JP3744370B2 - Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same - Google Patents

Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same Download PDF

Info

Publication number
JP3744370B2
JP3744370B2 JP2001075663A JP2001075663A JP3744370B2 JP 3744370 B2 JP3744370 B2 JP 3744370B2 JP 2001075663 A JP2001075663 A JP 2001075663A JP 2001075663 A JP2001075663 A JP 2001075663A JP 3744370 B2 JP3744370 B2 JP 3744370B2
Authority
JP
Japan
Prior art keywords
nickel
foil
active material
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001075663A
Other languages
Japanese (ja)
Other versions
JP2002280000A (en
Inventor
宏久 瀬戸
忠之 玉置
俊明 塩田
亮一 能見
国博 福井
雅也 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001075663A priority Critical patent/JP3744370B2/en
Priority to TW091120746A priority patent/TW560096B/en
Publication of JP2002280000A publication Critical patent/JP2002280000A/en
Application granted granted Critical
Publication of JP3744370B2 publication Critical patent/JP3744370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主としてニッケルを素材とするニッケル水素二次電池用集電材に適した金属箔およびそれを製造する方法に関する。
【0002】
【従来の技術】
近年、パソコンや携帯電話など電子機器の急激な普及に伴い、ニッケル水素二次電池やリチウム・イオン二次電池、さらにはリチウムポリマー二次電池など大量の充放電可能な電池が使用されている。また、最近では、電気自動車などの動力源としてもこれらの電池が使用されている。
【0003】
この二次電池の基本構造は、▲1▼箔状の金属集電体、▲2▼集電体に可逆的に電気化学反応を起こす物質、いわゆる活物質を塗布した電極、▲3▼正極および負極を分離するセパレーター、▲4▼電解液および電池ケースからなっている。
【0004】
この様な二次電池において、上記▲1▼にあげる箔状の金属集電体に必要な特性として、活物質の担持性が挙げられる。この活物質の担持性を改善する方法として、金属箔に貫通する孔を多数個設け、金属箔の両面に付着させる活物質を活物質どうしの結合力で担持性を改善しようとする方法(特開平11-323593号公報、参照)が知られている。
【0005】
【発明が解決しようとする課題】
前述したように二次電池は、いろいろな電子機器で用いられるため、その大きさや形状は多種多様である。特に、小型化が進む携帯用電子機器では、小さなボタン状の二次電池が使用される。この様な場合、金属箔に貫通する孔を多数個設けて活物質の担持性を改善する方策は、集電体としての体積が減少することから集電能力を低下させる。
【0006】
前記▲2▼にあげた活物質を塗布した電極は、金属箔の両面に活物質を塗布した後、加熱して乾燥および焼結した後、圧着加工の工程を経て製造される。このため、金属箔に貫通する孔を多数個設けることは、強度低下をもたらし、前記の工程中に破断することがある。このような破断を解消するためには、箔の強度低下に合わせて製造設備の改造などが必要となる。
【0007】
本発明は、多孔金属箔にしなくとも活物質との担持性に優れ、上記のような破断などの問題を生じない二次電池集電体用金属箔を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、金属箔と電極となる活物質との担持性に優れる金属箔について鋭意研究した結果、金属箔に付与すべき性能として下記の点を明らかにし、本発明を完成した。
【0009】
電極は、活物質を金属箔に塗布、乾燥した後、ロールなどで圧着加工を行って製造される。この圧着工程で金属箔は、活物質の粒子に押圧されて塑性変形を起こし、粒子を食い込ませ、担持力(密着力)を高める。また、圧着工程では、金属箔が複数の粒子で構成される凹凸によって曲げ変形をしながら粒子を包み込み、担持力を高める。さらに、圧着加工では、金属の圧延のように金属箔を連続に搬送しなければならないので、金属箔には引張強度も必要である。
【0010】
すなわち、電極の集電体となる金属箔には、厚さが薄く、変形しやすく、ある程度の強度が必要である。本発明は、金属箔の厚さと材料特性を最適に規定することによってこれを実現した。
【0011】
本発明の要旨は、下記に示す二次電池集電体用金属箔およびそれを製造する方法にある。
【0012】
電解析出法によって形成されるニッケル箔であつて、厚さ(T)が8〜40μmであり、かつ破断強度をS(MPa)、破断伸び率をε(%)およびヤング率をY(MPa)としたとき、下記式を満足するニッケル水素二次電池集電体用ニッケル箔。
5.4×108≦T×S×Y≦31×108
5.4≦ε−(0.0005×T2)≦15
上記のニッケル箔は軟化焼鈍することによって製造することができる。焼鈍炉は、連続炉であっても、バッチ炉であってもよい。
【0013】
【発明の実施の形態】
本発明のニッケル水素二次電池集電体用ニッケル箔は、厚さが薄く、軟らかく、ある程度の強度を有するものである。
【0014】
本発明のニッケル箔が電池の活物質を十分に担持するには、ニッケル箔の厚さ(T)を薄くする必要があり、厚さを8〜40μmとした。
【0015】
ニッケル箔の厚さ(T)が8μm未満では、電極としたとき電気抵抗が大きくなり集電体として適さなくなる。また、箔の製造時、または活物質の圧着工程で破断する。しかし、ニッケル箔の厚さが厚くなれば、活物質の担持性が悪くなる。
【0016】
金属箔は、活物質を圧着して電極とするとき、金属の圧延機のようなロール装置によって、金属箔に張力をかけた状態で搬送され、上下のロールで圧着加工が施される。このため、金属箔には強度と伸びの大きいことが要求される。しかし、金属材料では、強度が高くなるほど伸びが低下する傾向にある。
【0017】
そこで、本発明者らは既存の製造ラインを力学的に詳細に検討した結果、金属箔の厚さT(μm)、破断強度S(MPa)と破断伸び率ε(%)およびヤング率Y(MPa)との関係が、(1)5.4×108≦T×S×Y≦31×108を満足すれば破断しないこと、(2)5.4≦ε−(0.0005×T2)≦15を満足すれば圧着工程において効果的に活物質を担持させることができること、を見いだした。
【0018】
既存の電極製造ラインでは、ライン張力による金属箔の破断とその塑性変形による平坦不良が問題となる。金属箔の破断は、金属箔の全抵抗力すなわち厚さTと破断強度Sの積がライン張力よりも大きければ破断しない。また、ヤング率が大きいほど塑性変形しにくいと考えられたため、「T×S×Y」で整理した。
【0019】
活物質の担持性を改善する因子として、圧着工程での金属箔の変形による活物質を包み込む効果がある。この変形は、金属箔の伸びεが大きく、その厚みTが薄い程大きいと考えられたので「ε−T」で整理した。
【0021】
【実施例】
本例では、回転ドラム式電解析出装置を用い、表1に示す金属箔を製造した。このときの電解液および電解条件は下記のとおりとした。
【0022】
【表1】

Figure 0003744370
【0023】
Figure 0003744370
【0024】
得られた金属箔の焼鈍は、水素還元炉(10%H+N)を用い、材料の昇温速度を10℃/分、保持時間を10秒として表1に示す材料温度で加熱した後Nガスによる徐冷を施した。これは、連続焼鈍炉の条件を模擬したものである。
【0025】
活物質の担持性の評価は、次に示す試験を行った。 幅50mm、長さ150mmの長方形の金属箔の両面にニッケル水素二次電池用活物質を塗布し、加熱、圧着して電極とした。活物質の塗布量は、乾燥状態で両面当たり500μmとした。この電極を直径が1mmのステンレス鋼製ワイヤに巻き付け、巻き戻しを行った。活物質の脱落量(剥離量)は、電子天秤によって測定した。それらの試験結果を表1に示す。
【0026】
評価基準は、活物質剥離量が0〜0.5%以下を◎、0.5%を超え〜1.0%以下を○、1.0%を超え〜3.0%以下を△、3.0%超えを×とした。
【0027】
表1から明らかなように、発明例の番号1から23までの金属箔は、破断強度(S)が150〜530MPa、破断伸び率(ε)が5.5〜15.0(%)、ヤング率(Y)が136000〜205000MPaであり、かつ(T×S×Y)が5.4×108〜30.9×108、ε−(0.0005×T2)が5.4〜14.8であるため、活物質の担持性はいずれも良好である。
【0028】
これに対し、比較例の番号24のNi箔は、820℃で焼鈍を行ったので破断伸び率(ε)が16.0%と大きくなり、ε−(0.0005×T)が16.0と大きいため、活物質の担持性に劣る。
【0029】
番号25のNi箔は、470℃で焼鈍を行ったので破断伸び率(ε)が4.6%と小さくなり、ε−(0.0005×T)が4.4と小さいため、活物質の担持性に劣る。
【0030】
番号26のNi箔は、820℃で焼鈍を行ったので破断伸び率(ε)が16.2%と大きくなり、ε−(0.0005×T)が16.0と大きいため、活物質の担持性に劣る。
【0031】
番号27のNi箔は、焼鈍を行わなかったので破断強度(S)が700MPaと高く、破断伸び率(ε)が2.1%と小さくなり、(T×S×Y)が43.1×10と大きく、ε−(0.0005×T)が1.7と小さいため、活物質の担持性に劣る。
【0032】
番号28のNi箔は、厚さが42μmと大きいため(T×S×Y)が31.4×10と大きく、活物質の担持性に劣る。
【0033】
番号29のNi箔は、厚さが50μmと大きいため(T×S×Y)が36.9×10と大きく、活物質の担持性に劣る。
【0034】
番号30のFe箔は、450℃で焼鈍を行ったので破断伸び率(ε)が3.1%と小さくなり、ε−(0.0005×T)が2.7と小さいため、活物質の担持性に劣る。
【0035】
番号31のCu箔は、450℃で焼鈍を行ったので破断伸び率(ε)が4.4%と小さくなり、ε−(0.0005×T)が4.0と小さいため、活物質の担持性に劣る。
【0036】
【発明の効果】
本発明のニッケル箔は、厚さ、破断強度、破断伸びおよびヤング率との関係で好ましい範囲に規定されているので、電極製造過程で破断することなく、しかも活物質の担持性と電気伝導性に優れている。これをニッケル水素二次電池集電材に用いれば、電池性能を高めることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a process for predominantly producing a metal foil and it is suitable for current collector nickel-hydrogen secondary battery according to the material of nickel.
[0002]
[Prior art]
In recent years, with the rapid spread of electronic devices such as personal computers and mobile phones, a large amount of chargeable / dischargeable batteries such as nickel metal hydride secondary batteries, lithium ion secondary batteries, and lithium polymer secondary batteries are used. Recently, these batteries are also used as a power source for electric vehicles and the like.
[0003]
The basic structure of the secondary battery is as follows: (1) a foil-shaped metal current collector, (2) a material that reversibly reacts with the current collector, an electrode coated with a so-called active material, (3) a positive electrode and It consists of a separator for separating the negative electrode, (4) an electrolyte, and a battery case.
[0004]
In such a secondary battery, as a characteristic necessary for the foil-shaped metal current collector described in the above item (1), there is an active material supportability. As a method for improving the supportability of the active material, a method for providing a large number of holes penetrating the metal foil and improving the supportability of the active material attached to both surfaces of the metal foil by the bonding force between the active materials (special feature). (Kaihei 11-323593) is known.
[0005]
[Problems to be solved by the invention]
As described above, since secondary batteries are used in various electronic devices, their sizes and shapes are various. In particular, small button-shaped secondary batteries are used in portable electronic devices that are becoming smaller. In such a case, a measure for improving the supportability of the active material by providing a large number of holes penetrating the metal foil reduces the current collection capacity because the volume of the current collector is reduced.
[0006]
The electrode coated with the active material described in the above item (2) is manufactured through a crimping process after applying the active material on both surfaces of the metal foil, heating and drying and sintering. For this reason, providing a large number of holes penetrating the metal foil results in a decrease in strength and may break during the above-described process. In order to eliminate such breakage, it is necessary to modify the manufacturing equipment in accordance with the decrease in the strength of the foil.
[0007]
An object of the present invention is to provide a metal foil for a secondary battery current collector that is excellent in supportability with an active material without causing a porous metal foil and does not cause the above-described problems such as breakage.
[0008]
[Means for Solving the Problems]
As a result of diligent research on metal foils excellent in supportability between the metal foil and the active material serving as an electrode, the inventors have clarified the following points as performance to be imparted to the metal foil, and completed the present invention.
[0009]
The electrode is manufactured by applying an active material to a metal foil and drying it, followed by pressure bonding with a roll or the like. In this crimping step, the metal foil is pressed by the particles of the active material to cause plastic deformation, bite the particles, and increase the supporting force (adhesion force). Further, in the crimping step, the metal foil wraps the particles while being bent and deformed by the concavo-convex formed of a plurality of particles, thereby increasing the supporting force. Furthermore, in the crimping process, the metal foil must be continuously conveyed as in metal rolling, so that the metal foil also needs a tensile strength.
[0010]
That is, the metal foil serving as the current collector of the electrode is thin, easily deformed, and needs a certain level of strength. The present invention achieves this by optimally defining the thickness and material properties of the metal foil.
[0011]
The gist of the present invention resides in the following metal foil for a secondary battery current collector and a method for producing the same.
[0012]
A nickel foil formed by electrolytic deposition, having a thickness (T) of 8 to 40 μm, a breaking strength of S (MPa), a breaking elongation of ε (%), and a Young's modulus of Y (MPa). ), A nickel foil for a nickel-hydrogen secondary battery current collector that satisfies the following formula:
5.4 × 10 8 ≦ T × S × Y ≦ 31 × 10 8
5.4 ≦ ε− (0.0005 × T 2 ) ≦ 15
Said nickel foil can be manufactured by softening annealing. The annealing furnace may be a continuous furnace or a batch furnace.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The nickel foil for a nickel hydride secondary battery current collector of the present invention is thin, soft and has a certain degree of strength.
[0014]
In order for the nickel foil of the present invention to fully support the active material of the battery, it is necessary to reduce the thickness (T) of the nickel foil, and the thickness is 8 to 40 μm.
[0015]
When the thickness (T) of the nickel foil is less than 8 μm, the electrical resistance increases when it is used as an electrode, making it unsuitable as a current collector. Moreover, it fractures | ruptures at the time of manufacture of foil, or the press bonding process of an active material. However, if the thickness of the nickel foil is increased, the supportability of the active material is deteriorated.
[0016]
When an active material is pressure-bonded to form an electrode, the metal foil is conveyed in a state where tension is applied to the metal foil by a roll device such as a metal rolling mill, and is subjected to pressure bonding with upper and lower rolls. For this reason, the metal foil is required to have high strength and elongation. However, in a metal material, the elongation tends to decrease as the strength increases.
[0017]
Therefore, the present inventors have studied the existing production line in detail, and as a result, the thickness T (μm), the breaking strength S (MPa), the breaking elongation ε (%) and the Young's modulus Y ( (1) 5.4 × 10 8 ≦ T × S × Y ≦ 31 × 10 8 , (2) 5.4 ≦ ε− (0.0005 × T 2 ) It has been found that if ≦ 15 is satisfied, the active material can be effectively supported in the crimping process.
[0018]
In the existing electrode production line, the metal foil is broken by line tension and the flatness caused by plastic deformation becomes a problem. The metal foil does not break if the total resistance of the metal foil, that is, the product of the thickness T and the breaking strength S is greater than the line tension. In addition, it was considered that the higher the Young's modulus, the less likely it is to undergo plastic deformation.
[0019]
As a factor for improving the supportability of the active material, there is an effect of enveloping the active material due to deformation of the metal foil in the crimping process. This variant has a large elongation epsilon metal foil, and organized so was considered large enough that the thickness T is less in the "epsilon-T 2".
[0021]
【Example】
In this example, the metal foil shown in Table 1 was manufactured using the rotating drum type electrolytic deposition apparatus. The electrolytic solution and electrolytic conditions at this time were as follows.
[0022]
[Table 1]
Figure 0003744370
[0023]
Figure 0003744370
[0024]
The obtained metal foil was annealed after heating at a material temperature shown in Table 1 using a hydrogen reduction furnace (10% H 2 + N 2 ) at a temperature rising rate of 10 ° C./min and a holding time of 10 seconds. Slow cooling with N 2 gas was performed. This simulates the conditions of a continuous annealing furnace.
[0025]
Evaluation of the active material support was performed by the following test. An active material for a nickel metal hydride secondary battery was applied to both sides of a rectangular metal foil having a width of 50 mm and a length of 150 mm, and heated and pressed to form an electrode. The application amount of the active material was 500 μm per both surfaces in a dry state. This electrode was wound around a stainless steel wire having a diameter of 1 mm and rewound. The amount of the active material falling off (peeling amount) was measured with an electronic balance. The test results are shown in Table 1.
[0026]
The evaluation criteria were active material peeling amount of 0 to 0.5% or less ◎, 0.5% to 1.0% or less ◯, 1.0% to 3.0% or less △, 3.0% or more ×.
[0027]
As is clear from Table 1, the metal foils of Nos. 1 to 23 in the inventive examples have a breaking strength (S) of 150 to 530 MPa, a breaking elongation (ε) of 5.5 to 15.0 (%), Young The rate (Y) is 136000-205000 MPa, (T × S × Y) is 5.4 × 10 8 to 30.9 × 10 8 , and ε− (0.0005 × T 2 ) is 5.4 to 14 .8 so that the supportability of the active material is good.
[0028]
On the other hand, since the Ni foil of Comparative Example No. 24 was annealed at 820 ° C., the elongation at break (ε) was as large as 16.0% and ε− (0.0005 × T 2 ) was as large as 16.0. Poor material loading.
[0029]
Since the number 25 Ni foil was annealed at 470 ° C., the elongation at break (ε) was as small as 4.6%, and ε− (0.0005 × T 2 ) was as small as 4.4, so the supportability of the active material was poor.
[0030]
Since the Ni foil of No. 26 was annealed at 820 ° C., the elongation at break (ε) was as large as 16.2% and ε− (0.0005 × T 2 ) was as large as 16.0.
[0031]
The number 27 Ni foil was not annealed, so the fracture strength (S) was as high as 700 MPa, the elongation at break (ε) was as small as 2.1%, and (T × S × Y) was as large as 43.1 × 10 8. since ε- (0.0005 × T 2) is less 1.7, poor in capability of supporting the active material.
[0032]
The number 28 Ni foil has a large thickness of 42 μm (T × S × Y), which is as large as 31.4 × 10 8, and is inferior in active material support.
[0033]
The number 29 Ni foil has a large thickness of 50 μm (T × S × Y), which is as large as 36.9 × 10 8, and is inferior in active material support.
[0034]
The Fe foil of No. 30 was annealed at 450 ° C., so that the elongation at break (ε) was as small as 3.1% and ε− (0.0005 × T 2 ) was as small as 2.7.
[0035]
Since the number 31 Cu foil was annealed at 450 ° C., the elongation at break (ε) was as small as 4.4%, and ε− (0.0005 × T 2 ) was as small as 4.0, so that the supportability of the active material was poor.
[0036]
【The invention's effect】
The nickel foil of the present invention is defined in a preferable range in relation to thickness, breaking strength, breaking elongation, and Young's modulus, so that it does not break in the electrode manufacturing process, and also supports the active material and electrical conductivity. Is excellent. If this is used for a nickel-hydrogen secondary battery current collector, battery performance can be improved.

Claims (2)

電解析出法によって形成されたニッケル箔であって、厚さ(T)が8〜40μmであり、かつ破断強度をS(MPa)、破断伸び率をε(%)およびヤング率をY(MPa)としたとき、下記式を満足することを特徴とするニッケル水素二次電池集電体用ニッケル箔。
5.4×108≦T×S×Y≦31×108
5.4≦ε−(0.0005×T2)≦15
A nickel foil formed by electrolytic deposition, having a thickness (T) of 8 to 40 μm, a breaking strength of S (MPa), a breaking elongation of ε (%) and a Young's modulus of Y (MPa) ), A nickel foil for a nickel-hydrogen secondary battery current collector satisfying the following formula:
5.4 × 10 8 ≦ T × S × Y ≦ 31 × 10 8
5.4 ≦ ε− (0.0005 × T 2 ) ≦ 15
電解析出法によって形成されたニッケル箔を軟化焼鈍することを特徴とする請求項1に記載のニッケル水素二次電池集電体用ニッケル箔の製造方法。The method for producing a nickel foil for a nickel-hydrogen secondary battery current collector according to claim 1, wherein the nickel foil formed by electrolytic deposition is softened and annealed.
JP2001075663A 2001-03-16 2001-03-16 Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same Expired - Fee Related JP3744370B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001075663A JP3744370B2 (en) 2001-03-16 2001-03-16 Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same
TW091120746A TW560096B (en) 2001-03-16 2002-09-11 Metal foil for secondary battery collector, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001075663A JP3744370B2 (en) 2001-03-16 2001-03-16 Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002280000A JP2002280000A (en) 2002-09-27
JP3744370B2 true JP3744370B2 (en) 2006-02-08

Family

ID=18932705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001075663A Expired - Fee Related JP3744370B2 (en) 2001-03-16 2001-03-16 Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same

Country Status (2)

Country Link
JP (1) JP3744370B2 (en)
TW (1) TW560096B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225746B2 (en) * 2002-07-25 2009-02-18 東洋鋼鈑株式会社 Nickel foil for electrode and method for producing nickel foil for electrode
US6878458B2 (en) 2002-09-12 2005-04-12 Matsushita Electric Industrial Co., Ltd. Metal foil for current collector of secondary battery and method of producing the same
JP4882220B2 (en) * 2004-11-08 2012-02-22 ソニー株式会社 Secondary battery
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
KR101665802B1 (en) * 2014-12-23 2016-10-13 주식회사 포스코 Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT HEAT RESILIENCE AND METHOD FOR MANUFACTURING THE SAME
JP7074701B2 (en) * 2019-03-05 2022-05-24 株式会社豊田自動織機 Power storage module and power storage device

Also Published As

Publication number Publication date
JP2002280000A (en) 2002-09-27
TW560096B (en) 2003-11-01

Similar Documents

Publication Publication Date Title
CN103270182B (en) Aluminum alloy foil for electrode current collector and method for producing same
EP3473736B1 (en) Rolled copper foil for negative electrode current collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
US10811689B2 (en) Easily handleable electrolytic copper foil, electrode comprising the same, secondary battery comprising the same, and method for manufacturing the same
JP6475404B2 (en) Aluminum alloy foil for electrode current collector and method for producing the same
CN102747251A (en) Aluminium alloy foil used for current collector of positive electrode of lithium ion battery, and manufacturing method thereof
JPH11154517A (en) Metallic porous body for secondary battery and its manufacture
JP3744370B2 (en) Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same
KR100558029B1 (en) Metal foil for current collector of secondary battery and method of manufacturing the same
TWI745864B (en) Rolled copper foil for secondary battery negative current collector, secondary battery negative current collector and secondary battery using the copper foil, and manufacturing method of rolled copper foil for secondary battery negative current collector
TWI810538B (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP3744369B2 (en) Nickel foil for nickel-hydrogen secondary battery current collector and method for producing the same
JP2018076590A (en) Aluminum alloy foil for electrode collector body and manufacturing method therefor
JP4061910B2 (en) Copper foil for batteries
JPH09204919A (en) Electrode base for alkaline battery and its manufacture
JP2012104463A (en) Copper foil for lithium ion secondary battery, negative electrode material for lithium ion secondary battery and method of manufacturing copper foil for lithium ion secondary battery
JP2014060092A (en) Method for manufacturing negative electrode collector copper foil, negative electrode collector copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPH10188994A (en) Alkaline storage battery
JP2002100365A (en) Rolling lead alloy sheet for storage battery and lead storage battery using it
JP2002198054A (en) Collector for secondary battery
CN1260840C (en) Metal foil used in collector of secondary battery and its manufacture
JPS63110553A (en) Hydrogen electrode
JP5396702B2 (en) battery
JPH1186873A (en) Collector for secondary battery
JP2004095476A (en) Electrode for battery, and battery
JP2004146262A (en) Storage battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees