JPH07236205A - Rolling suppressor for vehicle in magnetic levitation train - Google Patents

Rolling suppressor for vehicle in magnetic levitation train

Info

Publication number
JPH07236205A
JPH07236205A JP6023953A JP2395394A JPH07236205A JP H07236205 A JPH07236205 A JP H07236205A JP 6023953 A JP6023953 A JP 6023953A JP 2395394 A JP2395394 A JP 2395394A JP H07236205 A JPH07236205 A JP H07236205A
Authority
JP
Japan
Prior art keywords
vehicle
coil
swing
magnetic levitation
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6023953A
Other languages
Japanese (ja)
Inventor
Yoko Furukawa
陽子 古川
Eiji Fukumoto
英士 福本
Takeshi Yoshioka
健 吉岡
Teruhiro Takizawa
照広 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6023953A priority Critical patent/JPH07236205A/en
Publication of JPH07236205A publication Critical patent/JPH07236205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Vehicles With Linear Motors And Vehicles That Are Magnetically Levitated (AREA)

Abstract

PURPOSE:To provide a safety magnetic levitation system by suppressing the rolling of vehicle at the time of running of train and reducing the eddy current heating caused by the rocking of vehicle thereby preventing a superconducting magnet from quenching. CONSTITUTION:A magnetic levitation system comprising levitation coils 2a, 2b and thrust coils 3a, 3b installed on the ground track side and a superconducting magnet mounted on a vehicle 1 is further provided with a unit 7 for detecting the rocking of the vehicle, and a controller for the amplitude or frequency of current flowing through the thrust coil. The current values and/or the driving frequencies are controlled for the thrust coils on the left and right of a track to regulate the thrust thus suppressing the rolling of the vehicle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、地上軌道側に設置され
た浮上コイル及び推進コイルと、車両に搭載された超電
導磁石からなる磁気浮上システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic levitation system comprising a levitation coil and a propulsion coil installed on the ground track side, and a superconducting magnet mounted on a vehicle.

【0002】[0002]

【従来の技術】従来の磁気浮上システムは、軌道の左右
がヌルフラックスケーブルで接続された8の字型の浮上
コイルと、レーストラック型の推進コイルが、地上軌道
に設置され、その軌道を超電導磁石を搭載した車両が通
過する構造になっている。推進コイルから得た推力で、
車両の超電導磁石が、浮上コイルを通過することによ
り、浮上コイルに生じた誘導電流が、浮上力及び案内力
を車両の超電導磁石に及ぼす。
2. Description of the Related Art In a conventional magnetic levitation system, an 8-shaped levitation coil whose right and left sides are connected by null flux cables and a racetrack type propulsion coil are installed on a ground track, and the track is superconducting. It has a structure that allows vehicles equipped with magnets to pass through. With the thrust obtained from the propulsion coil,
When the superconducting magnet of the vehicle passes through the levitation coil, an induced current generated in the levitation coil exerts a levitation force and a guiding force on the superconducting magnet of the vehicle.

【0003】問題となる車両揺動は、空気抵抗や、地上
軌道側コイルの設置誤差に基づく左右の推力のアンバラ
ンスなど、種々な要因で生じる。これに対し、従来はヌ
ルフラックスケーブルで、浮上コイルに案内力を生じさ
せる他は、積極的に車両揺動を抑制する手段は講じられ
ていなかった。
The problem of vehicle swinging is caused by various factors such as air resistance and imbalance between left and right thrust forces due to installation errors of ground track side coils. On the other hand, conventionally, a null flux cable has not been provided with any means for positively suppressing the vehicle swing except for generating a guiding force in the levitation coil.

【0004】浮上コイルは上下に置かれた二つのコイル
が8の字に接続されたものである。超電導コイルが通過
すると、上下に同じ向きの誘導電流が誘起されるが、超
電導コイルの沈み込み分だけ、下側の浮上コイルの起電
力が大きくなる。これによって、8の字コイルには上下
のコイルで起電力が打消あった結果に残る誘導電流が流
れる。この電流が超電導磁石の磁場に作用して浮上力を
生じる。
The levitation coil is a coil in which two coils placed above and below are connected in a figure eight shape. When the superconducting coil passes, induced currents in the same direction are induced in the upper and lower directions, but the electromotive force of the lower levitation coil increases by the amount of the subduction of the superconducting coil. As a result, an induced current that flows as a result of the electromotive force being canceled by the upper and lower coils flows in the 8-shaped coil. This current acts on the magnetic field of the superconducting magnet to generate a levitation force.

【0005】ヌルフラックスケーブルは、この軌道の両
側で対面している浮上用8の字コイルを接続する2本の
ケーブルで、車両が片側の軌道に近寄ってきた場合に、
これを軌道の中心に押し戻そうとする案内力を生じさせ
る。仮に、超電導コイルの沈み込みを無視すると、超電
導磁石が片側の軌道に寄ると、近づいた側の浮上コイル
では反発力が働き、浮上コイルの上下では同じ向きで同
じ大きさの起電力が生じる。ヌルフラックスケーブルが
ない場合、上下の8の字接続ではこの起電力はキャンセ
ルされ、反発力は生じない。しかし、ヌルフラックスケ
ーブルにより、上下コイルの接続点でぶつかった電流
は、ケーブルを通って対面の8の字コイルに流れ込む。
対面の8の字コイルでは、超電導磁石に対して吸引力が
働く。このため、軌道の両側では逆向きの起電力が誘起
するのでヌルフラックスケーブルを通じた電流のやり取
りができる。従って、軌道の両側でそれぞれ生じる反発
力,吸引力が車両を軌道の中心を走らせるための案内力
として働き、車両の揺動も抑制する方向に働く。
Null-flux cables are two cables that connect the levitation 8-shaped coils facing each other on both sides of this track, and when the vehicle approaches a track on one side,
This creates a guiding force that pushes it back into the center of the track. If the subduction of the superconducting coil is ignored, when the superconducting magnet approaches the orbit on one side, repulsive force acts on the levitation coil on the approaching side, and electromotive force of the same magnitude is generated in the same direction above and below the levitation coil. If there is no null flux cable, this electromotive force is canceled and the repulsive force does not occur in the upper and lower 8-shaped connections. However, due to the null flux cable, the current colliding at the connection point between the upper and lower coils flows through the cable and into the figure 8 coil on the opposite side.
In the facing 8-shaped coil, an attractive force acts on the superconducting magnet. For this reason, opposite electromotive forces are induced on both sides of the track, so that current can be exchanged through the null flux cable. Therefore, the repulsive force and the suction force respectively generated on both sides of the track act as a guide force for causing the vehicle to run in the center of the track, and also work in the direction of suppressing the swing of the vehicle.

【0006】しかし、実際には超電導磁石はある沈み込
み量を持って走行している。前述のような浮上コイルに
流れる誘導電流によって生じる案内力は、走行速度や沈
み込み量に左右され、車両の揺動量に対して常に一定に
作用しない。例えば、車両の走行速度が低速では、起電
力が小さくなり、案内力も小さくなる。従って、揺動量
が増大した場合に、積極的に車両揺動を抑制する対策
は、従来なされていない。
However, in reality, the superconducting magnet runs with a certain amount of depression. The guide force generated by the induced current flowing through the levitation coil as described above depends on the traveling speed and the amount of sinking, and does not always act uniformly on the amount of swing of the vehicle. For example, when the traveling speed of the vehicle is low, the electromotive force is small and the guiding force is small. Therefore, conventionally, no measure has been taken to positively suppress the vehicle swing when the swing amount increases.

【0007】[0007]

【発明が解決しようとする課題】磁気浮上システムはそ
の特有の性質のため、以下のような要求を持つ。まず超
電導磁石は、真空断熱容器,輻射熱シールド,超電導コ
イル容器、及び超電導コイルで構成される。真空断熱容
器,輻射熱シールドは、外部からの熱伝達や輻射による
熱侵入を低減し、超電導破壊(クエンチ)防止を目的と
するものである。超電導コイルは、臨界温度以下で超電
導状態を示すが、外部からの熱侵入や、自らの渦電流発
熱によって臨界温度を超えるとクエンチを生じる。クエ
ンチが生じると、磁石の磁場は急速に消滅し、浮上力,
推進力が得られず、走行障害となる。従って、磁気浮上
システムを健全に運営するには、クエンチが生じないよ
うに万全の対策をすることが必要である。
The magnetic levitation system has the following requirements due to its unique properties. First, the superconducting magnet is composed of a vacuum heat insulating container, a radiant heat shield, a superconducting coil container, and a superconducting coil. The vacuum heat insulating container and the radiant heat shield are intended to prevent heat conduction from the outside and heat intrusion due to radiation, and prevent superconducting breakdown (quenching). The superconducting coil exhibits a superconducting state at a temperature below the critical temperature, but quenches when the temperature exceeds the critical temperature due to heat intrusion from the outside or eddy current heat generation of itself. When the quench occurs, the magnetic field of the magnet disappears rapidly and the levitation force,
Propulsive force cannot be obtained, which causes driving obstacles. Therefore, in order to operate the magnetic levitation system soundly, it is necessary to take thorough measures to prevent quenching.

【0008】クエンチの原因は、前述のように、外部か
らの熱侵入と渦電流発熱が考えられるが、ここでは超電
導コイル容器における渦電流発熱を対象とする。渦電流
発熱は、外部の磁場変動を受けて、渦電流が生じたこと
による発熱である。磁場変動源は、第一に推進コイルや
浮上コイルが不連続に置かれている為に生じる脈動磁
場、第二に真空断熱容器や輻射熱シールドが振動して、
超電導コイルの持つ静磁場を横切ることによって生じる
渦電流のつくる磁場が考えられる。これらの磁場による
発熱対策は、主として車両が浮上走行する100Hzから
300Hzを対象としてきた。周波数は、推進コイルに通
電する電流の周波数で、車両の走行速度に対応する。例
えば、309Hzが車両の定常走行速度500km/hであ
る。
As described above, the cause of quenching is considered to be heat intrusion from the outside and eddy current heat generation, but here, eddy current heat generation in the superconducting coil container is targeted. Eddy current heat generation is heat generation due to the generation of eddy current in response to an external magnetic field change. The magnetic field fluctuation source is, firstly, the pulsating magnetic field generated because the propulsion coil and the levitation coil are discontinuously placed, and secondly, the vacuum heat insulation container and the radiation heat shield vibrate.
A magnetic field created by an eddy current generated by crossing the static magnetic field of the superconducting coil is considered. The countermeasures against heat generated by these magnetic fields have been mainly targeted at 100 Hz to 300 Hz at which the vehicle levitates. The frequency is the frequency of the current passed through the propulsion coil and corresponds to the traveling speed of the vehicle. For example, 309 Hz is the steady running speed of the vehicle of 500 km / h.

【0009】第一の脈動磁場による発熱は、特にこの周
波数域では非常に小さく、ほとんど問題とならなかっ
た。これは、真空断熱容器や輻射熱シールドが、電気良
導体のアルミ製で、脈動磁場に対して渦電流を流し、超
電導コイル容器や超電導コイルに対する磁場遮蔽効果を
持つためであった。また、第二の振動による渦電流のつ
くる磁場による発熱に対しては、特願平3−59958号や、
特願平3−239900 号明細書に示されるように、超電導コ
イル容器に低電気抵抗層を付着し、渦電流が流れても発
熱は冷却能力の許容値内に収まるように対策している。
通常、超電導コイルは液体ヘリウムで冷却され、車載の
冷凍機の液体ヘリウムの液化能力は1クライオスタット
当り5Wである。
The heat generated by the first pulsating magnetic field was very small, especially in this frequency range, and was hardly a problem. This is because the vacuum heat insulating container and the radiant heat shield are made of aluminum, which is a good electric conductor, and have an effect of shielding the superconducting coil container and the superconducting coil from the eddy current with respect to the pulsating magnetic field. Regarding heat generation by the magnetic field created by the eddy current due to the second vibration, Japanese Patent Application No. 3-59958 and
As shown in Japanese Patent Application No. 3-239900, a low electric resistance layer is attached to the superconducting coil container so that even if an eddy current flows, heat is generated within the allowable cooling capacity.
Normally, the superconducting coil is cooled by liquid helium, and the liquid helium liquefaction capacity of the on-vehicle refrigerator is 5 W per cryostat.

【0010】ところが、この2種類の渦電流発熱の他に
も、車両揺動による渦電流発熱を考慮する必要がある。
車両は浮上して走行するため、軌道の左右方向の中心
を、浮上コイル中心から40mm沈み込んで走行するのが
理想であるが、空気抵抗や推力のアンバランスによって
上下左右に揺動しながら走行する。この揺動は、地上コ
イルから受ける磁場の振幅を変化させるため、超電導磁
石の各部で受ける磁場は、揺動の振幅,周波数に対応す
る波に、走行速度に応じて生じる振幅と周波数を持つ波
が重なったようなものになる。従って、地上コイルの磁
場によって超電導磁石の各部に生じる渦電流は、走行速
度に相当する周波数で生じるものと、揺動の周波数で生
じるものの2種類が生じる。ここで、車両揺動による渦
電流発熱の特徴は、周波数が非常に低いことである。経
験的に車両揺動は、4から5Hzで、上下,左右に±4か
ら5mmと言われている。この条件で超電導コイル容器に
生じる発熱を概算すると、1クライオスタット当り約1
0Wとなり、大幅に許容値を上回る。これは4から5Hz
の周波数域では、真空断熱容器や輻射熱シールドに十分
な渦電流が流れず、地上コイルの磁場変動に対して、磁
気遮蔽効果を持たないためである。従って、超電導コイ
ル容器は地上コイル磁場の変動を直に受ける。しかも超
電導コイル容器に、渦電流発熱低減のための低電気抵抗
層を付着している場合、この周波数域でも外部からの磁
場変動を遮蔽するのに十分な渦電流が流れるため、高発
熱に結び付く。
However, in addition to these two types of eddy current heat generation, it is necessary to consider eddy current heat generation due to vehicle swing.
Since the vehicle levitates and runs, it is ideal to run with the center of the track in the left-right direction depressed by 40 mm from the center of the levitation coil. However, the vehicle oscillates vertically and horizontally due to imbalance in air resistance and thrust. To do. Since this swing changes the amplitude of the magnetic field received from the ground coil, the magnetic field received at each part of the superconducting magnet is a wave corresponding to the amplitude and frequency of the swing, and a wave having an amplitude and frequency generated according to the traveling speed. Are like overlapping. Therefore, there are two types of eddy currents generated in each part of the superconducting magnet due to the magnetic field of the ground coil, one generated at a frequency corresponding to the traveling speed and one generated at a swing frequency. Here, the characteristic of the eddy current heat generation due to the vehicle swing is that the frequency is very low. It is empirically said that the vehicle swing is 4 to 5 Hz, and is ± 4 to 5 mm vertically and horizontally. When the heat generated in the superconducting coil container under these conditions is estimated, it is about 1 per cryostat.
It becomes 0W, which is significantly higher than the allowable value. This is 4 to 5Hz
This is because in the frequency range of, sufficient eddy currents do not flow in the vacuum insulation container and the radiant heat shield, and there is no magnetic shielding effect against the magnetic field fluctuation of the ground coil. Therefore, the superconducting coil container is directly subjected to the fluctuation of the ground coil magnetic field. Moreover, when a low electric resistance layer is attached to the superconducting coil container to reduce eddy current heat generation, sufficient eddy current flows to shield magnetic field fluctuations from the outside even in this frequency range, resulting in high heat generation. .

【0011】従来、超電導コイル容器に生じる発熱を低
減する手段は、超電導コイル容器に低電気抵抗層を付着
し、渦電流が流れても、トータルの発熱は許容値を超え
ないようにすることであった。また、外部の変動磁場に
対しては、真空断熱容器等の電気抵抗を低減し、ここに
渦電流を十分流すことによって、超電導コイル容器に加
わる変動磁場を遮蔽し、渦電流を抑制することであっ
た。ところが、車両揺動に関しては、低電気抵抗層とし
て、純アルミを超電導コイル容器に付着した条件でも約
10Wの発熱となり、これ以上低抵抗化を図ることは、
種々の条件から困難であり、実際的でない。また現状で
は、真空断熱容器が磁場遮蔽効果を持つのは、20Hz程
度からであり、この周波数を4Hzに引き下げるために
は、常温の真空断熱容器の抵抗を、液体ヘリウム温度の
純アルミ並みにしなければならない。従って、これもま
た実際的ではない。結局、車両揺動による渦電流発熱を
低減し、クエンチを起こさないようにするためには根本
原因である車両揺動を抑制するほかない。
Conventionally, a means for reducing the heat generated in the superconducting coil container is to attach a low electric resistance layer to the superconducting coil container so that the total heat generation does not exceed an allowable value even when an eddy current flows. there were. In addition, by reducing the electrical resistance of the vacuum insulation container, etc., against an external fluctuating magnetic field, and sufficiently flowing an eddy current there, the fluctuating magnetic field applied to the superconducting coil container is shielded and eddy current is suppressed. there were. However, with regard to vehicle swing, even if pure aluminum is adhered to the superconducting coil container as a low electric resistance layer, heat generation is about 10 W, and further reduction in resistance is required.
It is difficult and impractical from various conditions. At present, the vacuum insulation container has a magnetic field shielding effect from about 20 Hz. In order to reduce this frequency to 4 Hz, the resistance of the vacuum insulation container at room temperature must be the same as that of pure aluminum at liquid helium temperature. I have to. Therefore, this is also impractical. After all, in order to reduce eddy current heat generation due to vehicle swing and prevent quenching, vehicle swing, which is the root cause, must be suppressed.

【0012】本発明の目的は、超電導コイル容器の発熱
の原因となる車両揺動を抑制し、揺動が原因となる超電
導コイル容器の渦電流発熱を低減して、クエンチを生じ
にくい磁気浮上システムを提供することにある。
An object of the present invention is to suppress vehicle oscillation that causes heat generation in the superconducting coil container and reduce eddy current heat generation in the superconducting coil container that causes oscillation to prevent quenching. To provide.

【0013】[0013]

【課題を解決するための手段】前記課題は、地上軌道側
に設置された浮上コイル及び推進コイルと、車両に搭載
された超電導磁石からなる磁気浮上システムにおいて、
車両の揺動を検出する装置と、推進コイル電流の電流値
または周波数の制御装置を有し、車両揺動を抑制するよ
うに、軌道の左右の推進コイルの電流値および/または
駆動周波数を制御し、推力を調整することにより、車両
の揺動を抑制する装置を設けることによって解決され
る。また、地上軌道側に設置された浮上コイル及び推進
コイルと、車両に搭載された超電導磁石からなる磁気浮
上システムにおいて、車両の揺動を検出する装置を有
し、揺動検出装置で検出した揺動の振幅と周波数を入力
し、揺動を抑制する方向に作用する軌道左右の各々の推
進コイルの電流値と周波数を出力する演算部を有し、演
算部からの出力信号で推進コイルの電流値または周波数
を制御する制御装置を有し、軌道の左右の推進コイルの
電流値および/または駆動周波数を制御し、推力を調整
することにより、車両の揺動を抑制する装置を設けるこ
とにより解決される。
[Means for Solving the Problems] The above problem is a magnetic levitation system including a levitation coil and a propulsion coil installed on the ground track side, and a superconducting magnet mounted on a vehicle.
It has a device for detecting vehicle swing and a controller for controlling the current value or frequency of the propulsion coil current, and controls the current value and / or drive frequency of the propulsion coils on the left and right of the track so as to suppress vehicle swing. However, the problem is solved by providing a device for suppressing the swing of the vehicle by adjusting the thrust. Further, in a magnetic levitation system consisting of a levitation coil and a propulsion coil installed on the ground track side and a superconducting magnet mounted on a vehicle, a device for detecting the sway of the vehicle is provided, and the sway detected by the sway detection device is included. It has a calculation unit that inputs the amplitude and frequency of the motion and outputs the current value and frequency of each of the propulsion coils on the left and right of the track that acts in the direction of suppressing the oscillation, and outputs the current of the propulsion coil by the output signal from the calculation unit. Solved by providing a device that has a control device that controls the value or frequency, controls the current value and / or the drive frequency of the propulsion coils on the left and right of the track, and adjusts the thrust to suppress vehicle oscillation. To be done.

【0014】[0014]

【作用】車両揺動の原因は、空気抵抗や、地上コイルの
設置誤差等に基づく軌道両側での推力のアンバランスが
考えられる。車両揺動の原因を除くことが揺動の抑制に
は最も効果的であるが、浮上走行する以上、空気抵抗は
避けられない現象であるし、車両は常に、走行速度や沈
み込み量に応じた釣合い位置を探して移動する。従っ
て、車両の揺動は避けられないものといえる。しかし、
揺動自体は避けられないものでも、揺動の振幅,周波数
を制御することによって、超電導コイル容器に生じる渦
電流を低減し、発熱を抑えてクエンチを防止することは
可能である。前述のように、車両揺動は、列車が浮上走
行することから生じる。列車が浮上走行できるのは、車
載の超電導磁石の持つ磁場と、地上コイルのつくる磁場
との間で、吸引あるいは反発力が働くためである。この
力は、いわばばねに相当し、車両を、走行速度や重量に
応じた位置に落ち着かせようとする。従って、揺動を抑
制するためにはこのばねを剛にすればよい。従来のシス
テムでは、揺動を抑制するのに働くばねは、浮上コイル
で生じる誘導電流のつくる磁場に相当する。つまり、浮
上コイルに流れる誘導電流を大きくしてやれば、揺動に
対するばねは強くなり、変位を抑制できる。しかし、浮
上コイル電流は電源を持たないので、これを外部から制
御することはできない。また、揺動の抑制の為に電源を
設けるのではコストがかかり、現実的でない。そこで、
推進コイルに着目した。推進コイルは軌道の両側で独立
の電源を持つため、独立にそれを制御することが可能で
ある。推進コイルによって生じる推力のベクトルは、完
全に進行方向に一致するのではなく、案内方向成分も持
つ。この推進力の案内方向成分が、車両揺動を抑制する
ばねとして働き得る。そこで、揺動を抑制する手段とし
て、この推進コイル電流を制御する。しかし、推進コイ
ル電流をむやみに大きくしたのでは、電力コストを増加
させる上、力率を狂わせ、脱調しかねない。そこで、車
両揺動の振幅と周波数を検出する装置を設け、検出した
揺動量に見合うように、推進コイル電流を増減して、車
両揺動を抑制する。揺動検出装置の他に、新たに付加す
るのは、この電流増減量の演算部だけである。これによ
って、電力やその他のコストをほとんどかけずに、車両
揺動の制御が可能になる。従って、揺動変位が抑制され
るのに応じて、渦電流発熱が低減し、超電導コイルの温
度上昇によるクエンチの危険が防止される。
The action of the vehicle may be caused by air resistance and imbalance of thrusts on both sides of the track due to installation errors of the ground coil. Removing the cause of vehicle sway is the most effective way to suppress sway, but as long as the vehicle is levitating, air resistance is an unavoidable phenomenon, and the vehicle always responds to the traveling speed and the amount of sinking. Move to find a balanced position. Therefore, it can be said that swinging of the vehicle is inevitable. But,
Although the oscillation itself is unavoidable, it is possible to reduce the eddy current generated in the superconducting coil container by controlling the amplitude and frequency of the oscillation to suppress heat generation and prevent quenching. As described above, the vehicle swing occurs because the train floats. The reason why the train can levitate is that attraction or repulsion acts between the magnetic field of the superconducting magnet mounted on the vehicle and the magnetic field of the ground coil. This force is, so to speak, a spring and tries to settle the vehicle at a position according to the traveling speed and weight. Therefore, in order to suppress the swing, this spring may be made rigid. In the conventional system, the spring that acts to suppress the oscillation corresponds to the magnetic field created by the induced current generated in the levitation coil. In other words, if the induced current flowing in the levitation coil is increased, the spring against rocking becomes stronger and displacement can be suppressed. However, since the levitation coil current has no power source, it cannot be controlled externally. Further, it is not realistic to provide a power source for suppressing the swing, which is costly. Therefore,
Focused on the propulsion coil. Since the propulsion coil has independent power sources on both sides of the track, it is possible to control it independently. The thrust vector generated by the propulsion coil does not completely coincide with the traveling direction but also has a guide direction component. The guide direction component of this propulsive force can act as a spring that suppresses vehicle swing. Therefore, this propulsion coil current is controlled as a means for suppressing oscillation. However, if the propulsion coil current is excessively increased, the power cost is increased, the power factor is deviated, and step out may occur. Therefore, a device for detecting the amplitude and frequency of vehicle swing is provided, and the vehicle coil swing is suppressed by increasing or decreasing the propulsion coil current so as to match the detected swing amount. In addition to the fluctuation detecting device, only the calculation unit of the current increase / decrease amount is newly added. This allows control of vehicle swing with little power and other costs. Therefore, as the swing displacement is suppressed, the eddy current heat generation is reduced, and the risk of quenching due to the temperature rise of the superconducting coil is prevented.

【0015】[0015]

【実施例】以下、本発明の実施例を図1により説明す
る。1は磁気浮上列車車両、2は地上軌道側の浮上コイ
ル群、3は推進コイル群である。4は推進コイルに電力
を供給する電力変換器である。a,bはそれぞれ進行方
向に対する軌道の右側と左側を示す。5は、地上の軌道
に設置された、車両揺動を検出するためのセンサであ
り、地上軌道の壁面から車両までの距離を測定する。こ
こで検出した信号はケーブル6を通って、揺動検出装置
7に送られる。揺動検出装置7では、センサ5から送ら
れた壁面から車両までの距離の情報を、揺動の振幅と、
周波数,位相の情報に変換する。この情報は更にケーブ
ル8を通って、推進コイル電流演算部9に送られる。推
進コイル電流演算部では、揺動の情報に基づき、揺動を
抑制するのに効果のある推進コイル電流の電流値,振
幅,位相を、軌道の左右についてそれぞれ計算し、その
信号をケーブル10を通じて、それぞれ信号制御部11
に送る。信号制御部11からは、制御信号がケーブル1
2を通じて、電力変換器4に送られ、電力変換器4か
ら、適正な推進コイル電流が通電される。これによっ
て、車両の揺動は抑制されるため、車両揺動による渦電
流発熱は低減され、従って、クエンチを生じにくい磁気
浮上システムが提供される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 is a magnetic levitation train vehicle, 2 is a levitation coil group on the ground track side, and 3 is a propulsion coil group. Reference numeral 4 is a power converter that supplies power to the propulsion coil. a and b show the right side and the left side of the track with respect to the traveling direction, respectively. Reference numeral 5 denotes a sensor installed on the ground track for detecting vehicle swing, and measures the distance from the wall surface of the ground track to the vehicle. The signal detected here is sent to the swing detecting device 7 through the cable 6. In the swing detection device 7, the information on the distance from the wall surface to the vehicle sent from the sensor 5 is used as the swing amplitude and
Convert to frequency and phase information. This information is further sent to the propulsion coil current calculation unit 9 through the cable 8. The propulsion coil current calculator calculates the current value, amplitude, and phase of the propulsion coil current, which is effective in suppressing the fluctuation, for each of the left and right sides of the track, based on the fluctuation information, and outputs the signal through the cable 10. , The signal control unit 11 respectively
Send to. A control signal is sent from the signal control unit 11 to the cable 1.
2 to the electric power converter 4, and the appropriate propulsion coil current is supplied from the electric power converter 4. As a result, the swing of the vehicle is suppressed, so that the eddy current heat generation due to the swing of the vehicle is reduced, and therefore, the magnetic levitation system in which quench is less likely to occur is provided.

【0016】本発明の他の実施例を図2により説明す
る。1は磁気浮上列車車両、2は地上軌道側の浮上コイ
ル群、3は推進コイル群である。4は推進コイルに電力
を供給する電力変換器である。a,bはそれぞれ進行方
向に対する軌道の右側と左側を示す。13は、各車両に
設置された、車両揺動を検出するための加速度計であ
り、揺動の振幅と、周波数の情報を検出する。ここで検
出した信号はケーブル14を通って発信装置15に送ら
れ、さらに通信衛星16を介して、受信装置17に送ら
れる。受信装置17から、揺動の振幅と、周波数の情報
はケーブル8を通じて、推進コイル電流演算部9に送ら
れる。推進コイル電流演算部では、揺動の情報に基づ
き、揺動を抑制するのに効果のある推進コイル電流の電
流値,振幅,位相を、軌道の左右についてそれぞれ計算
し、その信号をケーブル10を通じて、それぞれ信号制
御部11に送る。信号制御部11からは、制御信号がケ
ーブル12を通じて、電力変換器4に送られ、電力変換
器4から、適正な推進コイル電流が通電される。これに
よって、車両の揺動は抑制されるため、車両揺動による
渦電流発熱は低減され、従って、クエンチを生じにくい
磁気浮上システムが提供される。
Another embodiment of the present invention will be described with reference to FIG. 1 is a magnetic levitation train vehicle, 2 is a levitation coil group on the ground track side, and 3 is a propulsion coil group. Reference numeral 4 is a power converter that supplies power to the propulsion coil. a and b show the right side and the left side of the track with respect to the traveling direction, respectively. Reference numeral 13 denotes an accelerometer installed in each vehicle for detecting vehicle swing, which detects swing amplitude and frequency information. The signal detected here is sent to the transmitting device 15 through the cable 14 and further to the receiving device 17 through the communication satellite 16. Information on the swing amplitude and frequency is sent from the receiving device 17 to the propulsion coil current calculation unit 9 through the cable 8. The propulsion coil current calculator calculates the current value, amplitude, and phase of the propulsion coil current, which is effective in suppressing the fluctuation, for each of the left and right sides of the track, based on the fluctuation information, and outputs the signal through the cable 10. , Respectively to the signal control unit 11. A control signal is sent from the signal control unit 11 to the power converter 4 through the cable 12, and an appropriate propulsion coil current is supplied from the power converter 4. As a result, the swing of the vehicle is suppressed, so that the eddy current heat generation due to the swing of the vehicle is reduced, and therefore, the magnetic levitation system in which quench is less likely to occur is provided.

【0017】[0017]

【発明の効果】本発明によれば、推進コイル電流を制御
することにより、アクティブに車両揺動を抑制できる。
さらに、車両揺動を抑制できるので、超電導コイル容器
に誘起される渦電流も抑制され、従って、超電導コイル
容器に発熱が生じてクエンチの原因となることも防止で
きる。
According to the present invention, vehicle swing can be actively suppressed by controlling the propulsion coil current.
Further, since the vehicle swing can be suppressed, the eddy current induced in the superconducting coil container is also suppressed, and therefore, it is also possible to prevent heat generation in the superconducting coil container and cause quenching.

【図面の簡単な説明】[Brief description of drawings]

【図1】地上のセンサで揺動を検出する場合の本発明の
一実施例の説明図。
FIG. 1 is an explanatory diagram of an embodiment of the present invention in the case where a ground sensor detects a swing.

【図2】車載の加速度計で揺動を検出する場合の本発明
の一実施例の説明図。
FIG. 2 is an explanatory diagram of an embodiment of the present invention in the case of detecting a swing with an in-vehicle accelerometer.

【符号の説明】[Explanation of symbols]

1…磁気浮上列車車両、2…浮上コイル群、3…推進コ
イル群、4…電力変換器、5…揺動検出用センサ、6,
8,10,12,14…ケーブル、7…揺動検出装置、
9…推進コイル電流演算部、11…信号制御部、16…
通信衛星、17…受信装置。
1 ... Magnetic levitation train vehicle, 2 ... Levitating coil group, 3 ... Propulsion coil group, 4 ... Power converter, 5 ... Oscillation detection sensor, 6,
8, 10, 12, 14 ... Cable, 7 ... Swing detection device,
9 ... Propulsion coil current calculator, 11 ... Signal controller, 16 ...
Communication satellite, 17 ... Receiving device.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 滝沢 照広 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Teruhiro Takizawa 3-1, 1-1 Saiwaicho, Hitachi City, Ibaraki Prefecture Hitachi Ltd. Hitachi Works

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】地上軌道側に設置された浮上コイル及び推
進コイルと、車両に搭載された超電導磁石からなる磁気
浮上システムにおいて、前記車両の揺動を検出する装置
と、前記推進コイルの電流値または周波数の制御装置を
有し、前記車両の揺動を抑制するように、軌道の左右の
前記推進コイルの電流値および/または駆動周波数を制
御し、推力を調整することにより車両の揺動を抑制する
ことを特徴とする磁気浮上列車の車両揺動抑制装置。
1. A magnetic levitation system comprising a levitation coil and a propulsion coil installed on the ground track side, and a superconducting magnet mounted on the vehicle, and a device for detecting the oscillation of the vehicle, and a current value of the propulsion coil. Alternatively, it has a frequency control device and controls the current value and / or the drive frequency of the propulsion coils on the left and right of the track so as to suppress the rocking of the vehicle and adjusts the thrust to thereby rock the vehicle. A vehicle sway suppression device for a magnetic levitation train, which is characterized by suppressing.
【請求項2】地上軌道側に設置された浮上コイル及び推
進コイルと、車両に搭載された超電導磁石からなる磁気
浮上システムにおいて、前記車両の揺動を検出する装置
を有し、前記揺動検出装置で検出した揺動の振幅と周波
数を入力し、揺動を抑制する方向に作用する軌道左右の
各々の前記推進コイルの電流値と周波数を出力する演算
部を有し、前記演算部からの出力信号で前記推進コイル
の電流値または周波数を制御する制御装置を有し、軌道
の左右の前記推進コイルの電流値および/または駆動周
波数を制御し、推力を調整することにより、車両の揺動
を抑制することを特徴とする磁気浮上列車の車両揺動抑
制装置。
2. A magnetic levitation system comprising a levitation coil and a propulsion coil installed on the ground track side, and a superconducting magnet mounted on a vehicle, comprising a device for detecting the sway of the vehicle, and the sway detection. It has an arithmetic unit for inputting the amplitude and frequency of the oscillation detected by the device, and for outputting the current value and frequency of each of the propulsion coils on the left and right of the orbit that acts in the direction of suppressing the oscillation. A vehicle having a control device that controls the current value or frequency of the propulsion coil with an output signal, controls the current value and / or drive frequency of the propulsion coil on the left and right of the track, and adjusts the thrust to swing the vehicle. Swing suppressing device for a magnetic levitation train, which suppresses
【請求項3】請求項1または2において、前記車両の揺
動を検出する装置として、車両に設置された加速度計を
用いる車両の揺動を抑制する磁気浮上列車の車両揺動抑
制装置。
3. The vehicle shake suppressing device for a magnetic levitation train according to claim 1, wherein the device for detecting the shake of the vehicle uses an accelerometer installed in the vehicle to suppress the shake of the vehicle.
【請求項4】請求項1または2において、前記車両の揺
動を検出する装置として、地上の軌道に設置されたセン
サを用いる車両の揺動を抑制する磁気浮上列車の車両揺
動抑制装置。
4. The vehicle sway suppressing device for a magnetic levitation train according to claim 1, wherein a sensor installed on a track on the ground is used as a device for detecting the sway of the vehicle.
JP6023953A 1994-02-22 1994-02-22 Rolling suppressor for vehicle in magnetic levitation train Pending JPH07236205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6023953A JPH07236205A (en) 1994-02-22 1994-02-22 Rolling suppressor for vehicle in magnetic levitation train

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6023953A JPH07236205A (en) 1994-02-22 1994-02-22 Rolling suppressor for vehicle in magnetic levitation train

Publications (1)

Publication Number Publication Date
JPH07236205A true JPH07236205A (en) 1995-09-05

Family

ID=12124919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6023953A Pending JPH07236205A (en) 1994-02-22 1994-02-22 Rolling suppressor for vehicle in magnetic levitation train

Country Status (1)

Country Link
JP (1) JPH07236205A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070329A (en) * 2006-09-15 2008-03-27 Railway Technical Res Inst Trouble-detecting sensor of ground coil for magnetic levitation transportation system and system thereof
JP2010252413A (en) * 2009-04-10 2010-11-04 Central Japan Railway Co Magnetic levitation mobile system
CN102298114A (en) * 2011-05-19 2011-12-28 北京航空航天大学 Dynamic test system of magnetic levitation system
JP2019144018A (en) * 2018-02-16 2019-08-29 公益財団法人鉄道総合技術研究所 Temperature estimation method
CN113623318A (en) * 2020-05-07 2021-11-09 株洲中车时代电气股份有限公司 Differential control method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008070329A (en) * 2006-09-15 2008-03-27 Railway Technical Res Inst Trouble-detecting sensor of ground coil for magnetic levitation transportation system and system thereof
JP2010252413A (en) * 2009-04-10 2010-11-04 Central Japan Railway Co Magnetic levitation mobile system
CN102298114A (en) * 2011-05-19 2011-12-28 北京航空航天大学 Dynamic test system of magnetic levitation system
JP2019144018A (en) * 2018-02-16 2019-08-29 公益財団法人鉄道総合技術研究所 Temperature estimation method
CN113623318A (en) * 2020-05-07 2021-11-09 株洲中车时代电气股份有限公司 Differential control method and device

Similar Documents

Publication Publication Date Title
US11787448B2 (en) Hypertube transport system
KR101004511B1 (en) Magnetic suspension system
Lee et al. Review of maglev train technologies
US7448327B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
US5904101A (en) Auxiliary propulsion for magnetically levitated vehicle
CN114734826B (en) Permanent magnet electric suspension system and guiding method thereof
CN106926743A (en) Eddy current retarder and magnetically supported vehicle
CA2437223A1 (en) Monorail system
CN107933374B (en) Magnetic suspension assembly, device and noise control method of magnetic suspension train
CN110803029A (en) Hybrid electric levitation system
JPH07236205A (en) Rolling suppressor for vehicle in magnetic levitation train
US5275112A (en) Integrated null-flux suspension and multiphase propulsion system for magnetically-levitated vehicles
JPH07193914A (en) Synchronous linear motor car
JP4838271B2 (en) Magnetic levitation mechanism
CN206841206U (en) Eddy current retarder and magnetically supported vehicle
Jayawant et al. Electromagnetic launch assistance for space vehicles
JP3810932B2 (en) Non-contact induction current collector
Ohashi Effect of the active damper coils of the superconducting magnetically levitated bogie in case of acceleration
Ohashi et al. Influence of the damper coil system on the levitation characteristics in the superconducting magnetically levitated system in case of SC coil quenching
JP3954047B2 (en) Superconducting magnetic levitation system
CN114496452A (en) Dynamic superconducting magnet and magnetic levitation train
Weh Linear Synchronous motor development for urban and rapid transit systems
KR102289248B1 (en) Emergency Braking System in Subsonic Capsule Train
KR101672898B1 (en) Magnetic levitation train having sensor
KR20140087675A (en) Magnetic levitation system having invertor for current angle