JP3744014B2 - Production method of rhodium powder - Google Patents

Production method of rhodium powder Download PDF

Info

Publication number
JP3744014B2
JP3744014B2 JP01198895A JP1198895A JP3744014B2 JP 3744014 B2 JP3744014 B2 JP 3744014B2 JP 01198895 A JP01198895 A JP 01198895A JP 1198895 A JP1198895 A JP 1198895A JP 3744014 B2 JP3744014 B2 JP 3744014B2
Authority
JP
Japan
Prior art keywords
rhodium
temperature
hydrogen
ppm
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01198895A
Other languages
Japanese (ja)
Other versions
JPH08199252A (en
Inventor
高裕 山田
善昭 真鍋
佐々木公司
聡 浅野
直行 土田
寿 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP01198895A priority Critical patent/JP3744014B2/en
Publication of JPH08199252A publication Critical patent/JPH08199252A/en
Application granted granted Critical
Publication of JP3744014B2 publication Critical patent/JP3744014B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、金属ロジウムの製造方法に関し、特に塩酸性ロジウム溶液より得られる金属ロジウムの精製に関する。
【0002】
【従来の技術】
一般に、ロジウムは銅製錬の副産物として、あるいは自動車用廃触媒などからの回収物として得られる。通常、ロジウムはこれらの中で単独で存在することは希であり、白金、パラジウム、ルテニウムなどと共存している。その結果、ロジウムの回収には、各種不純物ばかりでなく、これらの白金族金属よりの分離が不可欠となっている。
【0003】
白金族金属間の分離法として提案されているものは、いずれも沈澱分離法、イオン交換法、そして溶媒抽出法などを組み合わせて構成されているが、共通していることは塩酸系、あるいは塩化物系で分離処理されていることである。これは、白金族の各金属がいずれも塩素イオンと配位化合物を容易に形成し、これらの配位化合物間の安定度の差により各金属の分離を図ることが最も簡便であるからである。
【0004】
いずれにしろ、各種の分離工程を経て、ロジウムはまず塩化物溶液として回収されるのが通例である。そして、中和処理によりロジウムを水酸化ロジウムとして沈殿させ、あるいは錯化剤を添加してロジウム錯塩を生成させ、沈殿させて分離回収した後、これらを加熱処理等して金属ロジウム粉末を得ている。
【0005】
【発明が解決しようとする課題】
近年、各種の金属に対して高純度化が求められており、ロジウムもその対象となっている。しかし、上記のようにして得られたロジウム粉にはナトリウム、塩素、酸素といった不純物が多く、そのままでは上記高純度化には遠く及ばない。そこで、通常、得られた金属粉をフッ酸や塩酸といった強酸を用いて処理し、ナトリウム分を低下させたり、水素気流中で、1100℃を越える温度で加熱処理しナトリウムを塩化ナトリウムとして揮散させなどの方法が採られている。
【0006】
しかし、前者の方法では揮発、あるいはミストになり易い強酸を用いるため、関連装置の腐食が著しく、これを防止するためには高価な材質の装置が必要とされるという欠点がある。そして、後者の場合には、得られる金属ロジウム粉が焼結状態となり、以後に粉砕工程が必要とされることになる。
【0007】
本発明は、このような状況によりなされたものであり、上記欠点のない低ナトリウム、低塩素、かつ低酸素のロジウム粉の製造方法の提供を課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決する本発明の方法は、ロジウムを含む塩化物溶液に水素を吹き込み、ロジウムイオンを金属粉として析出させ、この金属粉を水素雰囲気中800〜1000℃、好ましくは800〜900℃で、1〜4時間、好ましくは2〜4時間加熱し、次いで不活性雰囲気中800〜1000℃、好ましくは800〜900900℃で、1〜4時間、好ましくは2〜4時間加熱するものである。
【0009】
【作用】
本発明において、ロジウムイオンの還元に水素を用いるのは、系内に無用な不純物を持ち込み、これにより得られる金属粉中の不純物品位が上昇するのを防止するためである。また、還元条件を穏やかにし、金属粉中への不純物の取り込みを最小限とするためである。なお、水素ガスを吹き込む際のpH、温度などの諸条件はどのような物理性状の金属粉を得るかにより決定されるものであり、当然当業者が選定し得る範囲のものである。また、この反応の終点は溶液中のロジウムイオンの色の消失により容易に判定できる。
【0010】
ロジウム溶液としては塩化物系であることが好ましい。
【0011】
このようにして得られた金属粉はナトリウム品位は低いものの、塩素やガス成分である酸素の品位は従来品と同様に高い。本発明の方法では、この金属粉を水素雰囲気中で加熱することにより、塩素を塩化水素とし、酸素を水蒸気として揮散させる。このとき、加熱温度が低すぎると反応が不十分となり、高すぎると燒結を起こす。よって、加熱温度は800〜1000℃、好ましくは800〜900℃とする。
【0012】
加熱時間は温度との関係が重要となる。とはいえ、一般に短いと反応が十分でなく、長すぎると、温度によっては燒結が始まり、温度によっては、燒結は起きないものの更なる効果はあまり期待できず、経済性を損なうことになる。よって、本発明の温度範囲では加熱時間は1〜4時間、好ましくは2〜4時間が好適である。
【0013】
このように処理することにより金属粉中の塩素や酸素の品位は下げることができるものの、水素の品位が高くなる。このため、塩素、酸素そして吸着された水素をよりいっそう低減するために、金属粉を不活性雰囲気中で加熱する。このときの加熱温度が低すぎるとこれらの成分が十分に低減されず、高すぎると金属粉が焼結を起こす。よって、加熱温度は800〜1000℃、好ましくは800〜900℃とする。
【0014】
加熱時間は、前記と同様に温度との関係が重要となる。一般に、短いと反応が十分でなく、長すぎると、温度によっては燒結が始まり、温度によっては、燒結は起きないものの更なる効果はあまり期待できず、経済性を損なうことになる。よって、本発明の方法の温度範囲では加熱時間は1〜4時間、好ましくは2〜4時間が好適である。
【0015】
【実施例】
次に本発明の実施例について述べる。
【0016】
(実施例1)
ロジウムを50g/l、Clを45g/lの割合で含む塩酸性ロジウム溶液2.5lに、水素ガスを1.0l/分の割合で、溶液が無色透明になるまで吹き込み、ロジウムを金属粉として析出させた。この金属粉を固液分離し一部を分析試料とし、一部を以後の試験に用いた。得られた分析値は、Na:1.1ppm、塩素:6800ppm、酸素:29000ppmとナトリウムが極めて少ないものとなっていた。なお、収率は99.9%以上であった。
【0017】
得られた金属粉の内の100gを石英ボートに充填し、これを環状炉に設けた石英管の均熱部に挿入し、昇温しつつ窒素パージを行った。均熱部の温度が200℃になった時点で窒素を水素に切り換え、石英管内に水素を0.5l/分の割合で吹き込み、昇温を続けた。均熱部の温度が850℃となったとき、昇温を停止し、以後石英管内に水素を流しつつ850℃で4時間保持した。
【0018】
ついで、水素をアルゴンに切り換え、吹き込み量を1.0l/分として850℃で4時間保持した。
【0019】
放冷後、得られたロジウム粉を分析し、Naと塩素と酸素との品位を求めた。その結果、Na:0.4ppm、塩素:170ppm、酸素:80ppmと大きく低減していることがわかった。なお、焼成物は焼結しておらず、良好な分散状態であった。
【0020】
(実施例2)
実施例1で得た金属粉の内の100gを石英ボートに充填し、これを環状炉に設けた石英管の均熱部に挿入し、昇温しつつ窒素パージを行った。均熱部の温度が200度になった時点で窒素を水素に切り換え、石英管内に水素を0.5l/分の割合で吹き込み、昇温を続けた。均熱部の温度が850℃となったとき、昇温を停止し、以後石英管内に水素を流しつつ850℃で2時間保持した。
【0021】
ついで、水素をアルゴンに切り換え、吹き込み量を1.0l/分として850℃で2時間保持した。
【0022】
放冷後、得られたロジウム粉を分析し、Naと塩素と酸素との品位を求めた。その結果、Na:0.7ppm、塩素:340ppm、酸素:180ppmと大きく低減していることが分かった。なお、焼成物は焼結しておらず、良好な状態であった。
【0023】
(実施例3)
実施例1で得た金属粉の内の100gを石英ボートに充填し、これを環状炉に設けた石英管の均熱部に挿入し、昇温しつつ窒素パージを行った。均熱部の温度が200度になった時点で窒素を水素に切り換え、石英管内に水素を0.5l/分の割合で吹き込み、昇温を続けた。均熱部の温度が800℃となったとき、昇温を停止し、以後石英管内に水素を流しつつ800℃で2時間保持した。
【0024】
ついで、水素をアルゴンに切り換え、吹き込み量を1.0l/分として800℃で2時間保持した。
【0025】
放冷後、得られたロジウム粉を分析し、Naと塩素と酸素との品位を求めた。その結果、Na:0.9ppm、塩素:560ppm、酸素:280ppmと大きく低減していることが分かった。なお、焼成物は焼結しておらず、良好な状態であった。
【0026】
(比較例1)
水酸化ロジウムより得られた市販のロジウム粉を用いて実施例1と同様に処理して焼成物を得た。
【0027】
市販のロジウム粉中のNa品位は2780ppmで有り、焼成物の品位は502ppmであった。加熱処理により確かにNa品位は減少しているものの、高純度化にはほど遠いものであるといえる。
【0028】
(比較例2)
処理温度をいずれも1100℃とした以外は比較例1と同様にして焼成物を得た。
【0029】
焼成物のNa品位は207ppmであり、焼成物は焼結していた。
【0030】
(比較例3)
実施例1で得た金属粉の内の100gを石英ボートに充填し、これを環状炉に設けた石英管の均熱部に挿入し、昇温しつつ窒素パージを行った。均熱部の温度が200度になった時点で窒素を水素に切り換え、石英管内に水素を0.5l/分の割合で吹き込み、昇温を続けた。均熱部の温度が600℃となったとき、昇温を停止し、以後石英管内に水素を流しつつ600℃で9時間保持した。
【0031】
ついで、水素をアルゴンに切り換え、吹き込み量を1.0l/分として600℃で2時間保持した。
【0032】
放冷後、得られたロジウム粉を分析し、Naと塩素と酸素との品位を求めた。その結果、Na:1.0ppm、塩素:1100ppm、酸素:430ppmと十分な低減効果は得られていないことが分かった。
【0033】
(実施例4)
比較例3で得られたロジウム粉を用いて実施例2の方法に従って再処理をした。
【0034】
放冷後、得られたロジウム粉を分析し、Naと塩素と酸素との品位を求めた。その結果、Na:0.6ppm、塩素:390ppm、酸素:160ppmと大きく低減していることが分かった。なお、焼成物は焼結しておらず、良好な分散状態であった。
【0035】
【発明の効果】
本発明の方法に従えば、還元剤として水素を用いるためNa品位の低い金属粉を得ることがで、これを乾式処理するため、簡便に低Na、塩素、酸素のロジウム粉を得ることが可能である。
[0001]
[Industrial application fields]
The present invention relates to a method for producing metal rhodium, and more particularly to purification of metal rhodium obtained from a hydrochloric acid rhodium solution.
[0002]
[Prior art]
In general, rhodium is obtained as a by-product of copper smelting or as a recovered product from an automobile waste catalyst or the like. Usually, rhodium is rarely present alone, and coexists with platinum, palladium, ruthenium and the like. As a result, in order to recover rhodium, not only various impurities but also separation from these platinum group metals is indispensable.
[0003]
All of the proposed methods for separating platinum group metals are composed of a combination of precipitation separation, ion exchange, and solvent extraction. It is that it is separated in the physical system. This is because it is most convenient for each platinum group metal to easily form a coordination compound with chloride ions, and to separate each metal by the difference in stability between these coordination compounds. .
[0004]
In any case, rhodium is usually first recovered as a chloride solution after various separation steps. Then, rhodium is precipitated as rhodium hydroxide by neutralization treatment, or a complexing agent is added to form a rhodium complex salt. After precipitation and separation and recovery, these are heated to obtain a metal rhodium powder. Yes.
[0005]
[Problems to be solved by the invention]
In recent years, high purity has been demanded for various metals, and rhodium is an object. However, the rhodium powder obtained as described above has many impurities such as sodium, chlorine and oxygen, and as it is, it does not reach the high purity. Therefore, the obtained metal powder is usually treated with a strong acid such as hydrofluoric acid or hydrochloric acid to reduce the sodium content, or heat-treated at a temperature exceeding 1100 ° C. in a hydrogen stream to volatilize sodium as sodium chloride. Such a method is adopted.
[0006]
However, since the former method uses a strong acid that is liable to volatilize or become mist, there is a drawback in that corrosion of related equipment is remarkable, and an apparatus made of an expensive material is required to prevent this. In the latter case, the obtained metal rhodium powder is in a sintered state, and a pulverization step is required thereafter.
[0007]
This invention is made | formed by such a condition, and makes it a subject to provide the manufacturing method of the low sodium, low chlorine, and low oxygen rhodium powder which does not have the said fault.
[0008]
[Means for Solving the Problems]
In the method of the present invention for solving the above problems, hydrogen is blown into a chloride solution containing rhodium , rhodium ions are precipitated as metal powder, and the metal powder is heated in a hydrogen atmosphere at 800 to 1000 ° C., preferably 800 to 900 ° C. 1 to 4 hours, preferably 2 to 4 hours, and then heated in an inert atmosphere at 800 to 1000 ° C., preferably 800 to 900 900 ° C. for 1 to 4 hours, preferably 2 to 4 hours.
[0009]
[Action]
In the present invention, hydrogen is used for the reduction of rhodium ions in order to prevent unnecessary impurities from being brought into the system and thereby improving the quality of impurities in the resulting metal powder. In addition, the reduction conditions are moderated to minimize the incorporation of impurities into the metal powder. Various conditions such as pH and temperature when hydrogen gas is blown are determined by what physical properties of the metal powder are obtained, and are naturally within a range that can be selected by those skilled in the art. Moreover, the end point of this reaction can be easily determined by the disappearance of the color of the rhodium ion in the solution.
[0010]
The rhodium solution is preferably a chloride system.
[0011]
Although the metal powder obtained in this way has low sodium quality, the quality of chlorine and oxygen, which is a gas component, is high as with conventional products. In the method of the present invention, this metal powder is heated in a hydrogen atmosphere to volatilize chlorine as hydrogen chloride and oxygen as water vapor. At this time, if the heating temperature is too low, the reaction becomes insufficient, and if it is too high, sintering occurs. Therefore, the heating temperature is 800 to 1000 ° C, preferably 800 to 900 ° C.
[0012]
The relationship between the heating time and the temperature is important. However, if the reaction time is short, the reaction is not sufficient. If the reaction time is too long, sintering starts depending on the temperature. Depending on the temperature, although sintering does not occur, a further effect cannot be expected, and the economy is impaired. Therefore, the heating time is 1 to 4 hours, preferably 2 to 4 hours in the temperature range of the present invention.
[0013]
Although the quality of chlorine and oxygen in the metal powder can be lowered by this treatment, the quality of hydrogen is increased. For this reason, in order to further reduce chlorine, oxygen, and adsorbed hydrogen, the metal powder is heated in an inert atmosphere. If the heating temperature at this time is too low, these components are not sufficiently reduced, and if it is too high, the metal powder is sintered. Therefore, the heating temperature is 800 to 1000 ° C, preferably 800 to 900 ° C.
[0014]
The heating time has an important relationship with the temperature as described above. In general, if the reaction time is too short, the reaction is not sufficient. If the reaction time is too long, sintering starts depending on the temperature. Depending on the temperature, although sintering does not occur, further effects cannot be expected so much and the economy is impaired. Therefore, in the temperature range of the method of the present invention, the heating time is 1 to 4 hours, preferably 2 to 4 hours.
[0015]
【Example】
Next, examples of the present invention will be described.
[0016]
Example 1
Blowing hydrogen chloride at a rate of 1.0 l / min into a hydrochloric acid rhodium solution containing rhodium at a rate of 50 g / l and Cl at a rate of 45 g / l until the solution is colorless and transparent, rhodium as a metal powder Precipitated. This metal powder was subjected to solid-liquid separation, and a part was used as an analysis sample, and a part was used in the subsequent tests. The obtained analytical values were Na: 1.1 ppm, chlorine: 6800 ppm, oxygen: 29000 ppm, and very little sodium. The yield was 99.9% or more.
[0017]
100 g of the obtained metal powder was filled in a quartz boat, and this was inserted into a soaking part of a quartz tube provided in an annular furnace, and a nitrogen purge was performed while raising the temperature. When the temperature of the soaking part reached 200 ° C., nitrogen was switched to hydrogen, hydrogen was blown into the quartz tube at a rate of 0.5 l / min, and the temperature was continued. When the temperature of the soaking part reached 850 ° C., the temperature increase was stopped, and then the temperature was maintained at 850 ° C. for 4 hours while flowing hydrogen into the quartz tube.
[0018]
Subsequently, the hydrogen was switched to argon, the blowing rate was 1.0 l / min, and the mixture was held at 850 ° C. for 4 hours.
[0019]
After allowing to cool, the obtained rhodium powder was analyzed to determine the quality of Na, chlorine and oxygen. As a result, it was found that Na: 0.4 ppm, chlorine: 170 ppm, and oxygen: 80 ppm were greatly reduced. The fired product was not sintered and was in a good dispersion state.
[0020]
(Example 2)
100 g of the metal powder obtained in Example 1 was filled in a quartz boat, which was inserted into a soaking part of a quartz tube provided in an annular furnace, and purged with nitrogen while raising the temperature. When the temperature of the soaking part reached 200 degrees, nitrogen was switched to hydrogen, hydrogen was blown into the quartz tube at a rate of 0.5 l / min, and the temperature was continued. When the temperature of the soaking part reached 850 ° C., the temperature increase was stopped, and then the temperature was maintained at 850 ° C. for 2 hours while flowing hydrogen into the quartz tube.
[0021]
Subsequently, the hydrogen was switched to argon, the blowing rate was 1.0 l / min, and the mixture was held at 850 ° C. for 2 hours.
[0022]
After allowing to cool, the obtained rhodium powder was analyzed to determine the quality of Na, chlorine and oxygen. As a result, it was found that Na: 0.7 ppm, chlorine: 340 ppm, and oxygen: 180 ppm were greatly reduced. The fired product was not sintered and was in a good state.
[0023]
Example 3
100 g of the metal powder obtained in Example 1 was filled in a quartz boat, which was inserted into a soaking part of a quartz tube provided in an annular furnace, and purged with nitrogen while raising the temperature. When the temperature of the soaking part reached 200 degrees, nitrogen was switched to hydrogen, hydrogen was blown into the quartz tube at a rate of 0.5 l / min, and the temperature was continued. When the temperature of the soaking part reached 800 ° C., the temperature increase was stopped, and then the temperature was maintained at 800 ° C. for 2 hours while flowing hydrogen into the quartz tube.
[0024]
Subsequently, the hydrogen was switched to argon, the blowing rate was 1.0 l / min, and the temperature was maintained at 800 ° C. for 2 hours.
[0025]
After allowing to cool, the obtained rhodium powder was analyzed to determine the quality of Na, chlorine and oxygen. As a result, it was found that Na: 0.9 ppm, chlorine: 560 ppm, and oxygen: 280 ppm were greatly reduced. The fired product was not sintered and was in a good state.
[0026]
(Comparative Example 1)
Using a commercially available rhodium powder obtained from rhodium hydroxide, the same treatment as in Example 1 was carried out to obtain a fired product.
[0027]
The Na quality in the commercially available rhodium powder was 2780 ppm, and the quality of the fired product was 502 ppm. Although the Na quality is certainly reduced by the heat treatment, it can be said that it is far from being highly purified.
[0028]
(Comparative Example 2)
A fired product was obtained in the same manner as in Comparative Example 1 except that the treatment temperature was 1100 ° C.
[0029]
The Na quality of the fired product was 207 ppm, and the fired product was sintered.
[0030]
(Comparative Example 3)
100 g of the metal powder obtained in Example 1 was filled in a quartz boat, which was inserted into a soaking part of a quartz tube provided in an annular furnace, and purged with nitrogen while raising the temperature. When the temperature of the soaking part reached 200 degrees, nitrogen was switched to hydrogen, hydrogen was blown into the quartz tube at a rate of 0.5 l / min, and the temperature was continued. When the temperature of the soaking part reached 600 ° C., the temperature raising was stopped, and thereafter, the hydrogen was passed through the quartz tube and kept at 600 ° C. for 9 hours.
[0031]
Subsequently, the hydrogen was switched to argon, the blowing rate was 1.0 l / min, and the temperature was maintained at 600 ° C. for 2 hours.
[0032]
After allowing to cool, the obtained rhodium powder was analyzed to determine the quality of Na, chlorine and oxygen. As a result, it was found that Na: 1.0 ppm, chlorine: 1100 ppm, oxygen: 430 ppm, and sufficient reduction effects were not obtained.
[0033]
(Example 4)
The rhodium powder obtained in Comparative Example 3 was used for reprocessing according to the method of Example 2.
[0034]
After allowing to cool, the obtained rhodium powder was analyzed to determine the quality of Na, chlorine and oxygen. As a result, it was found that Na: 0.6 ppm, chlorine: 390 ppm, and oxygen: 160 ppm were greatly reduced. The fired product was not sintered and was in a good dispersion state.
[0035]
【The invention's effect】
According to the method of the present invention, since hydrogen is used as a reducing agent, it is possible to obtain a metal powder with low Na quality, and since this is dry-processed, it is possible to easily obtain rhodium powder of low Na, chlorine and oxygen. It is.

Claims (1)

ロジウムを含む塩化物溶液に水素を吹き込み、ロジウムイオンを金属粉として析出させ、この金属粉を水素雰囲気中800〜1000℃で1〜4時間加熱し、次いで不活性雰囲気中800〜1000℃で1〜4時間加熱することを特徴とするロジウム粉の製造方法。Hydrogen is blown into a chloride solution containing rhodium to precipitate rhodium ions as a metal powder . The metal powder is heated in a hydrogen atmosphere at 800 to 1000 ° C. for 1 to 4 hours, and then in an inert atmosphere at 800 to 1000 ° C. for 1 hour. A method for producing rhodium powder, which comprises heating for 4 hours.
JP01198895A 1995-01-27 1995-01-27 Production method of rhodium powder Expired - Fee Related JP3744014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01198895A JP3744014B2 (en) 1995-01-27 1995-01-27 Production method of rhodium powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01198895A JP3744014B2 (en) 1995-01-27 1995-01-27 Production method of rhodium powder

Publications (2)

Publication Number Publication Date
JPH08199252A JPH08199252A (en) 1996-08-06
JP3744014B2 true JP3744014B2 (en) 2006-02-08

Family

ID=11792977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01198895A Expired - Fee Related JP3744014B2 (en) 1995-01-27 1995-01-27 Production method of rhodium powder

Country Status (1)

Country Link
JP (1) JP3744014B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100881595B1 (en) * 2007-05-08 2009-02-03 주식회사 지엠에스 21 Purification and recovery of Rhodium metal by the Formation of Intermetallic Compounds with Mg or Ca metal

Also Published As

Publication number Publication date
JPH08199252A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
KR101226946B1 (en) Method for recycling platinum from platinum based catalysts
KR100231906B1 (en) Method for producing high-grade reduced silver
CA2396445C (en) Process for refining silver bullion with gold separation
CN110340373B (en) Preparation method of high-purity palladium powder
CA1321705C (en) Preparation of ultra-pure silver nitrate
US3922330A (en) Separation and purification of platinum group metals and gold
JP3744014B2 (en) Production method of rhodium powder
JP3227656B2 (en) Method for extracting high purity platinum from platinum alloy by electrolysis
TWI391495B (en) Rhodium recovery method
JP5339068B2 (en) Ruthenium purification and recovery method
JP2004190058A (en) Method of separating and refining iridium
JP4100696B2 (en) Te separation method from Rh solution
JP5447824B2 (en) A method for purifying a rhodium nitrite complex ion solution and a method for producing an ammonium salt thereof.
JP4269693B2 (en) Process for treating selenium mixture
JP7486021B2 (en) Method for producing cadmium hydroxide
US3192011A (en) Process for producing high purity rhenium compounds
JP3206432B2 (en) Low alpha low oxygen metal scandium and method for producing the same
JP2004190133A (en) Method of treating selenium, tellurium, and platinum group-containing material
JP2004035969A (en) Method for refining selenium or the like
JPH04198017A (en) Purification of scandium oxide
NO150321B (en) FR
JPS5884934A (en) Recovering method for palladium
JP2981090B2 (en) Production method of high purity metal
JP2826158B2 (en) Recovery and purification method of rhodium
JP2024010529A (en) Method for recovering selenium

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees