JP3744572B2 - Cast refractory composition - Google Patents

Cast refractory composition Download PDF

Info

Publication number
JP3744572B2
JP3744572B2 JP25402995A JP25402995A JP3744572B2 JP 3744572 B2 JP3744572 B2 JP 3744572B2 JP 25402995 A JP25402995 A JP 25402995A JP 25402995 A JP25402995 A JP 25402995A JP 3744572 B2 JP3744572 B2 JP 3744572B2
Authority
JP
Japan
Prior art keywords
refractory
weight
composition
cao
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25402995A
Other languages
Japanese (ja)
Other versions
JPH0987047A (en
Inventor
和也 野田
泰史 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Ceramics Co Ltd
Original Assignee
AGC Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGC Ceramics Co Ltd filed Critical AGC Ceramics Co Ltd
Priority to JP25402995A priority Critical patent/JP3744572B2/en
Publication of JPH0987047A publication Critical patent/JPH0987047A/en
Application granted granted Critical
Publication of JP3744572B2 publication Critical patent/JP3744572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自己流動性を有するとともに、坏土の流し込み施工に際して坏土の表層に分離層を生じない、耐熱衝撃性に優れた流し込み耐火物に関する。
【0002】
【従来の技術】
アルミナセメントの含有量が少ない低セメント系流し込み耐火物は、施工箇所に混練坏土を流し込み、次いでバイブレータで坏土に振動を加えて坏土の流動性を高めて流し込み施工している。流し込み耐火物の実用特性は、坏土が施工箇所の隅々に行きわたり、かつ坏土中の気泡が浮上して緻密な組織の耐火物ができるかどうかによって左右される。
【0003】
バイブレータで坏土に振動を加えることが難しい複雑な形状を有する施工箇所に流し込み耐火物を流し込むことは困難である。また、坏土に振動を加える施工作業はそれ自体相当な労力を必要とする。最近は、流し込み耐火物の施工作業を省力化するため、振動を与えなくても施工可能な自己流動性を有する流し込み耐火物が開発され、実用に供され始めている。
【0004】
しかし、自己流動性を有する従来の流し込み用耐火物には、流動性を高めるために微粉が多量に配合されていて加熱収縮が大きく、耐熱衝撃性が小さいという問題がある。この問題を解消する対策として、微粉の配合量を減らして耐熱衝撃性を向上させることが考えられる。しかし、微粉の配合量が少ないと流動性が低下するだけでなく、耐火物の流し込み施工時に微粉を多く含む坏土が施工体の表層に移動して分離層を生じる。分離層を生じると、耐火物が不均一化して耐火物の特性が劣化する他、耐火物坏土を打ち継ぎ施工すると、分離層が打ち継いだ境界にできてこの分離層の箇所で耐火物に亀裂が入るという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の目的は、良好な自己流動性を確保するとともに、微粉の配合量を少なくしても分離層を生じず、耐熱衝撃性が良好で加熱収縮が小さい流し込み用耐火物を提供することにある。
【0006】
【課題を解決するための手段】
本発明の流し込み耐火物用組成物は、耐火性骨材と、CaO/Alのモル比が0.85以下のアルミナセメントを含む耐火性粉末と、CaOとAlとを主成分としCaO/Alのモル比が0.9以上であるカルシウムアルミネートを分離防止剤として0.02〜4重量%と、少量の分散剤とからなる組成物であって、該組成物中に含まれる粒径10μm以下の微粉の含有量が8〜23重量%であり、該組成物100重量部に対して8重量部の水を加えて混練した直後の坏土を、水平な板面上に置いた上部内径50mm、低部内径100mm、高さ150mmのコーン型に流し込んで充たし、該コーン型を上方に抜き取って振動を加えないで60秒間静置したときの坏土の拡がり直径が180mm以上であり、かつ該坏土を流し込み施工した耐火物施工体の表層に分離層が生じないことを特徴とする。
【0007】
耐火性骨材は、流し込み耐火物に耐熱性や耐食性を付与する耐火物の主要な成分である。耐火性骨材としては、高い充填密度が得られる粒度分布を有するものがよく、予め粗粒、中粒及び細粒に分級した耐火性骨材を、高い充填密度が得られるように再調合したものを使用するのが好ましい。耐火性骨材の充填密度を高くできれば、耐火性粉末と坏土に自己流動性を付与するのに必要な混合水の量を少なくでき、耐火物特性にも優れた高い嵩比重を有する流し込み耐火物が得られる。
【0008】
耐火性骨材としては、アルミナ、チタニア、ボーキサイト、ダイアスポア、ムライト、礬土頁岩、シャモット、パイロフィライト、シリマナイト、アンダリューサイト、ケイ石、クロム鉱石、スピネル、マグネシア、ジルコニア、ジルコン、クロミア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、炭化ホウ素、ホウ化ジルコニウム及びホウ化チタンから選ばれる1種以上が好ましく使用できる。
【0009】
耐火性粉末は、耐火性骨材の粒子間の隙間を埋めて耐火性骨材間を結合し、耐火物に結合強度を付与する成分である。本発明の組成物中の耐火性粉末がアルミナセメントを含むものであるので、流し込み施工された耐火物は、硬化後常温から耐火物が使用される高温までの間で実用性のある強度を保持する。実用的で良好な施工体強度が得られるように、アルミナセメントは組成物中に0.5〜6重量%、特には1〜4重量%含むものとするのが好ましい。
【0010】
しかし、耐火性粉末の配合量が多いとその乾燥時と使用時に耐火物が収縮して亀裂が入りやすく、耐熱衝撃性が小さくなるので、組成物中の粒径10μm以下の微粉の含有量を23重量%以下としている。組成物中の10μm以下の微粉の含有量は好ましくは20重量%以下である。また、組成物中の粒径10μm以下の微粉は耐火物に結合強度を付与するため8重量%以上必要である。また、アルミナセメント中のCaO/Al23 のモル比が大きいと、混練後の坏土に自己流動性を付与できず、流し込み施工後の耐火物の耐火度が小さくなる傾向があるので、アルミナセメント中のCaO/Al23 のモル比は0.85以下、好ましくは0.75以下である。
【0011】
耐火性粉末には、上述したアルミナセメントの他にヒュームドシリカ、バイヤーアルミナなどのアルミナ、チタニア、ムライト、シャモット、スピネル、マグネシア、ジルコニア、ジルコン、クロミア、窒化ケイ素、窒化アルミニウム、炭化ケイ素、ホウ化ジルコニウム及びホウ化チタンから選ばれる1種以上の粉末が好ましく使用できる。
【0012】
これらの耐火性粉末のうち、ヒュームドシリカの配合は坏土の流動性を向上させる効果がある。このため、ヒュームドシリカを組成物中に好ましくは3重量%以上配合する。しかし、あまり多くヒュームドシリカを配合すると耐火物の耐火度が低下して耐食性が損なわれ、施工体の加熱収縮が大きくなるのでヒュームドシリカの配合量は8重量%以下とするのが好ましい。また、耐火性粉末の一部としてバイヤーアルミナを配合すると、良好な自己流動性が安定して得られる。バイヤーアルミナは組成物中に2〜5重量%配合するのが好ましい。また、組成物中のバイヤーアルミナ、アルミナセメント及びヒュームドシリカを合わせた含有量は、良好な自己流動性が安定して得られるように、13重量%以下とするのが好ましい。
【0013】
分離防止剤には、CaO・Al23 、2CaO・Al23 ・SiO2 (ゲーレナイト)などを主成分とし、CaO/Al23 のモル比が0.9以上であるカルシウムアルミネートを使用するか、生石灰又は消石灰を使用する。これらのうち、分離防止効果を安定して得やすいことから、特に2CaO・Al23 ・SiO2 を多く含むカルシウムアルミネートを使用するのが好ましい。生石灰又は消石灰を分離防止剤に使用する場合の添加量は少量であるので、坏土全体に均等に分散させるのに相当の注意を必要とする。
【0014】
分離防止剤がカルシウムアルミネートであってCaO/Alのモル比は、0.9以上であることによって有効な分離防止効果が得られ、流し込み施工された坏土の表層に分離層が生成するのを防止できる。分離層の生成を確実に防止できるように、カルシウムアルミネート中のCaO/Alのモル比は、好ましくは0.95〜2とする。
【0015】
分離防止剤に生石灰を使用するときは0.02重量%以上配合すれば有効である。分離防止剤の配合量を4重量%以下とするのは、分離防止剤を4重量%を超えて多く配合すると坏土の流動性が小さくなる傾向がある他、可使用時間が短くなり、組成物中のCaOの含有量が多くなって耐火物の耐熱性や耐食性などの耐火物特性が劣化するためである。良好な分離防止効果と適度の可使用時間が確保できるように、組成物中の分離防止剤の含有量は、好ましくは0.2〜3重量%とする。
【0016】
分散剤としては、従来から流し込み耐火物に使用されているポリメタクリル酸塩類、ポリカルボン酸塩類、ポリアクリル酸塩類、β−ナフタレンスルホン酸塩類、ピロリン酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、テトラポリリン酸ナトリウムなどが使用できる。少量の添加で良好な流動性を有する坏土が得られることから、これらの分散剤のうちピロリン酸ナトリウム、トリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、テトラポリリン酸ナトリウムから選ばれる1種以上を使用するのが好ましい。分散剤はあまり多く配合しても分散効果はそれ以上向上しないので、組成物100重量部に対して、0.02〜1.0重量部配合するのが好ましい。
【0017】
上記の構成を有する本発明の組成物100重量部に対して8重量部の水を加えて混練した坏土は、型枠内に流し込むと振動を与えなくても型枠の隅々まで流入して型枠内を充填し、坏土内部にある気泡を表面に浮上させて排除する自己流動性を有する。坏土の流動性の程度は、本発明では次の方法によって評価する。
【0018】
すなわち、組成物に8重量部の水を加えて混練した直後の坏土を、水平な板面上に置いた上部内径50mm、低部内径100mm、高さ150mmのコーン型(円錐台形状の上下を打ち抜いた型)に流し込んで充たし、該コーン型を上方に抜き取って振動を加えないで60秒間静置し、板面上に自己流動させたときの坏土の拡がり直径を、互いに直交する2方向についてノギスで測定し、その平均値(以下、フロー値と呼ぶ)を流動性の指標とする。振動を与えることなく施工できる自己流動性流し込み耐火物の坏土のフロー値は180mm以上である。
【0019】
坏土のフロー値は、坏土に混合されている水の量が多いとより大きくなる。水の混合量が同じであれば、流動性の大きい方が施工性がよく、より好ましい坏土のフロー値は200mm以上である。フロー値の測定は室温約20℃の室内において、室温とぼぼ同じ温度の水を使用して行い、混練後3分以内に終わらせる。室温あるいは水温が高いときはアルミナセメントや分離防止剤の水和が速く進んでフロー値が速く低下し、測定値にばらつきが出る。良好な自己流動性を有する本発明による流し込み耐火物の坏土を流し込み施工するときは、坏土に振動を与える重労働を伴う作業を全く必要とせず、ポンプを用いて混練した坏土を施工現場へ搬送する施工方法を採用すれば、さらなる省力化が可能である。
【0020】
本発明の組成物に水を加えて混練した坏土では、前述の分離防止剤を含むことによって組成物中に含まれる粒径10μm以下の微粉の量が23重量%以下と少ないにもかかわらず、流し込み施工する際に施工体の表層に分離層を生じず、施工体は均質である。分離層は流し込まれた坏土の表層に坏土中の細かい粒子が集積して形成される。分離層が形成されると、分離層が細かい粒子からなるため、その部分の乾燥時と使用時における収縮率が大きく、分離層が生じた坏土の上に継ぎ足し施工すると、境界にある分離層の部分で亀裂が発生する他、分離層の部分の耐食性が小さいため耐火物全体としての耐食性が損なわれる。
【0021】
本発明の流し込み耐火物では、組成物中に含まれる粒径10μm以下の微粉の量が23重量%以下と少ないため、耐熱衝撃抵抗性が良好で、施工された耐火物の乾燥時と使用時における寸法収縮が小さく、亀裂が発生しにくい。また、混合する水の量が少ないので、施工体が緻密になって耐食性などの耐火物特性に優れている。
【0022】
耐火性骨材としては、本発明の効果が良好であり、耐火度が高く、コストパーフォーマンスに優れ、広範な用途があることから、アルミナ、ボーキサイト、ダイアスポア、ムライト、礬土頁岩、シリマナイト及びアンダリューサイトから選ばれる1種以上のAl23 を主成分とする耐火性骨材を使用するのが好ましい。これらAl23 を主成分とする骨材を使用し、好ましくは組成物中にAl23 成分を60重量%以上含むものとする。
【0023】
【実施例】
以下本発明を実施例によって具体的に説明するが、本発明は以下の実施例によってなんら限定されるものではない。
【0024】
流し込み耐火物の主要成分である耐火性骨材には、Al23 を43重量%含むシャモット質骨材の粗大粒(粒径5〜8mm)、粗粒(粒径1.68〜4mm)及び中粒(粒径1.68mm以下)、Al23 を88重量%含むボーキサイト質骨材の細粒(粒径0.043mm以下、粒径10μm以下の粒子を30重量%含む)、Al23 を60重量%含む礬土頁岩質骨材の粗粒(粒径1〜5mm)及び中粒(粒径1mm以下)、Al23 を98重量%含む電融アルミナ質骨材の粗粒(粒径1〜5mm)及び中粒(粒径1mm以下)を使用した。
【0025】
耐火性粉末には、Al23 を99.6重量%含むバイヤーアルミナ粉末(平均粒径4.3μm、粒径10μm以下の粒子を95重量%含む)、SiO2 を93重量%含むヒュームドシリカ(平均粒径0.8μm、粒径10μm以下の粒子を95重量%含む)及びAl23 74重量%とCaO24重量%とを含むアルミナセメント(CaO/Al23 のモル比0.65、平均粒径5.6μm、粒径10μm以下の粒子を60重量%含む)を使用した。
【0026】
分離防止剤には、主にCaO・Al23 と2CaO・Al23 ・SiO2 からなるAl23 55重量%、CaO36重量%及びSiO2 4重量%のカルシウムアルミネート(分離防止剤A、平均粒径12.5μm、CaO/Al23 のモル比1.19、粒径10μm以下の粒子を45重量%含む)と、CaOを95重量%含む生石灰(分離防止剤B、平均粒径35μm)とを使用した。また、分散剤には、P25 57.9重量%とNa2 O42.1重量%とを含むトリポリリン酸ナトリウムを使用した。
【0027】
これらの原料を表1と表2に示した調合割合(記載のない調合量はいずれも重量%)で混合した例1〜11組成物(例1〜8は実施例、例9〜11は比較例)を調製し、同じく表1と表2に記載した量の水を組成物に混合して坏土とし、前述の方法によって、気温約20℃の室内で(使用した水の温度も気温とほぼ同じ)坏土の流動性を評価した。
【0028】
また、流し込み耐火物施工後の分離層の有無については、混練直後の坏土を内径100mm、高さ200mmの型に流し込んで充たし、5時間静置後耐火物を型から取り出してその表層の分離層の厚さを測定した。なお、表1と表2に示した粒径10μm以下の微粉の量は、骨材の細粒中にも10μm以下の粒子が含まれているため、各調合原料中に含まれる10μm以下の微粉の量から計算で求めた。表2の例8の()内に記載された数値は分離防止剤Bの配合量である。
【0029】
【表1】

Figure 0003744572
【0030】
【表2】
Figure 0003744572
【0031】
耐熱衝撃性の評価は、各組成物の坏土を型に流し込み、24時間後に型から外して110℃で24時間乾燥後1000℃で3時間加熱して得られた寸法が100mm×230mm×65mmの試験片で実施した。すなわち、試験片の片側を1400℃に加熱後水中急冷するDIN−E51067の方法に準拠して評価した。試験結果は、試験片の最初の重量の5重量%が欠落したときの水中急冷した回数で示した。例1〜10の試験片ではいずれも30回超の耐熱衝撃性を示したのに対し、10μm以下の微粉を多く含む従来の流し込み耐火物の例11では5回であった。表1と表2の結果から、微粉の配合量が少なく、分離防止剤を含まない例9、10 では、坏土の表層に分離層を生じ、微粉の配合量が多い例11では分離層を生じないが、耐熱衝撃性が劣ることが分かる。
【0032】
【発明の効果】
従来の自己流動性を有する流し込み耐火物用組成物では、粒径10μm以下の微粉を23重量%超含んでいるため、耐熱衝撃性が小さく、乾燥時と使用時に収縮する傾向があった。これに対し、本発明による流し込み耐火物用組成物では、粒径10μm以下の微粉の含有量が23重量%以下であるため、耐熱衝撃性に優れており、乾燥時と焼成時の収縮率は小さい。また、組成物中の微粉の含有量が少ないにもかかわらず、分離防止剤が添加されていることによって流し込まれた坏土の表層に分離層を生じない。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cast refractory having excellent thermal shock resistance, which has self-fluidity and does not generate a separation layer on the surface layer of the clay when casting the clay.
[0002]
[Prior art]
A low cement-based cast refractory with a low content of alumina cement is cast by pouring kneaded clay into the construction site and then adding vibration to the clay with a vibrator to increase the fluidity of the clay. The practical characteristics of the cast refractory depend on whether or not the dredged material reaches every corner of the construction site and the bubbles in the dredged surface rise to form a dense refractory.
[0003]
It is difficult to pour a refractory into a construction site having a complicated shape where it is difficult to apply vibration to the clay with a vibrator. Moreover, the construction work which adds vibration to the dredged material itself requires considerable labor. Recently, in order to save labor for the construction work of the cast refractory, a cast refractory having self-fluidity that can be constructed without applying vibration has been developed and has been put into practical use.
[0004]
However, the conventional casting refractories having self-fluidity have a problem that a large amount of fine powder is blended to increase fluidity, heat shrinkage is large, and thermal shock resistance is small. As a measure for solving this problem, it is conceivable to reduce the amount of fine powder to improve the thermal shock resistance. However, if the blending amount of the fine powder is small, not only the fluidity is lowered, but also the clay containing a lot of fine powder moves to the surface layer of the construction body when the refractory is poured, and a separation layer is generated. When a separation layer is formed, the refractory becomes non-uniform and the properties of the refractory deteriorate. In addition, when refractory clay is cast over, a boundary where the separation layer is inherited is created and the refractory is located at this separation layer. There is a problem of cracks.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a casting refractory material that ensures good self-fluidity, does not produce a separation layer even if the amount of fine powder is reduced, has good thermal shock resistance, and has low heat shrinkage. is there.
[0006]
[Means for Solving the Problems]
The cast refractory composition of the present invention mainly comprises a refractory aggregate, a refractory powder containing an alumina cement having a CaO / Al 2 O 3 molar ratio of 0.85 or less, and CaO and Al 2 O 3. and 0.02 to 4% by weight of calcium aluminate Natick preparative as separated inhibitor molar ratio of CaO / Al 2 O 3 is 0.9 or more and ingredients, a composition comprising a small amount of dispersing agent, the The content of fine powder having a particle size of 10 μm or less contained in the composition is 8 to 23% by weight, and the clay immediately after kneading by adding 8 parts by weight of water to 100 parts by weight of the composition is horizontal. Poured and filled into a cone mold having an upper inner diameter of 50 mm, a lower inner diameter of 100 mm and a height of 150 mm placed on a flat plate surface, and then removing the cone mold upward and leaving it stationary for 60 seconds without vibration. The spread diameter is 180 mm or more, and the Wherein the surface layer of the construction was refractory construction material poured soil separation layer does not occur.
[0007]
The refractory aggregate is a major component of the refractory that imparts heat resistance and corrosion resistance to the cast refractory. As the refractory aggregate, one having a particle size distribution capable of obtaining a high packing density is good, and the refractory aggregate classified in advance into coarse grains, medium grains and fine grains is re-mixed so as to obtain a high filling density. It is preferable to use one. If the packing density of the refractory aggregate can be increased, the amount of mixed water required to impart self-fluidity to the refractory powder and the clay can be reduced, and the casting fire resistance has a high bulk specific gravity with excellent refractory properties. Things are obtained.
[0008]
Refractory aggregates include alumina, titania, bauxite, diaspore, mullite, dredged shale, chamotte, pyrophyllite, sillimanite, andalusite, quartzite, chrome ore, spinel, magnesia, zirconia, zircon, chromia, nitriding One or more selected from silicon, aluminum nitride, silicon carbide, boron carbide, zirconium boride and titanium boride can be preferably used.
[0009]
The refractory powder is a component that fills the gaps between the particles of the refractory aggregate, bonds the refractory aggregates, and imparts bond strength to the refractory. Since the refractory powder in the composition of the present invention contains alumina cement, the cast refractory retains practical strength from the normal temperature after curing to the high temperature at which the refractory is used. It is preferable that the alumina cement is contained in the composition in an amount of 0.5 to 6% by weight, particularly 1 to 4% by weight so that a practical and good construction strength can be obtained.
[0010]
However, if the amount of the refractory powder is large, the refractory is shrunk during drying and use, and cracks easily occur, and the thermal shock resistance is reduced. Therefore, the content of fine powder having a particle size of 10 μm or less in the composition is reduced. It is 23 wt% or less. The content of fine powder of 10 μm or less in the composition is preferably 20% by weight or less. Further, the fine powder having a particle size of 10 μm or less in the composition needs to be 8% by weight or more in order to impart bond strength to the refractory. Also, if the molar ratio of CaO / Al 2 O 3 in the alumina cement is large, self-fluidity cannot be imparted to the clay after kneading, and the fire resistance of the refractory after pouring construction tends to be small. The molar ratio of CaO / Al 2 O 3 in the alumina cement is 0.85 or less, preferably 0.75 or less.
[0011]
In addition to the above-mentioned alumina cement, refractory powder includes fumed silica, alumina such as Bayer alumina, titania, mullite, chamotte, spinel, magnesia, zirconia, zircon, chromia, silicon nitride, aluminum nitride, silicon carbide, boride One or more powders selected from zirconium and titanium boride can be preferably used.
[0012]
Of these refractory powders, the addition of fumed silica has the effect of improving the fluidity of the clay. For this reason, preferably 3% by weight or more of fumed silica is blended in the composition. However, if too much fumed silica is blended, the fire resistance of the refractory is lowered, the corrosion resistance is impaired, and the heat shrinkage of the construction body increases, so the blended amount of fumed silica is preferably 8% by weight or less. Moreover, when buyer alumina is blended as a part of the refractory powder, good self-fluidity can be stably obtained. Buyer alumina is preferably blended in the composition in an amount of 2 to 5% by weight. In addition, the combined content of buyer alumina, alumina cement and fumed silica in the composition is preferably 13% by weight or less so that good self-fluidity can be stably obtained.
[0013]
Separation inhibitors include CaO · Al 2 O 3 , 2CaO · Al 2 O 3 · SiO 2 (Gelenite), etc. as the main components, and a calcium aluminate having a CaO / Al 2 O 3 molar ratio of 0.9 or more. Use quick lime or slaked lime. Among these, since the easily obtained by the separation preventing effect stable, it is particularly preferred to use calcium aluminate containing much 2CaO · Al 2 O 3 · SiO 2. When quicklime or slaked lime is used as an antiseparation agent, the amount added is small, so considerable care is required to evenly disperse the entire clay.
[0014]
When the separation preventing agent is calcium aluminate and the molar ratio of CaO / Al 2 O 3 is 0.9 or more, an effective separation preventing effect can be obtained, and the separation layer is formed on the surface layer of the poured clay. Generation can be prevented. The molar ratio of CaO / Al 2 O 3 in the calcium aluminate is preferably 0.95 to 2 so as to reliably prevent the formation of the separation layer.
[0015]
When using quicklime as an antiseparation agent, it is effective to add 0.02% by weight or more. The amount of the anti-separation agent is set to 4% by weight or less because when the amount of anti-separation agent exceeds 4% by weight, the fluidity of the clay tends to decrease, and the usable time is shortened. This is because the content of CaO in the product increases and the refractory properties such as heat resistance and corrosion resistance of the refractory deteriorate. The content of the anti-separation agent in the composition is preferably 0.2 to 3% by weight so as to ensure a good anti-separation effect and an appropriate usable time.
[0016]
Dispersants include polymethacrylates, polycarboxylates, polyacrylates, β-naphthalenesulfonates, sodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate, tetra Sodium polyphosphate can be used. Among these dispersants, one or more selected from sodium pyrophosphate, sodium tripolyphosphate, sodium hexametaphosphate is used because a clay with good fluidity can be obtained with a small amount of addition. Is preferred. Even if too much dispersant is blended, the dispersion effect does not improve any more. Therefore, it is preferable to blend 0.02-1.0 part by weight with respect to 100 parts by weight of the composition.
[0017]
The clay kneaded by adding 8 parts by weight of water to 100 parts by weight of the composition of the present invention having the above structure flows into every corner of the mold without pouring vibrations. It has a self-fluidity that fills the formwork and floats and eliminates bubbles inside the clay. In the present invention, the degree of fluidity of the clay is evaluated by the following method.
[0018]
That is, the clay immediately after adding 8 parts by weight of water to the composition and kneaded was placed on a horizontal plate surface with a cone shape (top and bottom of a truncated cone shape) having an upper inner diameter of 50 mm, a lower inner diameter of 100 mm, and a height of 150 mm. The cone diameter is perpendicular to each other when the cone mold is pulled out upward and left to stand for 60 seconds without applying vibration, and is self-flowed on the plate surface. The direction is measured with calipers, and the average value (hereinafter referred to as flow value) is used as an indicator of fluidity. The flow value of the clay of the self-flowing cast refractory that can be constructed without applying vibration is 180 mm or more.
[0019]
The flow value of dredged soil becomes larger when the amount of water mixed in dredged soil is larger. If the mixing amount of water is the same, the greater the fluidity, the better the workability, and the more preferable clay flow value is 200 mm or more. The measurement of the flow value is performed in a room having a room temperature of about 20 ° C. using water having a temperature substantially the same as the room temperature, and is finished within 3 minutes after kneading. When the room temperature or water temperature is high, the hydration of the alumina cement and separation inhibitor proceeds rapidly, the flow value decreases rapidly, and the measured values vary. When pouring the cast refractory clay with good self-fluidity according to the present invention, it does not require any labor-intensive work to vibrate the dredged soil, and the kneaded clay kneaded with a pump is not used at the construction site. If a construction method for transporting to is used, further labor saving is possible.
[0020]
In the clay kneaded by adding water to the composition of the present invention, the amount of fine powder having a particle size of 10 μm or less contained in the composition is small as 23% by weight or less due to the inclusion of the above-mentioned anti-separation agent. When performing the casting construction, no separation layer is formed on the surface layer of the construction body, and the construction body is homogeneous. The separation layer is formed by collecting fine particles in the clay on the surface layer of the poured clay. When the separation layer is formed, the separation layer is composed of fine particles, so that the shrinkage rate at the time of drying and use of the portion is large. In addition to cracks occurring in this portion, the corrosion resistance of the refractory as a whole is impaired because the corrosion resistance of the separation layer portion is small.
[0021]
In the cast refractory of the present invention, since the amount of fine powder having a particle size of 10 μm or less contained in the composition is as small as 23% by weight or less, the thermal shock resistance is good, and the applied refractory is dried and used. Dimensional shrinkage at is small and cracks are less likely to occur. In addition, since the amount of water to be mixed is small, the construction body is dense and excellent in refractory properties such as corrosion resistance.
[0022]
As the fireproof aggregate, the effects of the present invention are good, the fire resistance is high, the cost performance is excellent, and there are a wide range of uses. Therefore, alumina, bauxite, diaspore, mullite, shale shale, sillimanite, and anda It is preferable to use a refractory aggregate mainly composed of one or more kinds of Al 2 O 3 selected from leucite. These aggregates mainly composed of Al 2 O 3 are used, and preferably 60% by weight or more of the Al 2 O 3 component is contained in the composition.
[0023]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples.
[0024]
The refractory aggregate, which is the main component of the cast refractory, includes chamotte aggregate coarse particles (particle size 5-8 mm) and coarse particles (particle size 1.68-4 mm) containing 43% by weight of Al 2 O 3. And medium grain (particle size 1.68 mm or less), fine grain of bauxite aggregate containing 88 wt% Al 2 O 3 (particle size 0.043 mm or less, particle size 10 μm or less 30 wt%), Al 2 O 3 60 wt% including礬土shale quality aggregate coarse (particle size 1 to 5 mm) and Chutsubu (particle diameter 1mm or less), the fused alumina aggregate containing Al 2 O 3 98 wt% Coarse grains (particle diameter 1-5 mm) and medium grains (particle diameter 1 mm or less) were used.
[0025]
As the refractory powder, a buyer alumina powder containing 99.6% by weight of Al 2 O 3 (containing 95% by weight of particles having an average particle size of 4.3 μm and a particle size of 10 μm or less), and fumed containing 93% by weight of SiO 2 Silica (containing 95% by weight of particles having an average particle size of 0.8 μm and a particle size of 10 μm or less) and alumina cement containing 74% by weight of Al 2 O 3 and 24% by weight of CaO (CaO / Al 2 O 3 molar ratio: 0. 65, containing 60% by weight of particles having an average particle size of 5.6 μm and a particle size of 10 μm or less).
[0026]
The separation preventing agent mainly composed of CaO · Al 2 O 3 and 2CaO · Al 2 O 3 · SiO 2 Al 2 O 3 55 wt%, CaO36 wt% and SiO 2 4% by weight of calcium aluminate (separation prevented Agent A, mean particle size 12.5 μm, CaO / Al 2 O 3 molar ratio 1.19, particle size of 10 μm or less 45% by weight of particles) and CaO 95% by weight (separation inhibitor B, Average particle size of 35 μm) was used. Further, sodium tripolyphosphate containing 57.9% by weight of P 2 O 5 and 42.1% by weight of Na 2 O was used as the dispersant.
[0027]
Compositions of Examples 1 to 11 in which these raw materials were mixed at the blending ratios shown in Tables 1 and 2 (all blending amounts not described are in% by weight) (Examples 1 to 8 are Examples, and Examples 9 to 11 are comparisons). Example) was prepared, and the amount of water described in Table 1 and Table 2 was mixed with the composition to form clay, and by the above-described method, the room temperature was about 20 ° C. The fluidity of dredged soil was evaluated.
[0028]
In addition, regarding the presence or absence of a separation layer after casting refractory construction, the clay immediately after kneading is poured into a mold having an inner diameter of 100 mm and a height of 200 mm, and after standing for 5 hours, the refractory is taken out of the mold and the surface layer is separated. The layer thickness was measured. The amount of fine powder having a particle size of 10 μm or less shown in Tables 1 and 2 includes fine particles of 10 μm or less contained in each preparation raw material because the fine particles of the aggregate also contain particles of 10 μm or less. It was calculated from the amount of. The numerical value described in () of Example 8 in Table 2 is the blending amount of anti-separation agent B.
[0029]
[Table 1]
Figure 0003744572
[0030]
[Table 2]
Figure 0003744572
[0031]
The thermal shock resistance was evaluated by pouring the clay of each composition into a mold, removing the mold from the mold after 24 hours, drying at 110 ° C. for 24 hours, and heating at 1000 ° C. for 3 hours to obtain a size of 100 mm × 230 mm × 65 mm The test piece was used. That is, evaluation was performed according to the method of DIN-E51067 in which one side of the test piece was heated to 1400 ° C. and then quenched in water. The test result was shown by the number of times of quenching in water when 5% by weight of the initial weight of the test piece was missing. In all of the test pieces of Examples 1 to 10, the thermal shock resistance was more than 30 times, whereas in the conventional cast refractory example 11 containing a large amount of fine powder of 10 μm or less, it was 5 times. From the results of Table 1 and Table 2, in Examples 9 and 10 where the amount of fine powder is small and no separation inhibitor is included, a separation layer is formed on the surface layer of the clay, and in Example 11 where the amount of fine powder is large, the separation layer is formed. Although it does not occur, it can be seen that the thermal shock resistance is inferior.
[0032]
【The invention's effect】
The conventional composition for cast refractories having self-fluidity contains less than 23% by weight of fine powder having a particle size of 10 μm or less, and thus has a low thermal shock resistance and tends to shrink during drying and use. On the other hand, in the composition for cast refractory according to the present invention, since the content of fine powder having a particle size of 10 μm or less is 23% by weight or less, the thermal shock resistance is excellent, and the shrinkage rate at the time of drying and firing is small. Moreover, although the content of the fine powder in the composition is small, no separation layer is formed on the surface layer of the clay poured by the addition of the separation preventing agent.

Claims (3)

耐火性骨材と、CaO/Alのモル比が0.85以下のアルミナセメントを含む耐火性粉末と、CaOとAlとを主成分としCaO/Alのモル比が0.9以上であるカルシウムアルミネートを分離防止剤として0.02〜4重量%と、少量の分散剤とからなる組成物であって、該組成物中に含まれる粒径10μm以下の微粉の含有量が8〜23重量%であり、該組成物100重量部に対して8重量部の水を加えて混練した直後の坏土を、水平な板面上に置いた上部内径50mm、低部内径100mm、高さ150mmのコーン型に流し込んで充たし、該コーン型を上方に抜き取って振動を加えないで60秒間静置したときの坏土の拡がり直径が180mm以上であり、かつ該坏土を流し込み施工した耐火物施工体の表層に分離層が生じないことを特徴とする流し込み耐火物用組成物。Refractory aggregate, refractory powder containing alumina cement with a molar ratio of CaO / Al 2 O 3 of 0.85 or less, and a molar ratio of CaO / Al 2 O 3 mainly composed of CaO and Al 2 O 3 there and 0.02 to 4% by weight of calcium aluminate Natick preparative less than 0.9 as a separation preventing agent, a composition comprising a small amount of dispersing agent, the following particle size 10μm contained in the composition The content of fine powder is 8 to 23% by weight, and the upper inner diameter is 50 mm when the clay immediately after kneading by adding 8 parts by weight of water to 100 parts by weight of the composition is placed on a horizontal plate surface, Poured and filled into a cone mold having a low inner diameter of 100 mm and a height of 150 mm, and when the cone mold is pulled out and left to stand for 60 seconds without applying vibration, the spreading diameter of the clay is 180 mm or more, and Refractory construction body with poured soil Refractory compositions casting, characterized in that the surface layer in the separation layer does not occur. 前記カルシウムアルミネートCaO/Alのモル比が0.95〜2である請求項1記載の流し込み耐火物用組成物。The cast refractory composition according to claim 1, wherein the calcium aluminate has a CaO / Al 2 O 3 molar ratio of 0.95 to 2 . 前記カルシウムアルミネートの主成分として2CaO・Al・SiO(ゲーレナイト)を含む請求項1又は2記載の流し込み耐火物用組成物。 The composition for cast refractories according to claim 1 or 2 , comprising 2CaO.Al 2 O 3 · SiO 2 (Gelenite) as a main component of the calcium aluminate .
JP25402995A 1995-09-29 1995-09-29 Cast refractory composition Expired - Fee Related JP3744572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25402995A JP3744572B2 (en) 1995-09-29 1995-09-29 Cast refractory composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25402995A JP3744572B2 (en) 1995-09-29 1995-09-29 Cast refractory composition

Publications (2)

Publication Number Publication Date
JPH0987047A JPH0987047A (en) 1997-03-31
JP3744572B2 true JP3744572B2 (en) 2006-02-15

Family

ID=17259256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25402995A Expired - Fee Related JP3744572B2 (en) 1995-09-29 1995-09-29 Cast refractory composition

Country Status (1)

Country Link
JP (1) JP3744572B2 (en)

Also Published As

Publication number Publication date
JPH0987047A (en) 1997-03-31

Similar Documents

Publication Publication Date Title
CN108059448A (en) A kind of fire-resistant gravity flow pouring material
US4508835A (en) Vibratable refractory mix and binder therefor
CN105060798B (en) Self-leveling concrete
AU2008293522B2 (en) Cast bodies, castable compositions, and methods for their production
JP2920726B2 (en) Cast refractories
US6165926A (en) Castable refractory composition and methods of making refractory bodies
JP4527905B2 (en) Castable refractories for blast furnace firewood
JP3744572B2 (en) Cast refractory composition
JP2874831B2 (en) Refractory for pouring
JPH08157266A (en) Composition for chamotte flowed-in refractory
JPH09278545A (en) Composition for cast refractory material
JP2004142957A (en) Low elastic modulus alumina-magnesia castable refractory, pre-cast block, and molten metal vessel
JPH1045479A (en) Slip casting refractory material composition
JP3721543B2 (en) Wet spray refractory composition
JP4450423B2 (en) Indeterminate refractories for casting construction
US5885510A (en) Methods of making refractory bodies
JPH0442867A (en) Low cement castable refractories
JPH07237977A (en) Composition for alumina spinel-based cast refractory
KR100804969B1 (en) Composition of basic castables with self flowability
JPS6096579A (en) Dilatant flowable castable
JP4034858B2 (en) Indeterminate refractories for casting construction
JPH07330450A (en) Flow-in refractory material
JPH11157891A (en) Alumina cement and monolithic refractory using same
JP4388190B2 (en) Unshaped refractory for hot metal ladle hot water
JP2005194174A (en) Composition for monolithic refractory

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees