されているような、液体タンクと水タンクを備え、メタノールと水の混合物を多孔質の導電性材料で形成された整流板を通過させて負極に供給することにより、負極を均一に加湿する法が提供されている。
【0006】
また、特開2000−173633号公報(特願平10−340653)では、樹脂混合カーボンからなる多孔質層の保水層を、固体高分子電解質膜に接する電極を押圧する集電体と電極の間に備え、保水層から供給される水が電極を通じて固体高分子電解質膜を加湿する方法が提供されている。
【0007】
しかし、上記2例のうち、特開平9−16180号公報の加湿法では燃料電池への燃料の供給はフロー状態でなければならず、そのための配管やタンクが必要となり、燃料電池の小型化が困難である。
一方、特開2000−173633号公報の加湿法では、保水層による集電体への加湿が高度に制御されていないため集電体自身が水を含んでしまい、その集電効率は低下するといった過加湿の問題があった。
【0008】
【発明が解決しようとする課題】
従って、燃料電池内部の湿度が一定に保たれ、固体高分子電解質膜が適度に加湿され、さらなる調湿用補助装置を必要としない、小型化されうる固体高分子型燃料電池が求められていた。
【0009】
【課題を解決するための手段】
本発明によれば、固体高分子電解質膜の両側に一対の電極を介して一対の集電体が対設された固体高分子型燃料電池内に、顆粒状の吸放湿材、多孔質体および導電性ペーストからなる調湿層が、固体高分子電解質膜に対向して、または電極もしくは電極と集電体を介して備えられることを特徴とする固体高分子型燃料電池が提供される。
【0010】
【発明の実施の形態】
本発明に係る固体高分子型燃料電池は、主として、固体高分子電解質膜、一対の電極、一対の集電体および吸放湿材からなる調湿層から構成される。通常この固体高分子型燃料電池は、筐体、缶等の容器に収納されてもよい。
【0011】
固体高分子電解質膜は、特に限定されないが、例えば、スルホン酸基、ホスホン酸基、フェノール系水酸基または含フッ素カーボンスルホン酸基を陽イオン交換基として有する樹脂、PSSA−PVA(ポリスチレンスルホン酸ポリビニルアルコール共重合体)や、PSSA−EVOH(ポリスチレンスルホン酸エチレンビニルアルコール共重合体)等からなるものが挙げられる。なかでも、含フッ素カーボンスルホン酸基を有するイオン交換樹脂からなるものが好ましく、具体的には、ナフィオン(商品名,米国デュポン社)が用いられる。電解質の膜厚は、例えば50μm〜300μm、好ましくは50μm〜100μmである。
【0012】
固体高分子電解質膜は、樹脂の前駆体を熱プレス成型、ロール成形、押出し成形等の公知の方法で膜状に成形し、加水分解、酸型化処理することにより得られる。また、フッ素系陽イオン交換樹脂をアルコール等の溶媒に溶解した溶液から、溶媒キャスト法により得ることもできる。なお、下記の電極および触媒層が予め担持された固体高分子電解質膜を、電極、触媒層および固体高分子電解質膜の代わりに用いてもよい。
【0013】
電極としては、カーボン、例えば黒鉛、膨張黒鉛、カーボンブラック粉末などを材料として形成することができる。具体的には、カーボンペーパーを用いることができる。
【0014】
電極は任意に触媒層を備えていてもよい。触媒層としては、白金、白金合金、金、金合金、パラジウム、パラジウム合金、白金−ルテニウム等が挙げられる。これらの金属は、負極または正極のいずれの触媒層としても使用することができる。負極の触媒層には、白金−ルテニウムが好ましい。
【0015】
集電体は、カーボンペーパー、カーボンの成型体、カーボンの焼結体、カーボンファイバー、焼結金属、発泡金属、金属繊維集合体などの多孔性基体を撥水処理したものが用いられ、なかでもカーボンファイバーのものが好ましい。
【0016】
吸放湿材としては、ケイ酸塩、アルミン酸塩、ジルコニア、酸化マンガン、ヘキサシアノ酸鉄塩、リン酸塩、シリカ、ゼオライト等が挙げられる。なかでも、シリカが好ましい。
吸放湿材は、一次元的にトンネル状に延びたもの、三次元的にハニカムのような細孔の形状を有する多孔質構造を有するものが好ましい。細孔径は各サイズで入手可能であり、好ましくは50〜150Åである。この細孔径を有する構成によると、高湿度状態(相対湿度80%以上)において、湿度変化に対する吸湿可能量が他の細孔径の吸放湿材よりも、大きくなる。
【0017】
吸放湿材の形態としては、メソポーラスモレキュラーシーブ、シート、顆粒および微粒子等が挙げられる。なかでも、微粒子が好ましい。吸放湿材が粒子状の際は、吸放湿材は多孔質体により両面を挟まれた1以上の層状シート状構造内に含有されていることが適当である。調湿層が多孔質体により挟まれた吸放湿材からなる構造の場合、多孔質体の周囲は導電性ペーストで封をされるのが好ましい。導電性ペーストは、銀ペースト、銀・カーボンペーストが挙げられ、なかでも銀ペーストが好ましい。
【0018】
吸放湿材を挟む多孔質体としては、織布、不織布、抄紙、延伸多孔膜のような、孔を有するものが用いられる。なかでもポリプロピレン、ポリエチレン、炭素からなる不織布、特にポリプロピレンからなる不織布が好ましい。多孔質体の孔の大きさは、約10〜500Å、好ましくは約100〜300Åであり、孔の数は約108〜1010/cm2、好ましくは約108/cm2である。なかでも、約100〜200Åの孔を約108/cm2を有する不織布が好ましい。多孔質体の厚みは、約100〜500Å、好ましくは約200〜300Åである。
【0019】
また、負極電極側からの電流を取り出しやすくするために、多孔質体に金属イオンを担持するか、ステンレス、鉄等の金属性メッシュをさらに重ねてもよいものとする。金属イオンは、例えば、ナトリウム、カリウム、リチウム等のアルカリ金属イオンを用いることができる。
【0020】
吸放湿材からなる調湿層は、固体高分子型燃料電池内の湿度を一定に保ち、かつ固体高分子電解質膜を加湿し得る位置、特に定常的に加湿し得る位置に備えられる。すなわち、調湿層は、固体高分子電解質膜に対向して、または電極もしくは電極と集電体を介して備えられる。具体的には、調湿層は、負極と負極側集電体の間、負極側集電体と燃料電池を収納する容器との間、正極と正極側集電体の間、正極側集電体と燃料電池を収納する容器との間、またはそのうちのいずれか2カ所以上に備えられる。調湿層は、そのうち、負極と負極側集電体の間に備えられるのが好ましい。該調湿層は、固体高分子電解質膜の面全体に対して、または部分的に対して備えられていても、または固体高分子電界質膜の前面を加湿しうるように均一に点在もしくは偏在していてもよい。なかでも、電極または集電体の面全体に対して備えられているのが好ましい。該調放湿剤は、電極または集電体の前面に対して、約10〜100μm離れた状態、密着、部分的に密着、または離間した状態であってもよい。なかでも、密着した状態が好ましい。
【0021】
吸放湿材は、固体高分子型燃料電池内の湿度を一定に保ち、かつ固体高分子電解質膜を定常的に加湿し得る量が存在すればよい。具体的には固体高分子電解質膜の種類や厚さと吸放湿材の種類、固体高分子型燃料電池の大きさ等を考慮して適宜調整することができるが、一般に固体高分子電解質膜の厚さ約50〜100μmに対して吸放湿材約1〜5g(乾燥状態)が用いられる。
【0022】
吸放湿材は、固体高分子型燃料電池内に設置される前に、あらかじめ水分で湿らせておくのが好ましい。固体高分子型燃料電池内の湿度が、発電当初において燃料の消費および反応熱等による発熱のため、低下することを防ぐためである。吸放湿材に当初含ませる水分量としては、約10〜50g/g、好ましくは約10〜20g/gである。
【0023】
本発明に係る固体高分子型燃料電池において、例えば液体燃料が負極側に供給されたときに固体高分子型燃料電池内部の正極側の湿度が上昇する。それに伴って吸放湿材が吸湿し、固体高分子型燃料電池内の湿度を低下させる。また、燃料の消費、あるいは水分の蒸発により、負極側の湿度が低下した際には吸放湿材の吸湿量が低下するため、固体高分子型燃料電池内で吸放湿材が水分を放湿して湿度を上昇させる。従って、本発明による吸放湿材は、単に固体高分子電解質膜を湿潤させるのではなく、電池内環境の湿度に応じて、固体高分子型燃料電池内の湿度を調節すべく吸放湿し、その結果固体高分子電解質膜を加湿する特性を有する。
【0024】
本発明の調湿層は固体高分子型燃料電池内の湿度を一定に保ち、かつ固体高分子電解質膜を加湿し得る固体高分子型燃料電池内の位置に存在することにより、固体高分子電解質膜を定常的に加湿することが可能である。さらに固体高分子電解質膜がシート状構造であるか、または多孔質体により吸放湿材が挟まれた構造を有する場合には、集電体と電極の間で保持されており、調湿層が局在化することなく固体高分子電解質膜の加湿が保たれ、好ましい。
【0025】
また、本発明に係る吸放湿材は多孔質構造をとる場合には気体や液体の分散層の役割も果たし、液体燃料および気体燃料を効率よく固体高分子型燃料電池内部に分散するものである。
【0026】
本発明の固体高分子型燃料電池は、通常容器に収納されており、その際、電池からの液漏れを防ぐためのシリコンシートで固体高分子型燃料電池を挾持した後に筐体に収納されてもよい。シリコンシートとしては、密閉性、絶縁性の高いものが好ましい。シートの厚さは、約0.3〜1mm、好ましくは約0.3〜0.5mmである。
筐体は、正極側に空気を供給するために空気孔が開いているものが好ましい。空気孔の大きさとしては、約φ0.5〜1mm、数としては約3〜6個/cm2が好ましい。
【0027】
負極側に供給される燃料としては、水素ガス、天然ガス、プロパン、ブタン、メタノールなどの炭化水素等を用いることができる。
【0028】
【実施例】
以下、本発明を更に詳細に説明する。
実施例1
図1は本発明に係る固体高分子型燃料電池の具体例を示す。調湿層4は負極と集電体の間に整備されている。なお、図1において、液体燃料供給口6は負極側電池内部の水分の蒸発を防ぐため、逆止弁となっている。調湿層4は約50μmの厚さのゴアテックス社製ゴア膜からなる電解質膜、触媒層付き(PRIMEA)5の上部に設置し、同じく約50μmの厚さのゴアテックス社製カーボンファイバーペーパー(CARBEL)の集電体3で両面を挟み、次いで枠型1mm厚シリコンシート2で挟む。最後に筐体1で全体を保持し、この保持体を絶縁コーティングされた、あるいは樹脂からなるネジとナットで固定した。ななお、負極側の筐体には、3mm径で空けられた空気孔8を備えており、その孔から空気が供給されて正極触媒層で還元され、発電する。
燃料供給口6から供給された水素は集電体3および調湿層4により拡散され、負極触媒層に均一に接した。
本発明による調湿層4の例を図2において具体的に示す。調湿層4は、多孔質体9と吸放湿材11からなるシート状であり、その構造は2層の吸放湿材を3層の多孔質体9ではさみこむような構造である。そして、周囲を導電性ペースト10で接着している。この多孔質体9は、さらに金属メッシュ12を備えている。
【0029】
具体的には、約10〜50Åの細孔径の孔を約1010孔/cm2を有するポリプロピレンからなる5cm×5cmの厚さ約20μmの多孔質体の不織布と、吸放湿材としての約10〜50Åの細孔径を有する粒状の形態の多孔質シリカ1gを交互に重ね、不織布により多孔質シリカがはさまれた厚さ50μmのものが二層になるように設置し、次いで周囲を導電性ペースト約0.5gで接着して、不織布三層およびその間に多孔質シリカ二層が挟まれて構成される調湿層4を作製した。上記調湿層4は予め純水で湿らせて約10g/gの水分を含むものである。
【0030】
実施例2
また、実施例2として不織布を用いない以外は実施例1と同様にして図3のような固体高分子型燃料電池を作製した。
参考例1
参考例1として調湿層を整備しない以外は実施例1と同様にして図4のような固体高分子型燃料電池を作製した。
【0031】
固体高分子型燃料電池の評価
実施例1および2ならびに参考例1で得られた固体高分子型燃料電池について、水素を燃料としたときの発電状態を観察した。
実施例1の固体高分子型燃料電池において、負極触媒層での燃料の消費および反応熱等による発熱などにより、負極触媒層内部は乾燥するが、予め湿らせておいた調湿層4の放湿により、固体高分子型燃料電池の内部湿度は一定に保たれ、10時間におよぶ定常的な発電が観察された。
実施例2の電池は、発電開始5時間後に2割程度の発電量の低下が見られた。
【0032】
参考例1の電池は、3時間後に発電作用がほとんど停止した。これは、参考例1の電池が調湿層を装備してないために固体高分子電解質膜は加湿されずに乾燥し、電解質膜が劣化してしまったからであると考えられる。
【0033】
【発明の効果】
本発明に係る固体高分子型燃料電池では、多孔質構造を有する吸放湿剤を用いることにより、高湿度状態での湿度変化に対しても湿度を一定に保つ効果が見られた。さらに、吸放湿剤が多孔質体で保持されるとき、保持されていないときよりも固体高分子型燃料電池の発電効率を上昇させた。なお、調湿剤は、固体高分子型燃料電池内で分散層の役割も果たし、電池の液体燃料または気体燃料を効率よく固体高分子型燃料電池内部に分散する。
【図面の簡単な説明】
【図1】固体高分子型燃料電池(実施例1)の側面図を示す。
【図2】固体高分子型燃料電池を構成する調湿層の側面図を示す。
【図3】多孔質体を装備せず、吸放湿材のみを装備した固体高分子型燃料電池(実施例2)の側面図を示す。
【図4】調湿層を装備しない固体高分子型燃料電池(参考例1)の側面図を示す。
【符号の説明】
1 筐体
2 シリコンシート
3 集電体(カーボンファイバーペーパー)
4 調湿層
5 電極触媒層付電解質膜
6 燃料供給口
7 電極触媒層
8 空気孔
9 多孔質体
10 導電ペースト
11 吸放湿材
12 金属製メッシュ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell using gas or liquid as fuel. More specifically, the present invention relates to a polymer electrolyte fuel cell in which the humidity in the polymer electrolyte fuel cell is kept constant and the polymer electrolyte membrane can be appropriately humidified.
[0002]
[Prior art]
A fuel cell has electrodes on both sides of an electrolyte that is an ionic conductor, supplies an oxidizing gas such as oxygen or air to one electrode, and a gaseous fuel such as hydrogen or hydrocarbon, or a liquid such as alcohol, to the other electrode. A battery that supplies fuel and causes an electrochemical reaction to generate electricity and water.
[0003]
There are many types of fuel cells depending on the type of electrolyte, for example, an alkaline aqueous solution type, an acid aqueous solution type, a molten carbonate type, a solid oxide type, and a solid polymer type. Among them, a polymer electrolyte fuel cell (PEFC) using a solid polymer type proton conductive polymer as an electrolyte is a system using high-purity hydrogen gas as a fuel.
[0004]
In particular, the PEFC can be operated even at a low temperature and has a high output density even in a low operating temperature range, so that there is a high possibility that it will be put to practical use in vehicle power generation and small-scale residential power generation.
In particular, a direct methanol fuel cell (DMFC) that directly supplies methanol as a fuel can use a solid polymer electrolyte as an electrolyte. Therefore, the direct methanol fuel cell (DMFC) may be operated at 100 ° C. or lower, and the fuel is transported as a liquid. Since it is easy to store, it is considered to be suitable for small size and portable use, and it is regarded as promising as a power source for future automobile power sources and mobile electronic devices.
[0005]
A direct methanol fuel cell (PEM-DMFC) using a solid polymer electrolyte membrane is a fluorinated polymer membrane having a sulfonic acid group. For example, both surfaces of a thin film such as a Nafion membrane manufactured by Du Pont are used as a catalyst. It has a structure sandwiched between supported porous electrodes, a methanol aqueous solution is directly supplied to the negative electrode, and oxygen or air is supplied to the positive electrode.
Here, the solid polymer electrolyte membrane used in the polymer electrolyte fuel cell needs to be constantly humidified because the ion conductive material is water, and the method has been studied conventionally. On the other hand, water is generated at the positive electrode due to a chemical reaction in the polymer electrolyte battery, so that if the water is not drained, the water covers the positive electrode side catalyst and cannot contact oxygen. Therefore, it is an important subject to keep the humidity in the polymer electrolyte fuel cell appropriately.
At present, in order to humidify the solid polymer electrolyte membrane, a method is known in which humidified fuel bubbled in water is supplied to the negative electrode.
Alternatively, as shown in Japanese Patent Laid-Open No. 9-16180, a liquid tank and a water tank are provided, and a mixture of methanol and water is supplied to the negative electrode through a rectifying plate formed of a porous conductive material. Thus, a method of uniformly humidifying the negative electrode is provided.
[0006]
In Japanese Patent Application Laid-Open No. 2000-173633 (Japanese Patent Application No. 10-340653), a water retaining layer of a porous layer made of resin mixed carbon is placed between a current collector and an electrode that presses an electrode in contact with a solid polymer electrolyte membrane. In preparation for the above, there is provided a method in which water supplied from a water retention layer humidifies a solid polymer electrolyte membrane through an electrode.
[0007]
However, of the above two examples, in the humidification method disclosed in Japanese Patent Laid-Open No. 9-16180, the fuel supply to the fuel cell must be in a flow state, which requires piping and tanks for that purpose, and the fuel cell can be downsized. Have difficulty.
On the other hand, in the humidification method of JP 2000-173633 A, the current collector itself contains water because the humidification of the current collector by the water retention layer is not highly controlled, and the current collection efficiency is reduced. There was a problem of over-humidification.
[0008]
[Problems to be solved by the invention]
Accordingly, there has been a demand for a solid polymer fuel cell that can be miniaturized, in which the humidity inside the fuel cell is kept constant, the solid polymer electrolyte membrane is appropriately humidified, and does not require any additional humidity control auxiliary device. .
[0009]
[Means for Solving the Problems]
According to the present invention, the solid polymer electrolyte membrane on both sides in a polymer electrolyte fuel cell in which a pair of current collectors is oppositely arranged through the pair of electrodes of granular absorbing Shimezai, porous body And a humidity control layer made of an electrically conductive paste is provided opposite to the solid polymer electrolyte membrane or via an electrode or an electrode and a current collector.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The solid polymer fuel cell according to the present invention is mainly composed of a humidity control layer comprising a solid polymer electrolyte membrane, a pair of electrodes, a pair of current collectors, and a moisture absorbing / releasing material. Usually, this polymer electrolyte fuel cell may be stored in a container such as a casing or a can.
[0011]
The solid polymer electrolyte membrane is not particularly limited. For example, a resin having a sulfonic acid group, a phosphonic acid group, a phenolic hydroxyl group or a fluorine-containing carbon sulfonic acid group as a cation exchange group, PSSA-PVA (polystyrene sulfonate polyvinyl alcohol) Copolymer) and PSSA-EVOH (polystyrene sulfonate ethylene vinyl alcohol copolymer). Among these, those made of an ion exchange resin having a fluorine-containing carbon sulfonic acid group are preferable, and specifically, Nafion (trade name, US DuPont) is used. The thickness of the electrolyte is, for example, 50 μm to 300 μm, preferably 50 μm to 100 μm.
[0012]
The solid polymer electrolyte membrane is obtained by forming a resin precursor into a film shape by a known method such as hot press molding, roll molding, extrusion molding, and the like, followed by hydrolysis and acidification treatment. Moreover, it can also obtain by the solvent casting method from the solution which melt | dissolved fluorine-type cation exchange resin in solvents, such as alcohol. In addition, you may use the solid polymer electrolyte membrane by which the following electrode and catalyst layer were carry | supported previously instead of an electrode, a catalyst layer, and a solid polymer electrolyte membrane.
[0013]
As an electrode, carbon, for example, graphite, expanded graphite, carbon black powder, or the like can be formed as a material. Specifically, carbon paper can be used.
[0014]
The electrode may optionally include a catalyst layer. Examples of the catalyst layer include platinum, platinum alloy, gold, gold alloy, palladium, palladium alloy, platinum-ruthenium, and the like. These metals can be used as either a negative electrode or a positive electrode catalyst layer. The negative electrode catalyst layer is preferably platinum-ruthenium.
[0015]
As the current collector, a water-repellent treated porous substrate such as carbon paper, carbon molded body, carbon sintered body, carbon fiber, sintered metal, foam metal, and metal fiber aggregate is used. Carbon fiber is preferred.
[0016]
Examples of the moisture absorbing / releasing material include silicate, aluminate, zirconia, manganese oxide, hexacyano acid iron salt, phosphate, silica, zeolite and the like. Of these, silica is preferable.
The moisture absorbing / releasing material preferably has a one-dimensionally extending tunnel shape and a three-dimensionally porous structure having a pore shape like a honeycomb. The pore diameter is available in each size, and is preferably 50 to 150 mm. According to the configuration having this pore diameter, in a high humidity state (relative humidity of 80% or more), the amount of moisture that can be absorbed with respect to a change in humidity is larger than that of other moisture absorbent materials having a pore diameter.
[0017]
Examples of the moisture absorbing / releasing material include mesoporous molecular sieves, sheets, granules, and fine particles. Of these, fine particles are preferable. When the moisture absorbing / releasing material is in the form of particles, the moisture absorbing / releasing material is suitably contained in one or more layered sheet-like structures sandwiched on both sides by the porous body. In the case where the humidity control layer is made of a moisture absorbing / releasing material sandwiched between porous bodies, the porous body is preferably sealed with a conductive paste. Examples of the conductive paste include silver paste and silver / carbon paste, and silver paste is preferable.
[0018]
As the porous body sandwiching the moisture absorbing / releasing material, those having pores such as woven fabric, non-woven fabric, papermaking, stretched porous membrane are used. Of these, a nonwoven fabric made of polypropylene, polyethylene and carbon, particularly a nonwoven fabric made of polypropylene is preferable. The pore size of the porous body is about 10 to 500 mm, preferably about 100 to 300 mm, and the number of holes is about 10 8 to 10 10 / cm 2 , preferably about 10 8 / cm 2 . Especially, the nonwoven fabric which has about 10 < 8 > / cm < 2 > about about 100-200 square holes is preferable. The thickness of the porous body is about 100 to 500 mm, preferably about 200 to 300 mm.
[0019]
Moreover, in order to make it easy to take out the electric current from the negative electrode side, a metal ion may be carry | supported to a porous body, or metal meshes, such as stainless steel and iron, may be further piled up. As the metal ions, for example, alkali metal ions such as sodium, potassium, and lithium can be used.
[0020]
The humidity control layer made of the moisture absorbing / releasing material is provided at a position where the humidity in the solid polymer fuel cell is kept constant and the solid polymer electrolyte membrane can be humidified, particularly at a position where it can be constantly humidified. That is, the humidity control layer is provided opposite to the solid polymer electrolyte membrane or via the electrode or the electrode and the current collector. Specifically, the humidity control layer is formed between the negative electrode and the negative electrode side current collector, between the negative electrode side current collector and the container containing the fuel cell, between the positive electrode and the positive electrode side current collector, and on the positive electrode side current collector. Between the body and the container containing the fuel cell, or at least two of them. Among them, the humidity control layer is preferably provided between the negative electrode and the negative electrode side current collector. The humidity control layer may be provided for the entire surface of the solid polymer electrolyte membrane, or partially, or may be evenly dispersed so that the front surface of the solid polymer electrolyte membrane can be humidified. It may be unevenly distributed. Especially, it is preferable to be provided with respect to the whole surface of an electrode or a collector. The moisture control / release agent may be in a state of being separated by about 10 to 100 μm, in close contact, partially in close contact, or separated from the front surface of the electrode or current collector. Among these, a close contact state is preferable.
[0021]
The moisture-absorbing / releasing material only needs to be present in an amount capable of keeping the humidity in the solid polymer fuel cell constant and constantly humidifying the solid polymer electrolyte membrane. Specifically, it can be adjusted as appropriate in consideration of the type and thickness of the solid polymer electrolyte membrane, the type of moisture absorbing / releasing material, the size of the solid polymer fuel cell, etc. About 1 to 5 g of moisture absorbing / releasing material (dry state) is used for a thickness of about 50 to 100 μm.
[0022]
The moisture absorbing / releasing material is preferably pre-moistened with moisture before being installed in the polymer electrolyte fuel cell. This is because the humidity in the polymer electrolyte fuel cell is prevented from lowering due to heat generation due to fuel consumption and reaction heat at the beginning of power generation. The amount of moisture initially contained in the moisture absorbing / releasing material is about 10 to 50 g / g, preferably about 10 to 20 g / g.
[0023]
In the polymer electrolyte fuel cell according to the present invention, for example, when liquid fuel is supplied to the negative electrode side, the humidity on the positive electrode side in the polymer electrolyte fuel cell increases. Along with this, the moisture absorbing / releasing material absorbs moisture and lowers the humidity in the polymer electrolyte fuel cell. Further, when the humidity on the negative electrode side decreases due to fuel consumption or moisture evaporation, the moisture absorption amount of the moisture absorbing / releasing material decreases. Therefore, the moisture absorbing / releasing material releases moisture in the polymer electrolyte fuel cell. Increase humidity by moistening. Therefore, the moisture-absorbing / releasing material according to the present invention does not simply wet the solid polymer electrolyte membrane, but absorbs and releases moisture in order to adjust the humidity in the polymer electrolyte fuel cell according to the humidity in the battery environment. As a result, it has the characteristic of humidifying the solid polymer electrolyte membrane.
[0024]
The humidity control layer of the present invention is present at a position in the solid polymer fuel cell that keeps the humidity in the solid polymer fuel cell constant and can humidify the solid polymer electrolyte membrane. It is possible to constantly humidify the membrane. Further, when the solid polymer electrolyte membrane has a sheet-like structure or a structure in which a moisture absorbing / releasing material is sandwiched between porous bodies, the solid polymer electrolyte membrane is held between the current collector and the electrode, and the humidity control layer It is preferable that the solid polymer electrolyte membrane is kept humid without being localized.
[0025]
Further, the moisture absorbing / releasing material according to the present invention also serves as a gas or liquid dispersion layer in the case of a porous structure, and efficiently disperses liquid fuel and gas fuel inside the polymer electrolyte fuel cell. is there.
[0026]
The polymer electrolyte fuel cell of the present invention is usually stored in a container. At that time, the polymer electrolyte fuel cell is held in a casing after being held by a silicon sheet for preventing liquid leakage from the battery. Also good. As the silicon sheet, those having high sealing properties and high insulating properties are preferable. The thickness of the sheet is about 0.3-1 mm, preferably about 0.3-0.5 mm.
The housing preferably has an air hole for supplying air to the positive electrode side. The size of the air hole is preferably about φ0.5 to 1 mm and the number is about 3 to 6 / cm 2 .
[0027]
As the fuel supplied to the negative electrode side, hydrocarbons such as hydrogen gas, natural gas, propane, butane, and methanol can be used.
[0028]
【Example】
Hereinafter, the present invention will be described in more detail.
Example 1
FIG. 1 shows a specific example of a polymer electrolyte fuel cell according to the present invention. The humidity control layer 4 is provided between the negative electrode and the current collector. In FIG. 1, the liquid fuel supply port 6 is a check valve in order to prevent evaporation of moisture inside the negative electrode side battery. The humidity control layer 4 is an electrolyte membrane composed of a Gore-Tex Gore membrane with a thickness of about 50 μm, and is placed on top of the catalyst layer (PRIMEA) 5, and also a Gore-Tex carbon fiber paper with a thickness of about 50 μm ( The both sides are sandwiched between the current collectors 3 of CARBEL) and then sandwiched between the frame-shaped 1 mm thick silicon sheets 2. Finally, the whole was held by the casing 1, and this holding body was fixed with screws and nuts made of insulating coating or made of resin. Note that the negative-side casing is provided with air holes 8 having a diameter of 3 mm. Air is supplied from the holes and is reduced by the positive electrode catalyst layer to generate power.
The hydrogen supplied from the fuel supply port 6 was diffused by the current collector 3 and the humidity control layer 4 and was in uniform contact with the negative electrode catalyst layer.
An example of the humidity control layer 4 according to the present invention is specifically shown in FIG. The humidity control layer 4 is in the form of a sheet composed of a porous body 9 and a moisture absorbing / releasing material 11, and has a structure in which two layers of moisture absorbing / releasing material are sandwiched between three layers of the porous body 9. The periphery is bonded with the conductive paste 10. The porous body 9 further includes a metal mesh 12.
[0029]
Specifically, a porous non-woven fabric having a thickness of about 20 μm of 5 cm × 5 cm in thickness and made of polypropylene having a pore diameter of about 10 to 50 mm and about 10 10 holes / cm 2 , and about as a moisture absorbing / releasing material. 1 g of porous silica in the form of particles having a pore diameter of 10-50 mm is alternately stacked and placed so that a 50 μm-thick porous silica sandwiched between non-woven fabrics is formed into two layers, and then the surroundings are electrically conductive Adhesive paste of about 0.5 g was used to prepare humidity control layer 4 composed of three layers of nonwoven fabric and two layers of porous silica sandwiched therebetween. The humidity control layer 4 is pre-moistened with pure water and contains about 10 g / g of water.
[0030]
Example 2
Further, a solid polymer fuel cell as shown in FIG. 3 was produced in the same manner as in Example 1 except that the nonwoven fabric was not used as Example 2.
Reference example 1
As Reference Example 1, a polymer electrolyte fuel cell as shown in FIG. 4 was produced in the same manner as in Example 1 except that the humidity control layer was not provided.
[0031]
Evaluation of polymer electrolyte fuel cells The polymer electrolyte fuel cells obtained in Examples 1 and 2 and Reference Example 1 were observed for power generation when hydrogen was used as a fuel.
In the polymer electrolyte fuel cell of Example 1, the inside of the negative electrode catalyst layer is dried due to the consumption of fuel in the negative electrode catalyst layer and heat generation due to reaction heat, etc., but the humidity control layer 4 that has been previously moistened is released. Due to the humidity, the internal humidity of the polymer electrolyte fuel cell was kept constant, and steady power generation over 10 hours was observed.
In the battery of Example 2, the power generation amount decreased by about 20% after 5 hours from the start of power generation.
[0032]
The battery of Reference Example 1 almost stopped power generation after 3 hours. This is considered because the solid polymer electrolyte membrane was dried without being humidified because the battery of Reference Example 1 was not equipped with a humidity control layer, and the electrolyte membrane was deteriorated.
[0033]
【The invention's effect】
In the polymer electrolyte fuel cell according to the present invention, by using the moisture absorbing / releasing agent having a porous structure, an effect of keeping the humidity constant with respect to the humidity change in the high humidity state was observed. Furthermore, the power generation efficiency of the polymer electrolyte fuel cell was increased when the moisture absorbing / releasing agent was retained in the porous body, compared with when it was not retained. The humidity control agent also serves as a dispersion layer in the polymer electrolyte fuel cell, and efficiently disperses the liquid fuel or gas fuel of the cell inside the polymer electrolyte fuel cell.
[Brief description of the drawings]
FIG. 1 shows a side view of a polymer electrolyte fuel cell (Example 1).
FIG. 2 is a side view of a humidity control layer constituting a polymer electrolyte fuel cell.
FIG. 3 shows a side view of a polymer electrolyte fuel cell (Example 2) that is not equipped with a porous body and is equipped with only a moisture absorbing / releasing material.
FIG. 4 shows a side view of a polymer electrolyte fuel cell (Reference Example 1) not equipped with a humidity control layer.
[Explanation of symbols]
1 Housing 2 Silicon sheet 3 Current collector (carbon fiber paper)
4 Humidity control layer 5 Electrolyte membrane with electrode catalyst layer 6 Fuel supply port 7 Electrode catalyst layer 8 Air hole 9 Porous body 10 Conductive paste 11 Hygroscopic material 12 Metal mesh

Claims (7)

固体高分子電解質膜の両側に一対の電極を介して一対の集電体が対設された固体高分子型燃料電池内に、顆粒状の吸放湿材、多孔質体および導電性ペーストからなる調湿層が、固体高分子電解質膜に対向して、または電極もしくは電極と集電体を介して備えられることを特徴とする固体高分子型燃料電池。  A solid polymer fuel cell in which a pair of current collectors are arranged on both sides of a solid polymer electrolyte membrane via a pair of electrodes, and is composed of a granular moisture absorbing / releasing material, a porous material, and a conductive paste. A solid polymer fuel cell comprising a humidity control layer facing the solid polymer electrolyte membrane or via an electrode or an electrode and a current collector. 吸放湿材が、ケイ酸塩、アルミン酸塩、ジルコニア、酸化マンガン、ヘキサシアノ酸鉄塩、リン酸塩、シリカゲルおよびゼオライトから選択される1以上のものである請求項に記載の固体高分子型燃料電池。The solid polymer according to claim 1 , wherein the moisture absorbing / releasing material is one or more selected from silicate, aluminate, zirconia, manganese oxide, iron hexacyanoate, phosphate, silica gel, and zeolite. Type fuel cell. 吸放湿材が、微粒子構造であることを特徴とする請求項に記載の固体高分子型燃料電池。The solid polymer fuel cell according to claim 1 , wherein the moisture absorbing / releasing material has a fine particle structure. 調湿層が、多孔質体により保持された吸放湿材からなることを特徴とする請求項1〜のいずれか一つに記載の固体高分子型燃料電池。The solid polymer fuel cell according to any one of claims 1 to 3 , wherein the humidity control layer is composed of a moisture absorbing / releasing material held by a porous body. 多孔質体が、金属からなるメッシュをさらに備えることを特徴とする請求項に記載の固体高分子型燃料電池。The polymer electrolyte fuel cell according to claim 4 , wherein the porous body further includes a mesh made of a metal. 調湿層が、負極と集電体の間に位置することを特徴とする請求項1〜のいずれか一つに記載の固体高分子型燃料電池。Polymer electrolyte fuel cell according to any one of claims 1 to 5 in which the humidity control layer, characterized in that positioned between the negative electrode and the current collector. 請求項に記載の固体高分子型燃料電池が燃料供給口を供えた容器に収納され、該容器の燃料供給口に逆止弁を備えることを特徴とする請求項に記載の固体高分子型燃料電池。Housed in a container a solid polymer electrolyte fuel cell according were equipped with fuel supply ports to claim 1, a solid polymer according to claim 1, characterized in that it comprises a check valve in the fuel supply port of the container Type fuel cell.
JP2001066914A 2001-03-09 2001-03-09 Polymer electrolyte fuel cell Expired - Fee Related JP3744804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066914A JP3744804B2 (en) 2001-03-09 2001-03-09 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066914A JP3744804B2 (en) 2001-03-09 2001-03-09 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2002270199A JP2002270199A (en) 2002-09-20
JP3744804B2 true JP3744804B2 (en) 2006-02-15

Family

ID=18925342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066914A Expired - Fee Related JP3744804B2 (en) 2001-03-09 2001-03-09 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3744804B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506165B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP2006252908A (en) * 2005-03-10 2006-09-21 Konica Minolta Holdings Inc Fuel cell
JP2006309945A (en) * 2005-04-26 2006-11-09 Equos Research Co Ltd Fuel cell device
JP5130665B2 (en) * 2006-06-21 2013-01-30 株式会社日立製作所 Fuel cell and information electronic device mounted on fuel cell
JP5256678B2 (en) * 2007-09-27 2013-08-07 ソニー株式会社 Fuel cell
CA2719585A1 (en) 2008-03-24 2009-10-01 Sanyo Electric Co., Ltd. Membrane-electrode assembly, fuel cell, and fuel cell system
JP2011175838A (en) * 2010-02-24 2011-09-08 Sharp Corp Unit cell, compound unit cell and fuel cell stack using them

Also Published As

Publication number Publication date
JP2002270199A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
JP4876914B2 (en) Solid oxide fuel cell
US20070092777A1 (en) Self-humidifying proton exchange membrane, membrane-electrode assembly, and fuel cell
JP3882735B2 (en) Fuel cell
JPH05283094A (en) Fuel cell
JP2000285933A (en) Fuel cell
KR100877273B1 (en) Fuel cell
JP2005532665A (en) Low moisture and durable fuel cell membrane
Ge et al. Water management in PEMFCs using absorbent wicks
JPH07326361A (en) Electrode, manufacture thereof and fuel cell
JP3331706B2 (en) Fuel cell
WO2004059768A1 (en) Solid polymer electrolyte fuel battery cell and fuel battery using same
JP3744804B2 (en) Polymer electrolyte fuel cell
JP5256678B2 (en) Fuel cell
JP3866534B2 (en) Fuel cell
US20050053821A1 (en) Self-moisturizing proton exchange membrane, membrane-electrode assembly and fuel cell
JP4349826B2 (en) Fuel cell and fuel cell
JP2006516352A (en) Various filter elements for hydrogen fuel cells
JP3425405B2 (en) Ion conductive membrane, method for producing the same, and fuel cell using the same
KR100645832B1 (en) Membrane electrode assembly for pemfc, method for preparing the same, and fuel cell using the same
JP2003288915A (en) Membrane-electrode joint body for solid polymer fuel cell
WO2001045189A1 (en) Passive air breathing direct methanol fuel cell
JP3706462B2 (en) Polymer electrolyte fuel cell
JP4047752B2 (en) Method for manufacturing ion conductive film
JP2005353495A (en) Cell module and fuel cell
JP2001338656A (en) Fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040223

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050831

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees