JP3743054B2 - Marine structure anti-vibration equipment - Google Patents

Marine structure anti-vibration equipment Download PDF

Info

Publication number
JP3743054B2
JP3743054B2 JP09246596A JP9246596A JP3743054B2 JP 3743054 B2 JP3743054 B2 JP 3743054B2 JP 09246596 A JP09246596 A JP 09246596A JP 9246596 A JP9246596 A JP 9246596A JP 3743054 B2 JP3743054 B2 JP 3743054B2
Authority
JP
Japan
Prior art keywords
liquid
communication pipe
flow
swing
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09246596A
Other languages
Japanese (ja)
Other versions
JPH09277985A (en
Inventor
隆幸 中山
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP09246596A priority Critical patent/JP3743054B2/en
Publication of JPH09277985A publication Critical patent/JPH09277985A/en
Application granted granted Critical
Publication of JP3743054B2 publication Critical patent/JP3743054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、船舶やバージ、その他の浮体等といった海洋構造物の揺動を抑制する為に用いる海洋構造物の減揺装置に関するものである。
【0002】
【従来の技術】
船舶における従来の減揺装置としては、図4に示す如く、船舶aの適宜位置に固定された円弧状のガイドbに沿って可動マスcが往復運動するようにしたものが知られており、想定される船舶aの揺動と同じ周期で位相が約90゜遅れをもつような設計とし、船舶aの揺動に伴って可動マスcを受動的に共振させるパッシブ方式としたり、或いは、可動マスcに図示しないモータを設置して能動的な制御をかけながら往復運動させるハイブリッド方式として前記船舶aの揺動を抑制するようにしていた。
【0003】
【発明が解決しようとする課題】
しかしながら、可動マスcを受動的に共振させるようにしたパッシブ方式の場合には、一度設計してしまうと固有周期が決まってしまう為、船舶aの揺動の周期が積荷の積載状態や海洋の波高等により変化してしまうと、減揺効果が低減してしまうという不具合があった。
【0004】
一方、可動マスcに能動的な制御をかけて往復運動させるようにしたハイブリッド方式の場合には、船舶aの揺動周期の変化に対応させることが可能であるものの、モータに対する突入電流が大きい為に電力消費量が増大するという不具合があった。
【0005】
また、図中二点鎖線で示す如く、電力供給を行う為に電力ケーブルdを可動マスcに引き込む必要があるが、一般的に、この種の電力ケーブルdは、カーブを描いて可動マスcに引き込まれるよう外皮により抱持され、前記可動マスcの移動に対し撓み位置を変化させながら追従するようになっていた為、前記電力ケーブルdの劣化の進行が早く寿命が短いという不具合もあった。
【0006】
更に、可動マスcをモータにより機械的に往復運動させることは構造の複雑化を招き、これにより故障が発生し易くなってメンテナンス作業の負担が増大するという不具合もあった。
【0007】
本発明は上述の実情に鑑みてなしたもので、船舶等の海洋構造物の揺動周期の変化に対応させることが可能である上に、電力消費量も少なくてすみ、メンテナンス作業の負担が少ない海洋構造物の減揺装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
本発明は、導電性を有する液体を貯蔵して海洋構造物に固定された一対の液体槽と、該各液体槽の底部同士を連通し且つ二組の対向面から成る矩形管として形成された連通管と、該連通管の流路方向に対し略直角となる向きに磁力線を形成し得るよう前記連通管の一方の対向面の外側に夫々配置された一対の永久磁石と、前記連通管の流路方向に対し略直角で且つ前記永久磁石による磁力線の向きに対しても略直角となる向きに直流電流を流し得るよう前記連通管の他方の対向面の内側に夫々配置された一対の電極と、前記海洋構造物の揺動を検出する揺動検出手段と、前記連通管を流通する液体の流量を計測する流量計と、前記電極に対し電源から給電される直流電流の極性反転及び電流値の増減を行うインバータと、前記揺動検出手段からの揺動信号及び前記流量計からの流量信号に基づいて前記各液体槽間の液体の揺動が海洋構造物の揺動の周期と対応し且つ約90゜の位相遅れとなるよう前記インバータを制御して前記液体に適宜なローレンツ力を作用せしめる制御装置とを備えたことを特徴とする海洋構造物の減揺装置、に係るものである。
【0010】
而して、海洋構造物が揺動している際には、各液体槽の液体が連通管を流通しながら所定の周期(設計時に設定された周期)で受動的に往復揺動するが、このとき、揺動検出手段からの揺動信号及び流量計からの流量信号に基づいて制御装置によりインバータが制御され、前記各液体槽間の液体の揺動が海洋構造物の揺動の周期と対応し且つ約90゜の位相遅れとなるように、前記電極に対し電源から給電される直流電流の極性反転及び電流値の増減が行われる。
【0011】
即ち、永久磁石により連通管内に磁場が形成されている状態で、前記連通管内を流通する液体を介して各電極間に直流電流を流すと、フレミングの左手の法則に従って、磁力線の向きに直角で且つ直流電流の流れ方向にも直角となる連通管の流路方向に向けローレンツ力が発生するので、このとき、電極に対し電源から給電される直流電流の極性反転を行えば、該直流電流の流れ方向を変えてローレンツ力の作用方向を反転することが可能となり、その電流値の増減を行えば、ローレンツ力の大きさを適宜調整することが可能となるのであり、前記連通管内を流通する液体に対し適宜な方向及び大きさでローレンツ力を作用させることによって、前記液体の揺動を促進又は抑制して海洋構造物の揺動周期の変化に対応させることが可能となるのである。
【0012】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しつつ説明する。
【0013】
図1〜図3は本発明を実施する形態の一例を示すもので、図1に示す如く、海水等の導電性を有する液体1を貯蔵した一対の液体槽2,2が、海洋構造物である船舶3の両弦に夫々固定されており、前記各液体槽2,2の底部同士が、水平方向に延びる連通管4により連通され、前記各液体槽2,2の上端には、液体1上側の空気を自由に出入りさせる為の開口部5が設けられている。
【0014】
図2に示す如く、前記連通管4は二組の対向面から成る矩形管として形成され、前記連通管4の上下方向に対峙している一方の対向面の外側には、互いに反対の磁極を向けた一対の永久磁石6,6が前記連通管4を挟んで対向配置されており、図2中に矢印Xで示すように、連通管4内に下方向きに磁力線が形成されるようにしてある。
【0015】
また、前記連通管4の流路方向(図1及び図2における左右方向)に対し直角な水平方向に対峙している他方の対向面の内側には、一対の電極9,9が対向配置されており、前記連通管4の流路方向に対し直角な水平方向に向け液体1を通電媒体として直流電流を流し得るようにしてある。
【0016】
図3に示す如く、前記電極9,9には、直流電源7がインバータ8を介して接続されており、該インバータ8は、前記電極9,9に対し電源7から給電される直流電流の極性反転及び電流値の増減を行い得るようにしてあり、その操作は制御装置10からの制御信号11により制御されるようになっている。
【0017】
前記制御装置10には、角速度計12(揺動検出手段)からの角速度信号13(揺動信号)と、前記連通管4を流通する液体1の流量を計測する流量計14からの流量信号15とが夫々入力されるようになっており、前記角速度信号13と流量信号15とに基づいて前記各液体槽2,2間の液体1の揺動が船舶3の揺動の周期と対応し且つ約90゜の位相遅れとなるよう前記インバータ8を制御して前記液体1に適宜なローレンツ力を作用せしめるようになっている。
【0018】
尚、本形態例においては、減揺対象である海洋構造物を船舶3とした場合を例示しているので、船舶3に備えられている既存の角速度計12を揺動検出手段として利用しているが、揺動検出手段を別途設けるようにしても良いことは勿論である。
【0019】
而して、船舶3が揺動している際には、各液体槽2,2の液体1が連通管4を流通しながら所定の周期(設計時に設定された周期)で受動的に往復揺動するが、このとき、角速度計12からの角速度信号13及び流量計14からの流量信号15に基づいて制御装置10によりインバータ8が制御され、前記各液体槽2,2間の液体1の揺動が船舶3の揺動の周期と対応し且つ約90゜の位相遅れとなるように、前記電極9,9に対し電源7から給電される直流電流の極性反転及び電流値の増減が行われる。
【0020】
即ち、永久磁石6,6により連通管4内に磁場が形成されている状態で、前記連通管4内を流通する液体1を介して各電極9,9間に直流電流を流すと、フレミングの左手の法則に従って、磁力線の向きに直角で且つ直流電流の流れ方向にも直角となる連通管4の流路方向に向けローレンツ力が発生するので、このとき、電極9,9に対し電源7から給電される直流電流の極性反転を行えば、該直流電流の流れ方向を変えてローレンツ力の作用方向を反転することが可能となり、その電流値の増減を行えば、ローレンツ力の大きさを適宜調整することが可能となるのであり、前記連通管4内を流通する液体1に対し適宜な方向及び大きさでローレンツ力を作用させることによって、前記液体1の揺動を促進又は抑制して船舶3の揺動周期の変化に対応させることが可能となるのである。
【0021】
例えば、図2に示す如く、永久磁石6,6による磁力線の向きが矢印Xで示すように下方向きであった場合、矢印Yで示すように奥側の電極9から手前側の電極9に向け直流電流を流すと、矢印Zで示すように右側へ向かうローレンツ力が発生し、直流電流を矢印Yの反対方向に向けて流せば、矢印Zの反対方向となる左側へ向かうローレンツ力が発生する。
【0022】
従って上記形態例によれば、船舶3の揺動の周期が積荷の積載状態や海洋の波高等により変化しても、各液体槽2,2間の液体1の揺動が船舶3の揺動の周期と対応し且つ約90゜の位相遅れとなるよう制御することができるので、常に最大の減揺効果を得ることができる。
【0023】
また、各液体槽2,2間の液体1の揺動は、基本的に船舶3が揺動することにより受動的に行われ、これをローレンツ力により促進又は抑制して船舶3の揺動周期の変化に対応させるようにしているにすぎないので、前記ローレンツ力を発生させるのに必要な電力は軽微であり、しかも、モータ等を使用した場合の如き大きな突入電流も要しないので、電力消費量を大幅に低減することができる。
【0024】
また、機械的な可動部分を必要とせず、極めてシンプルな構造とすることができるので、長期間にわたり連続して使用することができ、メンテナンス作業の負担を著しく軽減することができる。
【0025】
尚、本発明の海洋構造物の減揺装置は、上述の形態例にのみ限定されるものではなく、永久磁石と電極との配置関係は図示例の逆の配置としても良く、また、連通管は必ずしも矩形管とする必要がないこと、液体は海水に限定されないこと、海洋構造物は船舶以外のものでも良いこと、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0026】
【発明の効果】
上記した本発明の海洋構造物の減揺装置によれば、下記の如き種々の優れた効果を奏し得る。
【0027】
(I)海洋構造物の揺動の周期が変化しても、各液体槽間の液体の揺動が海洋構造物の揺動の周期と対応し且つ約90゜の位相遅れとなるよう制御することができるので、常に最大の減揺効果を得ることができる。
【0028】
(II)各液体槽間の液体の揺動は、基本的に海洋構造物が揺動することにより受動的に行われ、これをローレンツ力により促進又は抑制して海洋構造物の揺動周期の変化に対応させるようにしているにすぎないので、前記ローレンツ力を発生させるのに必要な電力は軽微であり、しかも、モータ等を使用した場合の如き大きな突入電流も要しないので、電力消費量を大幅に低減することができる。
【0029】
(III)機械的な可動部分を必要とせず、極めてシンプルな構造とすることができるので、長期間にわたり連続して使用することができ、メンテナンス作業の負担を著しく軽減することができる。
【図面の簡単な説明】
【図1】本発明を実施する形態の一例を示す断面図である。
【図2】図1の連通管の詳細を示す斜視図である。
【図3】本発明を実施する形態の一例における制御系を示す概念図である。
【図4】従来例を示す概略図である。
【符号の説明】
1 液体
2 液体槽
3 船舶(海洋構造物)
4 連通管
6 永久磁石
7 電源
8 インバータ
9 電極
10 制御装置
12 角速度計(揺動検出手段)
13 角速度信号(揺動信号)
14 流量計
15 流量信号
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration reducing device for an offshore structure used to suppress the swinging of offshore structures such as ships, barges, and other floating bodies.
[0002]
[Prior art]
As a conventional vibration reduction device in a ship, as shown in FIG. 4, there is known one in which a movable mass c reciprocates along an arcuate guide b fixed at an appropriate position of a ship a. The design is such that the phase is delayed by about 90 ° in the same cycle as the assumed swing of the ship a, and the passive mass is passively resonated with the swing of the ship a, or is movable. As a hybrid system in which a motor (not shown) is installed in the mass c and reciprocates while being actively controlled, swinging of the ship a is suppressed.
[0003]
[Problems to be solved by the invention]
However, in the case of the passive system in which the movable mass c is resonated passively, the natural period is determined once the design is made. Therefore, the oscillation period of the ship a depends on the loading state of the load and the ocean. If it changes due to wave height, etc., there is a problem that the effect of reducing the vibration is reduced.
[0004]
On the other hand, in the case of a hybrid system in which the movable mass c is reciprocated by actively controlling it, it is possible to cope with a change in the oscillation cycle of the ship a, but the inrush current to the motor is large. Therefore, there was a problem that the power consumption increased.
[0005]
In addition, as shown by a two-dot chain line in the figure, it is necessary to draw the power cable d into the movable mass c in order to supply power. Generally, this type of power cable d draws a curve and has a movable mass c. Since the power cable d is held by the outer skin so as to be pulled in, and follows the movement of the movable mass c while changing the bending position, there is a problem that the deterioration of the power cable d progresses quickly and the life is short. It was.
[0006]
Furthermore, mechanically reciprocating the movable mass c with a motor causes a complicated structure, which causes a problem that a failure is likely to occur and the burden of maintenance work increases.
[0007]
The present invention has been made in view of the above circumstances, and can be adapted to changes in the oscillation cycle of marine structures such as ships, and also requires less power consumption, and the burden of maintenance work is reduced. The purpose is to provide a device for reducing the number of offshore structures.
[0008]
[Means for Solving the Problems]
The present invention comprises a pair of liquid bath which is fixed to the marine structures by storing liquid having conductivity, is formed a bottom portions of the respective liquid bath as a rectangular pipe made of communicating with and two sets of opposing surfaces A communication pipe, a pair of permanent magnets arranged on the outside of one opposing surface of the communication pipe so as to form magnetic lines of force in a direction substantially perpendicular to the flow direction of the communication pipe , and the communication pipe A pair of electrodes respectively disposed inside the other facing surface of the communication pipe so that a direct current can flow in a direction substantially perpendicular to the flow path direction and substantially perpendicular to the direction of the magnetic force lines by the permanent magnet. Oscillating detection means for detecting oscillating of the offshore structure, a flow meter for measuring the flow rate of the liquid flowing through the communication pipe, polarity reversal and current of DC current fed from a power source to the electrodes An inverter that increases or decreases a value and the swing detection means And the flow rate signal from the flow meter, the inverter between the liquid tanks corresponds to the oscillation cycle of the offshore structure and has a phase delay of about 90 °. And a control device for controlling the liquid to apply an appropriate Lorentz force to the liquid.
[0010]
Thus, when the offshore structure is oscillating, the liquid in each liquid tank is passively reciprocally oscillated at a predetermined period (period set at the time of design) while flowing through the communication pipe. At this time, the inverter is controlled by the control device based on the swing signal from the swing detection means and the flow rate signal from the flowmeter, and the swing of the liquid between the liquid tanks is the period of the swing of the offshore structure. The polarity of the direct current supplied from the power source and the increase / decrease of the current value are applied to the electrodes so as to correspond to the phase delay of about 90 °.
[0011]
That is, when a direct current is passed between the electrodes through a liquid flowing in the communication pipe in a state where a magnetic field is formed in the communication pipe by a permanent magnet, the direction of the magnetic field is perpendicular to Fleming's left-hand rule. In addition, a Lorentz force is generated in the direction of the flow path of the communication pipe, which is also perpendicular to the direction of DC current flow. At this time, if the polarity of the DC current fed from the power source to the electrode is reversed, the DC current The direction of Lorentz force can be reversed by changing the flow direction, and if the current value is increased or decreased, the magnitude of the Lorentz force can be adjusted as appropriate. By applying a Lorentz force to the liquid in an appropriate direction and magnitude, it becomes possible to promote or suppress the oscillation of the liquid to cope with a change in the oscillation cycle of the offshore structure. It is.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0013]
1 to 3 show an example of an embodiment for carrying out the present invention. As shown in FIG. 1, a pair of liquid tanks 2 and 2 storing a liquid 1 having conductivity such as seawater are marine structures. The liquid tanks 2 and 2 are fixed to both strings, respectively, and the bottoms of the liquid tanks 2 and 2 are communicated with each other by a communication pipe 4 extending in the horizontal direction. An opening 5 for allowing the upper air to freely enter and exit is provided.
[0014]
As shown in FIG. 2, the communication pipe 4 is formed as a rectangular pipe having two sets of opposing surfaces, and opposite magnetic poles are provided on the outer sides of one opposing surface facing the vertical direction of the communication pipe 4. A pair of facing permanent magnets 6 and 6 are arranged to face each other with the communication pipe 4 interposed therebetween, and magnetic lines of force are formed downward in the communication pipe 4 as indicated by an arrow X in FIG. is there.
[0015]
In addition, a pair of electrodes 9 are opposed to each other on the inner side of the other facing surface facing the horizontal direction perpendicular to the flow direction of the communication pipe 4 (left and right direction in FIGS. 1 and 2). Thus, a direct current can be made to flow in the horizontal direction perpendicular to the flow path direction of the communication pipe 4 by using the liquid 1 as an energization medium.
[0016]
As shown in FIG. 3, a DC power supply 7 is connected to the electrodes 9 and 9 via an inverter 8, and the inverter 8 is connected to the electrodes 9 and 9 with a polarity of a DC current fed from the power supply 7. The inversion and increase / decrease of the current value can be performed, and the operation is controlled by a control signal 11 from the control device 10.
[0017]
The control device 10 includes an angular velocity signal 13 (oscillation signal) from an angular velocity meter 12 (oscillation detection means) and a flow rate signal 15 from a flow meter 14 that measures the flow rate of the liquid 1 flowing through the communication pipe 4. And the oscillation of the liquid 1 between the liquid tanks 2 and 2 corresponds to the oscillation cycle of the ship 3 based on the angular velocity signal 13 and the flow rate signal 15, respectively. The inverter 8 is controlled so as to have a phase delay of about 90 °, and an appropriate Lorentz force is applied to the liquid 1.
[0018]
In the present embodiment, the marine structure that is the object of vibration reduction is exemplified as the ship 3, so the existing angular velocity meter 12 provided in the ship 3 is used as the swing detection means. Needless to say, the swing detection means may be provided separately.
[0019]
Thus, when the ship 3 is oscillating, the liquid 1 in each of the liquid tanks 2 and 2 is passively reciprocated at a predetermined period (period set at the time of design) while flowing through the communication pipe 4. At this time, the control device 10 controls the inverter 8 based on the angular velocity signal 13 from the angular velocity meter 12 and the flow rate signal 15 from the flow meter 14, and the fluctuation of the liquid 1 between the liquid tanks 2 and 2 is controlled. The polarity of the direct current fed from the power source 7 and the increase or decrease of the current value are performed on the electrodes 9 and 9 so that the movement corresponds to the oscillation cycle of the ship 3 and has a phase delay of about 90 °. .
[0020]
That is, if a direct current is passed between the electrodes 9 and 9 through the liquid 1 flowing through the communication pipe 4 in a state where a magnetic field is formed in the communication pipe 4 by the permanent magnets 6 and 6, Fleming According to the left-hand rule, a Lorentz force is generated in the direction of the flow path of the communication tube 4 that is perpendicular to the direction of the magnetic field lines and also perpendicular to the direction of direct current flow. If the polarity of the DC current to be fed is reversed, the direction of the Lorentz force can be reversed by changing the flow direction of the DC current, and if the current value is increased or decreased, the magnitude of the Lorentz force is appropriately adjusted. By adjusting the Lorentz force to the liquid 1 flowing through the communication pipe 4 in an appropriate direction and magnitude, the liquid 1 is promoted or suppressed to be oscillated. Change of oscillation cycle of 3 It become possible to correspond to.
[0021]
For example, as shown in FIG. 2, when the direction of the magnetic lines of force of the permanent magnets 6 and 6 is downward as indicated by an arrow X, the rear electrode 9 is directed toward the front electrode 9 as indicated by an arrow Y. When a direct current is applied, a Lorentz force is generated toward the right side as indicated by an arrow Z. When a direct current is applied in a direction opposite to the arrow Y, a Lorentz force is generated toward the left side, which is the opposite direction of the arrow Z. .
[0022]
Therefore, according to the above-described embodiment, even if the rocking cycle of the ship 3 changes depending on the loaded state of the cargo, the wave height of the ocean, etc., the rocking of the liquid 1 between the liquid tanks 2 and 2 Therefore, the maximum vibration reduction effect can always be obtained.
[0023]
Further, the rocking of the liquid 1 between the liquid tanks 2 and 2 is basically passively performed by the rocking of the ship 3, and this is promoted or suppressed by the Lorentz force to thereby rotate the rocking period of the ship 3. The power required to generate the Lorentz force is negligible and does not require a large inrush current as in the case of using a motor. The amount can be greatly reduced.
[0024]
In addition, since a mechanically movable part is not required and the structure can be extremely simple, it can be used continuously over a long period of time, and the burden of maintenance work can be significantly reduced.
[0025]
Note that the marine structure vibration reducing device of the present invention is not limited to the above-described embodiment, and the arrangement relationship between the permanent magnets and the electrodes may be the reverse arrangement of the illustrated example, and the communication pipe Is not necessarily a rectangular tube, the liquid is not limited to seawater, the marine structure may be other than a ship, and other various modifications may be made without departing from the scope of the present invention. Of course.
[0026]
【The invention's effect】
According to the above-described apparatus for reducing a marine structure of the present invention, various excellent effects as described below can be obtained.
[0027]
(I) Even if the rocking cycle of the offshore structure changes, control is performed so that the rocking of the liquid between the liquid tanks corresponds to the rocking cycle of the offshore structure and has a phase delay of about 90 °. Can always obtain the maximum vibration reduction effect.
[0028]
(II) The oscillation of the liquid between the liquid tanks is basically carried out passively by the oscillation of the offshore structure, and this is promoted or suppressed by the Lorentz force, and the oscillation cycle of the offshore structure is reduced. Since it is only adapted to changes, the power required to generate the Lorentz force is negligible, and it does not require a large inrush current as in the case of using a motor, etc. Can be greatly reduced.
[0029]
(III) Since a mechanically movable part is not required and the structure can be extremely simple, it can be used continuously over a long period of time, and the burden of maintenance work can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of the present invention.
FIG. 2 is a perspective view showing details of the communication pipe of FIG. 1;
FIG. 3 is a conceptual diagram showing a control system in an example of an embodiment of the present invention.
FIG. 4 is a schematic view showing a conventional example.
[Explanation of symbols]
1 Liquid 2 Liquid tank 3 Ship (marine structure)
4 Communication pipe 6 Permanent magnet 7 Power supply 8 Inverter 9 Electrode 10 Controller 12 Angular velocity meter (swing detection means)
13 Angular velocity signal (oscillation signal)
14 Flow meter 15 Flow signal

Claims (1)

導電性を有する液体を貯蔵して海洋構造物に固定された一対の液体槽と、該各液体槽の底部同士を連通し且つ二組の対向面から成る矩形管として形成された連通管と、該連通管の流路方向に対し略直角となる向きに磁力線を形成し得るよう前記連通管の一方の対向面の外側に夫々配置された一対の永久磁石と、前記連通管の流路方向に対し略直角で且つ前記永久磁石による磁力線の向きに対しても略直角となる向きに直流電流を流し得るよう前記連通管の他方の対向面の内側に夫々配置された一対の電極と、前記海洋構造物の揺動を検出する揺動検出手段と、前記連通管を流通する液体の流量を計測する流量計と、前記電極に対し電源から給電される直流電流の極性反転及び電流値の増減を行うインバータと、前記揺動検出手段からの揺動信号及び前記流量計からの流量信号に基づいて前記各液体槽間の液体の揺動が海洋構造物の揺動の周期と対応し且つ約90゜の位相遅れとなるよう前記インバータを制御して前記液体に適宜なローレンツ力を作用せしめる制御装置とを備えたことを特徴とする海洋構造物の減揺装置。A pair of liquid bath which is fixed to the marine structures by storing liquid having conductivity, a communicating tube formed as a rectangular pipe made of communicating with and two sets of opposing surfaces of the bottom portions of the respective liquid bath, A pair of permanent magnets arranged on the outside of one opposing surface of the communication pipe so as to form magnetic lines of force in a direction substantially perpendicular to the flow path direction of the communication pipe, and in the flow path direction of the communication pipe A pair of electrodes respectively disposed on the inner side of the other opposing surface of the communication pipe so as to allow a direct current to flow in a direction substantially perpendicular to the direction of the magnetic lines of force by the permanent magnet, and the ocean Swing detection means for detecting the swing of the structure, a flow meter for measuring the flow rate of the liquid flowing through the communication pipe, polarity inversion of the direct current supplied from the power source to the electrodes, and increase / decrease of the current value An inverter to perform and a swing signal from the swing detection means And the inverter is controlled based on the flow rate signal from the flowmeter so that the oscillation of the liquid between the liquid tanks corresponds to the oscillation cycle of the offshore structure and has a phase delay of about 90 °. An anti-sway device for an offshore structure, comprising: a control device that applies an appropriate Lorentz force to a liquid.
JP09246596A 1996-04-15 1996-04-15 Marine structure anti-vibration equipment Expired - Fee Related JP3743054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09246596A JP3743054B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09246596A JP3743054B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Publications (2)

Publication Number Publication Date
JPH09277985A JPH09277985A (en) 1997-10-28
JP3743054B2 true JP3743054B2 (en) 2006-02-08

Family

ID=14055103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09246596A Expired - Fee Related JP3743054B2 (en) 1996-04-15 1996-04-15 Marine structure anti-vibration equipment

Country Status (1)

Country Link
JP (1) JP3743054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2656744C1 (en) * 2017-06-06 2018-06-06 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Passive floating craft motion stabilizer
RU2656745C1 (en) * 2017-06-06 2018-06-06 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Passive floating craft motion stabilizer
RU2717402C2 (en) * 2017-06-06 2020-03-23 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Passive floating marine stabilizer means

Also Published As

Publication number Publication date
JPH09277985A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
KR970007224B1 (en) Apparatus for reducing rocking motion of marine floating structure
US7436082B2 (en) Rocking motion charging device using faraday principle
JP3743054B2 (en) Marine structure anti-vibration equipment
CN108313232A (en) Combined type ship stabilizer based on two-dimensional vector propeller and moving heavy object
JP2012096601A (en) Oscillation reducing device for floating body
KR20130049770A (en) Electromagnetic vibration suppression device and electromagnetic vibration suppression control program
JP3709605B2 (en) Marine structure anti-vibration equipment
KR20160077955A (en) a ship including a power generating system of oscillating water column type
KR102386008B1 (en) A system that generates electrical energy from waves in the ocean
Takeda et al. Flow control of seawater with a diverging duct by MHD separation method
JP2020085635A (en) Tank test equipment, tank test system, and tank test method
JPH09142380A (en) Rolling reducing device for floating body structure
KR101534164B1 (en) Panel-type magnetohydrodynamic propulsion apparatus and the ship comprising the apparatus
JP2011214146A (en) Electromagnetic vibration suppression device, and electromagnetic vibration suppression control program
JP4596999B2 (en) Control method of anti-vibration tank system
JPS6137158B2 (en)
CN1586984A (en) Internal magnetic type magnetic fluid rock reducer for ship
JP2006001436A (en) Method of controlling variable period type anti-rolling tank device
CN220056310U (en) Device for directly controlling flow rate of conductive liquid containing particles by electromagnetic force
JP3127496B2 (en) Hull motion reduction device
CN202193190U (en) Rotary-column rudder stabilization system and ship provided therewith
JPH07236205A (en) Rolling suppressor for vehicle in magnetic levitation train
KR102014636B1 (en) Anti-rolling pendulum-type transverse shaking reduction device and method using electromagnetic force
JP2611573B2 (en) Offshore structure rocking device
CN2744598Y (en) External magnet type magnetic fluid roll-resisting device for ship

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees