JP3742755B2 - Operation method of air levitation belt conveyor device - Google Patents

Operation method of air levitation belt conveyor device Download PDF

Info

Publication number
JP3742755B2
JP3742755B2 JP2001019368A JP2001019368A JP3742755B2 JP 3742755 B2 JP3742755 B2 JP 3742755B2 JP 2001019368 A JP2001019368 A JP 2001019368A JP 2001019368 A JP2001019368 A JP 2001019368A JP 3742755 B2 JP3742755 B2 JP 3742755B2
Authority
JP
Japan
Prior art keywords
trough
conveyor belt
belt
amount
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001019368A
Other languages
Japanese (ja)
Other versions
JP2002226030A (en
Inventor
晃 山口
朝夫 圃中
重信 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Kawasaki Motors Ltd
Original Assignee
Nippon Steel Corp
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Kawasaki Jukogyo KK filed Critical Nippon Steel Corp
Priority to JP2001019368A priority Critical patent/JP3742755B2/en
Publication of JP2002226030A publication Critical patent/JP2002226030A/en
Application granted granted Critical
Publication of JP3742755B2 publication Critical patent/JP3742755B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Structure Of Belt Conveyors (AREA)
  • Control Of Conveyors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮空気でベルトコンベアを浮上させる方式の空気浮上式ベルトコンベア装置の運転方法に関するものである。
【0002】
【従来の技術】
近年、例えば、火力発電所においては、石炭、石こう及び湿灰、製鉄所においては、鉄鉱石及び副原料等のバラ物(以下「被搬送物」という)を搬送する手段として空気浮上式ベルトコンベアが用いられる場合がある。この空気浮上式ベルトコンベアは、低振動、低騒音であるため、使用場所によっては有用視されている。
このような空気浮上式ベルトコンベアとしては、例えば、特開平9−156739号公報に提示されている技術がある。これは内部に搬送ベルトを有する円筒状トラフを設け、該円筒状トラフの下部の給気口から圧縮空気を供給して被搬送物を積載した前記搬送ベルトを浮上させながら搬送するものである。
【0003】
【発明が解決しようとする課題】
上記のような空気浮上式ベルトコンベアで、被搬送物を搬送した場合に被搬送物の種類によっては、水分を含有する物質も存在し、被搬送物から搬送中に水蒸気を発生することがある。このような水蒸気を発生する物質を搬送するに当たって、例えば、搬送時期が大気温の低い冬場などにおいては、円筒状トラフの鉄皮表面温度も低下しているため、被搬送物から発生する水蒸気はトラフ鉄皮表面において過飽和とならざるを得ない状態となる。
【0004】
円筒状トラフ内がこのような状態になった時には、円筒状トラフの内面壁に接した水蒸気は内面壁において結露し、水滴となって該内面壁を伝って下方部へ流下して行く。通常円筒状トラフの内面壁と搬送ベルトとの間隙は0.5mm程度しかなく、結露した水滴は前記トラフ内面壁と搬送ベルトの間隙内に入り込み、両者間の浮上用空気の流路間隔を狭める働きを起こす。
【0005】
前記トラフの内面壁と搬送ベルトとの間隙を通過して排気口から排出される圧縮空気は、流れ易い個所を流れるため、水滴の流下または付着の少ない個所に集中して優先的に流れるため、吹き抜け現象が発生し搬送ベルトが振動し、この現象が極端になった場合には、搬送ベルトの下面側部が円筒状トラフの内面に接触ることになる。また、空気と水の粘度差により上記間隔を水滴が満たすことにより、急激に搬送ベルトとトラフの内面壁との摩擦係数は増大する。
【0006】
いずれの場合においても、円筒状トラフの内面壁と搬送ベルト間の摩擦抵抗が増大するため、搬送ベルトの駆動プーリの駆動力が大幅に変動(増大)し、駆動モータの負荷が定格値を超え過負荷状態が発生して、該駆動モータが損傷する等安定した搬送を行うに当たって大きな障害となっていた。
前述した結露による水滴の発生は、特に、空気浮上式ベルトコンベアの乗継部で多く発生する傾向があり、また、円筒状トラフの温度が20℃以下になるとこの現象が顕著に現れてくる。
【0007】
ここで、上記したように搬送ベルトの駆動プーリの駆動力が大幅に変動し、不安定な運転状態となると、その変動状態が駆動モータの電流値の変化として現れ、定格電流を越える状態が発生する。その様子の1例(大雨時での運転)を図4に示し、これに対して安定な運転状態(通常時)での駆動モータの電流値の変化の様子の1例を図5に示す。
【0008】
本発明は、上記従来技術の問題点に鑑み、水蒸気を発生するような被搬送物を搬送する場合においても、安定した搬送を可能とする空気浮上式ベルトコンベア装置の運転方法を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明は前記した従来方法における問題点を解決するためになされたものであって、その要旨とするところは、下記手段にある。
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える運転状態となった場合に、コンベアケーシング内で被搬送物に冷風を吹付けて該被搬送物を冷却せしめて前記筒状トラフ内壁面での結露の生成量を抑制し前記駆動モーター電流値が定格値以下の運転状態にする空気浮上式ベルトコンベア装置の運転方法。
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える運転状態となった場合に、前記浮上用圧縮空気量を増加せしめると共に、コンベアケーシング内で被搬送物に冷風を吹付けて該被搬送物を冷却せしめて前記筒状トラフ内壁面での結露の生成量を抑制し前記駆動モーター電流値が定格値以下の運転状態にする空気浮上式ベルトコンベア装置の運転方法。
【0010】
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、前記浮上用圧縮空気量を増加せしめて、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えることなく運転できるようにした空気浮上式ベルトコンベア装置の運転方法。
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、コンベアケーシング内の被搬送物に冷風を吹付けて該被搬送物を冷却して結露生成量を抑制し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流値が定格値を超えることなく運転できるようにした空気浮上式ベルトコンベア装置の運転方法。
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、前記浮上用圧縮空気量を増加せしめると共に、コンベアケーシング内の被搬送物に冷風を吹付けて該被搬送物を冷却して結露生成量を抑制し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えることなく運転できるようにした空気浮上式ベルトコンベア装置の運転方法。
【0011】
) 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内における温度および湿度から筒状トラフ内壁面での結露発生状況を予測し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えること予測された場合、または該駆動モーターの負荷電流が定格値を超える運転状態となった場合に、下記(1)式を満足する様に前記浮上用圧縮空気量(X)および/または筒状トラフ内壁への結露量(Y)を調整して、前記駆動モーター電流値が定格値以内で運転できるようにした空気浮上式ベルトコンベア装置の運転方法。
aX−bY−c>0 ・・・・・(1)
但し、a,b,cは定数
【0012】
【発明の実施の形態】
本発明者らは、このような空気浮上式ベルトコンベアで、例えば、水砕(溶融高炉滓を水で破砕したものであり、通常では平均粒度2mm、最大粒径5mm、含有水分10〜15%、温度40〜70℃を有する)を搬送する際に、水蒸気の発生場所およびその原因について、図2に示した空気浮上式ベルトコンベア装置を用いて調査した。
【0013】
先ず、図2に示した空気浮上式ベルトコンベア装置の1例につき、その構成について以下説明する。
空気浮上式ベルトコンベア装置は、連接する下流側空気浮上式ベルトコンベア1と上流側空気浮上式ベルトコンベア2とを有し、その乗継部にはシュート3を設けている。この上部(上流側)、下部(下流側)空気浮上式ベルトコンベア2、1には各々、キャリア側の搬送コンベアベルト4を内蔵した筒状上トラフ5と、リタン側の搬送コンベアベルト4を内蔵した筒状下トラフ6を、上下に所定距離離間して設置しており、その両端にヘッドプーリ8とテールプーリ9を設けている。
【0014】
さらに、上トラフ5及び下トラフ6の下部(底部)には、搬送ベルト浮上用の圧縮空気を供給するために、複数の箇所に給気口15を設置し、該給気口15に連接した空気供給管(図示せず)と該空気供給管に連接したブロワー(図示せず)が設けられている。また、上トラフ5及び下トラフ6の上部複数箇所には、供給した空気を排出するための排気口12が配設されている。なお、11はシュート部3の排気口である。
また、上部の空気浮上式ベルトコンベア2の上流には、ホッパー(図示せず)に貯蔵した被搬送物を受け入れる受入口(図示せず)が設けられており、下部の空気浮上式ベルトコンベア1には、シュート3を通って落下した被搬送物を受け入れる受入口14が設けられている。
【0015】
この様な構造からなる空気浮上式ベルトコンベア装置で、水蒸気を発生する可能性のある被搬送物である水砕を搬送する際に、先ず、水蒸気が上トラフ5の内壁面で結露する場所についての調査を行った。
その結果、シュート3の内部上壁面およびシュート3近傍の上トラフ5内壁面に多く発生しており、上トラフ5の中央部内壁面には殆ど発生していないことが判明した。
【0016】
次に、その原因について調査した結果、上トラフ5内の搬送ベルト4に載積されて搬送されてきた水砕の表層部においては、上トラフ5の下部給気口15から吹き込まれたコンベアベルト浮上用空気により冷却されるため、水蒸気の発生には不適当な条件下となっており、水蒸気の発生が起こりずらい状態にあるものと思われる。
しかし、それ以外の部位(中層・下層部)に在る水砕は、表面から冷却されずに温度が高いままの状態(条件が満たされれば何時でも水蒸気が発生する状態)にあり、このような状態で搬送されてきた水砕が、上部の空気浮上式ベルトコンベア2から、下部の空気浮上式ベルトコンベア1へ乗り継ぐために、シュート3内を落下して行くに際して、中・下層部にあった高温の水砕は、下部の空気浮上式ベルトコンベア1の搬送ベルト4上に載積されるまでの間は、シュート3内の雰囲気下に露出された状態となる。
【0017】
さらには、下部の空気浮上式ベルトコンベア1の搬送ベルト4上に載積される時には、ベルトコンベア2の搬送ベルト4上で表層部に在った水砕と、中・下層部に在った水砕とが混合された状態となって、搬送ベルト4上に堆積されるため、中・下層部に在った高温の水砕が表層部にも堆積される。
水砕が上記したような状態になった場合は、水蒸気を発生する条件が満たされているため、高温の水砕より水蒸気が多量に発生する。このように、水砕がシュート3内を落下中および、下部の空気浮上式ベルトコンベア1の搬送ベルト4上で、水砕の搬送過程においてその表層部が水蒸気を発生しない温度(20℃以下)に冷却されるまでは、水蒸気の発生が継続する。
【0018】
このようにして発生した水蒸気は、空気浮上式ベルトコンベア1,2の上トラフ5が外気により冷やされ、上トラフ5内雰囲気温度が低下し水蒸気が過飽和状態で存在となっているため、水蒸気の発生個所およびその近傍の上トラフ5内壁面で結露となる。その発生部位は乗継部から500m程度の範囲まで及ぶことが判った。
【0019】
これらのことから、上トラフ5内壁面に結露が発生するのを防止するための対策、さらには、上トラフ5内壁面に結露が発生しても、その結露水が搬送ベルト4と上トラフ5内壁の間隙に流入しないような対策を講ずる必要がある。
しかも、その範囲は、前記のように上トラフ5の全長に渡って行うのが好ましいが、設備費または設置作業上から被搬送物の乗継部、すなわち、シュート3の接続部から500m程度の範囲に渡って行うことで、大半の結露を防止できることを確認することができた。
【0020】
本発明者らは、上記知見を基にして、浮上用空気量を変化させ、結露量と浮上用空気量との関係を調査した結果、安定に運転できる条件と不安定な運転(駆動モーター電流値が時折定格値を超える現象が発生する運転)になる条件を見出した。
図1に水砕の搬送を行った場合に、下部の空気浮上式ベルトコンベア1における運転条件を示したが、上トラフ5の内壁面に結露した場合の不安定運転領域と安定運転領域との区分の1例を(Y=aX+b)の回帰式で示した。
図の縦軸(Y)は、後述する上トラフ5内結露量(計算値)であり、横軸(X)は、コンベア単位長さ(1m)当りの浮上空気量である。
【0021】
上トラフ5内結露量[水(kg)/乾き空気(kg)]は、上トラフ5内空気の湿分[水(kg)/乾き空気(kg)]―上トラフ5の鉄皮温度における飽和水蒸気量[水(kg)/乾き空気(kg)]で表される。
なお、上記図1に示した図中の回帰直線の傾きaおよび切片bは、コンベアの長さ、ベルト幅、曲線レイアウトの有無、曲率半径等により変化するが、本例が対象とした空気浮上式ベルトコンベア装置では、a=0.0417、b=−0.0417であった。
ここで、図1の回帰直線の上方(左側上方領域)が不安定運転領域であり、下方(右側下方領域)が安定運転領域である。
【0022】
不安定運転領域(継続して運転は不可能)での運転となった場合に対処する手段としては、以下の手段がある。
すなわち、第1の手段は図1に示す安定運転領域になるまで、浮上用の圧搾空気の量を増大することである。空気量を増すことによりベルト4とトラフ5の内壁との間隙に留まっている結露水は、増量した空気によって吹き飛ばされるため、結露水が筒状トラフとコンベアベルトの間に流入することが抑制され、水蒸気を発生する被搬送物であっても安定して搬送することが可能となる。
また、第2の手段はコンベアケーシング(筒状トラフおよびシュート)内での結露の生成を抑え、その発生量を低下させることである。そのための方法としては、水蒸気を発生する被搬送物である水砕の表面を冷風により冷却し、水蒸気の発生を抑制する方法の採用が挙げられる。
第3の手段は、前記両手段を併用することにある。両手段を併用することでそれぞれ単独で対処するために要する風量を削減できるので、設備的にコンパクトな装備で済む利点がある。
【0023】
そこで、本発明においては設備的には、図2に示した空気浮上式ベルトコンベア装置に加えて、水蒸気を発生する惧れのある被搬送物を冷却するためにブロアーを設置し、該ブロアーから冷風を送れるよう構成した。
その概略図の1例を図3に示した。すなわち、筒状上トラフ5の上部には冷風を均一に送るためのヘッダー16が設けられ、該ヘッダー16から下方に向けてノズル17が、ベルト搬送コンベアベルト4を横断する形で複数個連設されている。また該ヘッダー16とブロアー19の連接配管の適宜個所に流量調節弁18が設置され、風量を調節することができる。なお図中20は上トラフ5内に臨ませて設けたセンサーで、上トラフ5内における湿度およびトラフ鉄皮温度を計測する。
なお、圧搾空気を供給する配管が工場内に設置されているような場合には、この圧搾空気を用いることにより、ブロアー19の設置は必要なくなる。
【0024】
上述の説明は、前記無端コンベアベルトを駆動する駆動モーターの電流値が定格値を超える運転状態となった場合における対処手段であるが、コンベアケーシング内での被搬送物からの水蒸気の発生による結露の発生が予測できるならば、予め前記対処手段を講じて置き、無端コンベアベルトの駆動モーター電流値が定格値を超えることのない運転状態を維持できるので好ましい。
コンベアケーシング内での結露の発生は、コンベアケーシング内温度において許容できる湿分量(飽和可能量)で決まってくるので、常時湿分量(湿度値)を測定して置き、湿度が過飽和状態となり水滴に変ずる以前に、前記対処手段の何れか一方または両方の処置を講ずるような手段を採用する。
【0025】
本発明においては予め湿度の管理限界値を定め、その管理限界値以下の値を維持した操業を行うことも目標としている。管理限界値を定めるに当たっては、水滴の発生に至るまでに充分なる余裕を持たすよう考慮すべきである。
これはコンベアケーシング内での温度は場所によって異なっているので、中心部においては高温であっても、その外面が絶えず外気と接触しているコンベアケーシングの内壁面温度は、外気温の影響を受けるためにその温度は中心部に比し低温状態になっている。したがって、飽和蒸気量との関係でコンベアケーシング内壁面において上記管理限界値を超えるような場合には、湿度が過飽和状態となり水滴の発生する可能性が充分考えられる。
【0026】
これらのことを考慮するならば、コンベアケーシング内での湿度・温度を測定するセンサーの位置を特定し、その位置での測定値とコンベアケーシング内壁面での水滴発生状況との関係を事前に充分把握して置き、管理すべき限界湿度値を定めるのが望ましい。
なお、管理限界湿度値を求めるには、通常用いられている大気温度と飽和蒸気圧の関係から、大気中に許容できる蒸気量を簡単に求めることができるので、その値から管理限界湿度値をいかなる値にするかは容易である。
【0027】
安定運転領域内での運転を継続するために対処する手段としては、上記した手段を用いる。
すなわち、第1の手段はコンベアケーシング内での特定測定個所における湿度・温度の測定結果に基づき、その値が管理すべき限界湿度値を超える惧れが予測されたならば、コンベアベルト浮上用の圧搾空気の量を限界湿度値に応じて増大させる。
第2の手段はコンベアケーシング内での特定測定個所における湿度・温度の測定結果に基づき、その値が管理すべき限界湿度値を超える惧れが予測されたならば、水砕の表面を管理限界湿度値に応じて冷風により、適宜冷却を施して水蒸気の発生を抑制する。
第3の手段はコンベアケーシング内での特定測定個所における湿度・温度の測定結果に基づき、その値が管理すべき限界湿度値を超える惧れが予測されたならば、前記両手段を併用して対処する。
【0028】
しかして、不安定運転領域での運転となった場合、または安定運転領域内での運転を継続するために対処する手段を用いるに当たって、これら対処すべき値(量)を数式で表すことができる。
すなわち、筒状トラフ内における温度および湿度から筒状トラフ内壁面での結露発生状況を予測し、前記無端コンベアベルトを駆動する駆動モーターの電流値が定格値を超えること予測された場合、または該駆動モーターの電流値が定格値を超える運転状態となった場合に、下記(1)式を満足する様に前記浮上用圧縮空気量(X)および/または圧縮空気中の結露量(Y)を調整して、前記駆動モーター電流値が定格値以内で運転できるようにするものである。
aX−bY−c>0 ・・・・・(1)
但し、a,b,cは定数
上記(1)式における定数(a,b,c)は、筒状トラフ内の無端コンベアベルトの形状、材質、搬送能力、筒状トラフと無端コンベアベルトの間隔等によって決まる値である。
【0029】
前記手段の何れを採用するかは、手段の差異によってもたらす効果を考慮した上で、経済的な面からの検討を加味し、最終的にはどの手段を採用すば低廉なコストで実施することができるかの判断を行い決めるべきである。
【0030】
【実施例】
以下、本発明について水砕の搬送を行った場合の実施例に基づき、その効果を説明する。
実施例に使用した装置は図5に示した空気浮上式ベルトコンベアで、下流側空気浮上式ベルトコンベアの筒状上トラフの内径は0.6mあり、冷風吹付け用ノズルは上流側空気浮上式ベルトコンベアからの水砕乗り継ぎ部から2m離れた位置に配設されている。また、湿度・温度を計測するセンサーの取付け位置は、ノズル配設個所から30m離し、かつ筒状上トラフの上部から内部に20mm垂下した位置に設置されている。また上トラフの鉄皮温度を測定センサーの取付け位置も同様に上トラフ内側鉄皮に埋め込まれている。
【0031】
(実施例
筒状上トラフ内における湿度65%、温度25℃および上トラフ鉄皮表面温度32℃であり、安定した無端コンベアベルトの駆動モーターの運転(定格値以下の負荷電流)を行っていたが、外気温が低下し、上トラフ内温度17℃、上トラフ鉄皮表面温度が13℃まで低下したため、湿度は99%に上昇し、上トラフ内壁への結露量は0.0030[kg−水/kg−DryAir]に達し、前記駆動モーターの負荷電流が定格値(8アンペア)を越える不安定な状態での運転となった
【0032】
そこで、通常、使用していない10℃の冷風をバルブ18を開調整してノズル17から50[m/min]噴出させて、水砕表面を冷却して水蒸気の発生を抑制した結果、結露量計算値は−0.001[kg−水/kg−DryAir]まで低下し、前記駆動モーターの負荷電流は定格値を越えることのない、安定した運転状態になった。
【0033】
(実施例
筒状上トラフ内における湿度72%,温度41℃および上トラフ鉄皮表面温度40℃であり、安定した無端コンベアベルトの駆動モーターの運転(定格値以下の負荷電流)を行っていたが、外気温が低下し、上トラフ内温度25℃,上トラフ鉄皮表面温度が28℃まで低下したため、湿度は94%に上昇し、上トラフ内壁への結露量は0.0010[kg−水/kg−DryAir]に達し、前記駆動モーターの負荷電流が定格値(ヘッドプーリー側8アンペア、テールプーリー側80アンペア)を越える不安定な状態での運転となったので、今迄吹き込んでいたベルト浮上用空気量を1.15[m/min/m]を0.05[m/min/m]増加して、使用上限の1.2[m/min/m]とし、さらに、これでも不足するために、通常は使用していない10℃の冷風をバルブ18を開調整して、ノズル17から10[m/min]噴出させて、無端コンベアベルト上の水砕表面を冷却して水蒸気の発生を抑制した結果、結露量計算値は−0.001[kg−水/kg−DryAir]まで低下し、前記駆動モーターの負荷電流は定格値を越えることなく、安定した運転状態になった。
【0034】
(実施例
筒状上トラフ内における湿度73%,温度25℃および上トラフ鉄皮表面温度31℃であり、安定した無端コンベアベルトの駆動モーターの運転(定格値以下の負荷電流)を行っていたが、外気温が低下し、上トラフ内温度12℃,上トラフ鉄皮表面温度が11℃まで低下したため、湿度は99%に上昇し、上トラフ内壁への結露量は0.0010[kg−水/kg−DryAir]に達し、予め求めて設定した前記駆動モーターの負荷電流が定格値(8アンペア)を越える不安定な状態での運転となる管理結露量と同等となると推測できたので、今迄吹き込んでいたベルト浮上用空気量を1.0[m/min/m]から0.1[m/min/m]増加して1.1[m/min/m]とした結果、前記結露量は設定値以下となり、駆動モーターは定格負荷電流以下で、安定した運転状態を継続できた。
【0035】
(実施例
筒状上トラフ内における湿度61%、温度28℃および上トラフ鉄皮表面温度32℃であり、安定した無端コンベアベルトの駆動モーターの運転(定格値以下の負荷電流)を行っていたが、外気温が低下し、上トラフ内温度18℃、上トラフ鉄皮表面温度が13℃まで低下したため、湿度は99%に上昇し、上トラフ内壁への結露量は0.0033[kg−水/kg−DryAir]となり、予め求めて設定した前記駆動モーターの負荷電流が定格値(8アンペア)を越える不安定な状態での運転となる管理結露量(0.030)以上となったので、通常、使用していない10℃の冷風をバルブ18を開調整してノズル17から50[m/min]噴出させて、水砕表面を冷却して水蒸気の発生を抑制した。しかし、前記駆動モーターの負荷電流が定格値(8アンペア)を越える不安定な状態が継続していたので、さらに冷風を50[m/min]増加して100[m/min]とした結果、前記駆動モーターの負荷電流は定格値を越えることのない、安定した運転状態となった。
【0036】
【発明の効果】
本発明は、空気浮上式ベルトコンベア装置により搬送中に水蒸気を発生するような被搬送物を搬送するに際して、コンベアケーシング内壁面に結露が発生することを事前に予測し、コンベアケーシング内壁面に結露が発生しないような処置を講ずるか、またはコンベアケーシング内壁面に結露が発生したとしても、その結露量に見合った浮上用空気量を供給することにより、ベルトとトラフ内壁の間隙から結露水を吹き飛ばすことで、その結露水が筒状トラフとコンベアベルトの間に流入することを極力抑えるか、および/または、コンベアケーシング内での水蒸気の発生を抑制させるために、被搬送物の表面を冷風により冷却することにより、水蒸気を発生する被搬送物を安定して搬送することが可能となり、この分野における効果は大きい。
【図面の簡単な説明】
【図1】コンベアベルトの浮上用空気量/コンベアケーシング内結露量と安定運転条件との関係を示す図
【図2】空気浮上式ベルトコンベア装置の断面概略を示した図
【図3】冷風吹付け装置を具備した空気浮上式ベルトコンベア装置の断面概略を示した図
【図4】不安定な運転状態での駆動モータの電流値の変化状況示す図
【図5】安定な運転状態での駆動モータの電流値の変化状況示す図
【符号の説明】
1:下流側空気浮上式ベルトコンベア
2:上流側空気浮上式ベルトコンベア
3:シュート
4:搬送ベルト
5:上トラフ
6:下トラフ
8:ヘッドプーリ
9:テールプーリ
11,12:排気口
14:受入口
15:給気口
16:ヘッダー
17:ノズル
18:流量調節弁
19:ブロアー
20:センサー
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating an air-floating belt conveyor apparatus that floats a belt conveyor with compressed air.
[0002]
[Prior art]
In recent years, for example, in a thermal power plant, coal, gypsum and wet ash, and in an iron mill, an air-floating belt conveyor is used as a means for conveying loose objects such as iron ore and auxiliary materials (hereinafter referred to as “conveyed objects”). May be used. This air levitation type belt conveyor is regarded as useful depending on the place of use because of its low vibration and low noise.
As such an air levitation belt conveyor, there is a technique presented in, for example, Japanese Patent Laid-Open No. 9-156739. In this case, a cylindrical trough having a conveyor belt is provided inside, and compressed air is supplied from an air supply port at the lower part of the cylindrical trough to convey the conveyor belt loaded with objects to be conveyed.
[0003]
[Problems to be solved by the invention]
When a transported object is transported by the above-described air-floating belt conveyor, depending on the type of transported object, a substance containing moisture may be present, and water vapor may be generated during transport from the transported object. . When transporting such a substance that generates water vapor, for example, in winter when the transport time is low, the surface temperature of the iron trough of the cylindrical trough is also lowered. The trough iron skin surface must be supersaturated.
[0004]
When the inside of the cylindrical trough is in such a state, water vapor in contact with the inner wall of the cylindrical trough is condensed on the inner wall and flows down to the lower part along the inner wall as water droplets. Usually, the gap between the inner wall of the cylindrical trough and the conveyor belt is only about 0.5 mm, and the condensed water droplets enter the gap between the inner wall of the trough and the conveyor belt, thereby narrowing the gap between the levitation air flow paths between them. Causes work.
[0005]
Compressed air that passes through the gap between the inner wall of the trough and the conveyor belt and is discharged from the exhaust port flows in a place where it easily flows. When the blow-through phenomenon occurs and the conveyor belt vibrates, and this phenomenon becomes extreme, the lower surface side portion of the conveyor belt comes into contact with the inner surface of the cylindrical trough. Further, when the water droplet fills the above interval due to the difference in viscosity between air and water, the friction coefficient between the conveyor belt and the inner wall of the trough increases rapidly.
[0006]
In either case, the frictional resistance between the inner wall of the cylindrical trough and the conveyor belt increases, so the drive force of the conveyor belt drive pulley fluctuates (increases) and the drive motor load exceeds the rated value. An overload condition has occurred and the drive motor has been damaged, which has been a major obstacle to stable conveyance.
The above-mentioned generation of water droplets due to condensation tends to occur particularly at the connecting portion of the air-floating belt conveyor, and this phenomenon becomes prominent when the temperature of the cylindrical trough becomes 20 ° C. or lower.
[0007]
Here, as described above, when the driving force of the driving pulley of the conveyor belt fluctuates greatly and becomes unstable, the fluctuation state appears as a change in the current value of the driving motor, and a state exceeding the rated current occurs. To do. FIG. 4 shows an example of such a state (operation during heavy rain), and FIG. 5 shows an example of a change in the current value of the drive motor in a stable operation state (normal time).
[0008]
SUMMARY OF THE INVENTION In view of the above-described problems of the prior art, the present invention provides an operating method for an air-floating belt conveyor device that enables stable conveyance even when conveying an object that generates water vapor. It is the purpose.
[0009]
[Means for Solving the Problems]
  The present invention has been made in order to solve the problems in the above-described conventional methods, and the gist thereof is the following means.
  (1) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When the load current of the drive motor that drives the endless conveyor belt exceeds the rated value, the cooler air is blown to the object to be conveyed in the conveyor casing to cool the object to be conveyed. The operation method of the air levitation type belt conveyor device that suppresses the amount of condensation generated on the inner wall surface of the cylindrical trough and brings the driving motor current value to an operating state equal to or lower than the rated value.
  (2) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When the load current of the drive motor that drives the endless conveyor belt exceeds the rated value, the amount of compressed air for levitation is increased and cold air is conveyed to the conveyed object in the conveyor casing. The air-lifted belt conveyor apparatus is operated by cooling the conveyed object by spraying and suppressing the generation amount of dew condensation on the inner wall surface of the cylindrical trough so that the drive motor current value is less than the rated value. .
[0010]
  (3) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When transporting the vehicle, the amount of condensation on the inner wall surface of the tubular trough is obtained from the humidity in the tubular trough and the temperature of the trough iron skin, and the determined amount of condensation is determined by a drive motor that drives the endless conveyor belt set in advance. When the load current becomes a value equal to or greater than the dew condensation amount exceeding the rated value, the floating compressed air amount can be increased so that the load current of the drive motor for driving the endless conveyor belt can be operated without exceeding the rated value. A method of operating the air levitation belt conveyor device.
  (4) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When transporting the vehicle, the amount of condensation on the inner wall surface of the tubular trough is obtained from the humidity in the tubular trough and the temperature of the trough iron skin, and the determined amount of condensation is determined by a drive motor that drives the endless conveyor belt set in advance. When the load current becomes a value equal to or greater than the dew condensation amount exceeding the rated value, the cold air is blown to the conveyed object in the conveyor casing to cool the conveyed object, thereby suppressing the dew generation amount, and the endless conveyor belt The driving method of the air levitation type belt conveyor device is configured such that the load current value of the drive motor for driving the motor can be operated without exceeding the rated value.
  (5) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When transporting the vehicle, the amount of condensation on the inner wall surface of the tubular trough is obtained from the humidity in the tubular trough and the temperature of the trough iron skin, and the determined amount of condensation is determined by a drive motor that drives the endless conveyor belt set in advance. When the load current becomes a value exceeding the dew amount exceeding the rated value, the amount of compressed air for levitation is increased, and the conveyed object in the conveyor casing is blown with cold air to cool the conveyed object. Air-floating type belt conveyor device that suppresses the amount of dew generation and can be operated without the load current of the drive motor that drives the endless conveyor belt exceeding the rated value. Operation method.
[0011]
  (6) A transported object that has a cylindrical trough with a built-in endless conveyor belt and generates water vapor during transport in an air-floating belt conveyor that floats the endless conveyor belt with compressed air supplied from the bottom of the tubular trough When transporting the product, it is predicted that dew condensation will occur on the inner wall surface of the tubular trough from the temperature and humidity in the tubular trough, and the load current of the drive motor that drives the endless conveyor belt is predicted to exceed the rated value. Or when the load current of the drive motor exceeds the rated value, the amount of compressed air for floating (X) and / or condensation on the inner wall of the cylindrical trough so as to satisfy the following expression (1) An operation method of an air levitation type belt conveyor device in which an amount (Y) is adjusted so that the drive motor current value can be operated within a rated value.
        aX-bY-c> 0 (1)
  Where a, b and c are constants
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors use such an air-floating belt conveyor, for example, water granulation (melted blast furnace slag is crushed with water, and usually has an average particle size of 2 mm, a maximum particle size of 5 mm, and a moisture content of 10 to 15%. , Having a temperature of 40 to 70 ° C.), the location of water vapor and the cause thereof were investigated using the air-floating belt conveyor device shown in FIG.
[0013]
First, the configuration of one example of the air levitation belt conveyor device shown in FIG. 2 will be described below.
The air levitation belt conveyor apparatus includes a downstream air levitation belt conveyor 1 and an upstream air levitation belt conveyor 2 which are connected to each other, and a chute 3 is provided at a connecting portion thereof. The upper (upstream side) and lower (downstream side) air-floating belt conveyors 2 and 1 each have a cylindrical upper trough 5 containing a carrier-side conveyor belt 4 and a return-side conveyor belt 4. The cylindrical lower troughs 6 are vertically spaced apart by a predetermined distance, and a head pulley 8 and a tail pulley 9 are provided at both ends thereof.
[0014]
In addition, air supply ports 15 are provided at a plurality of locations and connected to the lower portions (bottom portions) of the upper trough 5 and the lower trough 6 in order to supply compressed air for floating the conveyor belt. An air supply pipe (not shown) and a blower (not shown) connected to the air supply pipe are provided. In addition, exhaust ports 12 for discharging the supplied air are provided at a plurality of upper portions of the upper trough 5 and the lower trough 6. Reference numeral 11 denotes an exhaust port of the chute unit 3.
In addition, a receiving port (not shown) for receiving an object to be conveyed stored in a hopper (not shown) is provided upstream of the upper air floating belt conveyor 2, and the lower air floating belt conveyor 1. Is provided with a receiving port 14 for receiving an object to be transported dropped through the chute 3.
[0015]
In the air-floating belt conveyor device having such a structure, when transporting water granulated which is a transported object that may generate water vapor, first, a place where water vapor is condensed on the inner wall surface of the upper trough 5 Was conducted.
As a result, it was found that a large amount occurred on the inner upper wall surface of the chute 3 and the inner wall surface of the upper trough 5 near the chute 3 and hardly occurred on the inner wall surface of the central portion of the upper trough 5.
[0016]
Next, as a result of investigating the cause, the conveyor belt blown from the lower air inlet 15 of the upper trough 5 in the surface layer portion of the granulated water that has been loaded on the conveyor belt 4 in the upper trough 5 and conveyed. Since it is cooled by the levitation air, the conditions are inappropriate for the generation of water vapor, and it seems that the generation of water vapor is difficult to occur.
However, the water granulation in the other parts (middle layer / lower layer part) is in a state where the temperature remains high without being cooled from the surface (a state where water vapor is generated whenever the condition is satisfied). In order to transfer the granulated material that has been transported from the upper air levitation belt conveyor 2 to the lower air levitation belt conveyor 1, when the water breaks down in the chute 3, The high temperature water granulation is exposed to the atmosphere in the chute 3 until it is placed on the conveying belt 4 of the lower air floating belt conveyor 1.
[0017]
Furthermore, when it is loaded on the conveyor belt 4 of the lower air levitation belt conveyor 1, it is in the surface layer part on the conveyor belt 4 of the belt conveyor 2 and in the middle / lower layer part. Since the water granulation is mixed and deposited on the conveyor belt 4, the high-temperature water granulation in the middle and lower layers is also deposited on the surface layer.
When the granulation is in the state as described above, the conditions for generating water vapor are satisfied, so that a larger amount of water vapor is generated than high temperature water granulation. As described above, the temperature at which the surface layer portion does not generate water vapor in the process of water granulation while the water granulation is falling in the chute 3 and on the conveyor belt 4 of the lower air floating belt conveyor 1 (20 ° C. or less). Until it is cooled, the generation of water vapor continues.
[0018]
The water vapor generated in this way is because the upper trough 5 of the air floating belt conveyors 1 and 2 is cooled by the outside air, the atmospheric temperature in the upper trough 5 is lowered, and the water vapor is supersaturated. Condensation occurs at the location of the occurrence and in the vicinity of the inner wall surface of the upper trough 5. It was found that the generation site extends to a range of about 500 m from the connecting part.
[0019]
For these reasons, measures are taken to prevent condensation on the inner wall surface of the upper trough 5, and even if condensation occurs on the inner wall surface of the upper trough 5, the condensed water is transferred to the conveyor belt 4 and the upper trough 5. It is necessary to take measures to prevent it from flowing into the gap between the inner walls.
Moreover, it is preferable to perform the range over the entire length of the upper trough 5 as described above. However, it is about 500 m from the connecting portion of the object to be transported, that is, from the connecting portion of the chute 3 in terms of equipment cost or installation work. It was confirmed that most condensation could be prevented by carrying out over a range.
[0020]
Based on the above findings, the present inventors have investigated the relationship between the amount of condensation and the amount of air for levitation by changing the amount of air for levitation. The condition was found to be an operation where the value occasionally exceeds the rated value).
FIG. 1 shows the operating conditions in the lower air levitation belt conveyor 1 when transported by granulation, but the unstable operation region and the stable operation region when the dew condensation occurs on the inner wall surface of the upper trough 5. One example of classification was shown by the regression equation (Y = aX + b).
The vertical axis (Y) in the figure is the amount of condensation in the upper trough 5 (calculated value) described later, and the horizontal axis (X) is the amount of floating air per conveyor unit length (1 m).
[0021]
The amount of condensation in the upper trough 5 [water (kg) / dry air (kg)] is the moisture content of the air in the upper trough 5 [water (kg) / dry air (kg)] — saturation at the iron trough temperature of the upper trough 5 It is represented by the amount of water vapor [water (kg) / dry air (kg)].
Note that the slope a and intercept b of the regression line in the diagram shown in FIG. 1 vary depending on the length of the conveyor, the belt width, the presence or absence of a curve layout, the radius of curvature, etc. In the type belt conveyor device, a = 0.0417 and b = −0.0417.
Here, the upper part (left upper area) of the regression line in FIG. 1 is an unstable operation area, and the lower part (right lower area) is a stable operation area.
[0022]
As means for coping with the operation in the unstable operation region (continuous operation impossible), there are the following means.
That is, the first means is to increase the amount of the compressed air for levitation until the stable operation region shown in FIG. 1 is reached. As the amount of air increases, the condensed water remaining in the gap between the belt 4 and the inner wall of the trough 5 is blown away by the increased amount of air, so that the condensed water is prevented from flowing between the tubular trough and the conveyor belt. Even a transported object that generates water vapor can be transported stably.
The second means is to suppress the generation of dew condensation in the conveyor casing (tubular trough and chute) and to reduce the generation amount. As a method for that purpose, there is an adoption of a method of suppressing the generation of water vapor by cooling the surface of granulated water, which is a transported object that generates water vapor, with cold air.
The third means is to use both the means together. By using both means in combination, it is possible to reduce the amount of air required to deal with each of them individually, so that there is an advantage that a compact equipment can be used.
[0023]
Therefore, in the present invention, in terms of equipment, in addition to the air levitation belt conveyor device shown in FIG. 2, a blower is installed to cool the object to be transported that is likely to generate water vapor. It was configured to send cold air.
An example of the schematic diagram is shown in FIG. That is, a header 16 for uniformly sending cool air is provided on the upper part of the tubular upper trough 5, and a plurality of nozzles 17 are arranged in a manner that crosses the belt conveyor belt 4 downward from the header 16. Has been. In addition, a flow rate adjusting valve 18 is installed at an appropriate location in the connecting pipe between the header 16 and the blower 19 so that the air volume can be adjusted. In the figure, reference numeral 20 denotes a sensor provided facing the upper trough 5, which measures the humidity and trough iron skin temperature in the upper trough 5.
In addition, when the piping which supplies compressed air is installed in the factory, installation of the blower 19 becomes unnecessary by using this compressed air.
[0024]
The above description is a countermeasure when the current value of the drive motor that drives the endless conveyor belt exceeds the rated value, but dew condensation due to the generation of water vapor from the conveyed object in the conveyor casing. If it is possible to predict the occurrence of this, it is preferable that the above-mentioned countermeasures are taken in advance and the driving motor current value of the endless conveyor belt can be maintained in an operating state that does not exceed the rated value.
The occurrence of condensation in the conveyor casing is determined by the amount of moisture (saturable amount) that can be tolerated at the temperature in the conveyor casing. Therefore, the moisture amount (humidity value) is always measured and the humidity becomes supersaturated and drops into water drops. Prior to the change, a means for taking one or both of the countermeasures is adopted.
[0025]
In the present invention, the management limit value of humidity is determined in advance, and the operation is also performed while maintaining the value below the management limit value. In determining the control limit value, it should be considered that there is a sufficient margin before the generation of water droplets.
This is because the temperature in the conveyor casing varies depending on the location, so even if the temperature is high in the center, the inner wall temperature of the conveyor casing that is constantly in contact with the outside air is affected by the outside air temperature. Therefore, the temperature is lower than that of the central portion. Therefore, when the control limit value is exceeded on the inner wall surface of the conveyor casing in relation to the saturated steam amount, it is possible that the humidity becomes supersaturated and water droplets are generated.
[0026]
If these are taken into consideration, the position of the sensor that measures the humidity and temperature in the conveyor casing is specified, and the relationship between the measured value at that position and the occurrence of water droplets on the inner wall of the conveyor casing is sufficient in advance. It is desirable to determine and set a critical humidity value to be managed and managed.
In order to obtain the control limit humidity value, it is possible to easily obtain the amount of vapor that can be allowed in the atmosphere from the relationship between the normally used atmospheric temperature and saturated vapor pressure. It is easy to set what value.
[0027]
The above-described means is used as a means to cope with the operation in the stable operation region.
That is, the first means is based on the measurement result of humidity and temperature at a specific measurement location in the conveyor casing, and if it is predicted that the value will exceed the limit humidity value to be controlled, Increase the amount of compressed air according to the limit humidity value.
The second measure is based on the humidity and temperature measurement results at a specific measurement location in the conveyor casing, and if it is predicted that the value will exceed the limit humidity value to be controlled, the surface of the granulated surface will be controlled. The generation of water vapor is suppressed by appropriately cooling with cold air according to the humidity value.
The third means is based on the humidity and temperature measurement results at a specific measurement location in the conveyor casing, and if it is predicted that the value will exceed the limit humidity value to be managed, deal with.
[0028]
Thus, when the operation is performed in the unstable operation region, or when the means for coping to continue the operation in the stable operation region is used, these values (amounts) to be dealt with can be expressed by mathematical expressions. .
That is, the occurrence of condensation on the inner wall surface of the tubular trough is predicted from the temperature and humidity in the tubular trough, and the current value of the drive motor that drives the endless conveyor belt is predicted to exceed the rated value, or the When the current value of the drive motor exceeds the rated value, the amount of compressed air for floating (X) and / or the amount of condensation in compressed air (Y) is set so as to satisfy the following equation (1): By adjusting, the drive motor current value can be operated within the rated value.
aX-bY-c> 0 (1)
Where a, b and c are constants
The constants (a, b, c) in the above formula (1) are values determined by the shape, material, transport capability, interval between the cylindrical trough and the endless conveyor belt, etc., in the cylindrical trough.
[0029]
Which of the above measures should be adopted should be considered at an inexpensive cost, considering the effects brought about by the differences in the measures, taking into consideration economic considerations. Judgment should be made to determine whether or not
[0030]
【Example】
Hereinafter, the effect is demonstrated based on the Example at the time of conveying a granulation about this invention.
The apparatus used in the embodiment is the air levitation belt conveyor shown in FIG. 5, the inner diameter of the tubular upper trough of the downstream air levitation belt conveyor is 0.6 m, and the cold air blowing nozzle is the upstream air levitation type It is disposed at a position 2 m away from the water-split connecting part from the belt conveyor. The sensor for measuring humidity and temperature is installed at a position 30 m away from the nozzle installation location and 20 mm below the upper part of the cylindrical upper trough. In addition, the measurement position of the upper trough skin temperature sensor is also embedded in the upper trough inner skin.
[0031]
(Example1)
  The humidity inside the cylindrical upper trough was 65%, the temperature was 25 ° C, and the upper trough skin surface temperature was 32 ° C, and the drive motor of the endless conveyor belt was stable (load current below the rated value). The temperature dropped and the upper trough inner temperature decreased to 17 ° C, and the upper trough iron skin surface temperature decreased to 13 ° C, so the humidity increased to 99% and the dew condensation on the inner wall of the upper trough was 0.0030 [kg-water / kg -DryAir], and the drive current of the drive motor is in an unstable state exceeding the rated value (8 amperes)..
[0032]
  ThereNormally, cool air of 10 ° C. that is not used is adjusted by opening the valve 18 to 50 m from the nozzle 17.3/ Min] As a result of jetting and cooling the water granulated surface to suppress the generation of water vapor, the calculated dew amount decreases to -0.001 [kg-water / kg-DryAir], and the load current of the drive motor Became a stable operating state without exceeding the rated value.
[0033]
(Example2)
  Although the humidity in the cylindrical upper trough was 72%, the temperature was 41 ° C, and the upper trough iron skin surface temperature was 40 ° C, the drive motor of the endless conveyor belt was stable (load current below the rated value). The temperature dropped and the upper trough inner temperature decreased to 25 ° C and the upper trough iron skin surface temperature decreased to 28 ° C, so the humidity increased to 94% and the dew condensation on the inner wall of the upper trough was 0.0010 [kg-water / kg -DryAir], and the drive motor load current exceeded the rated value (head pulley side 8 amp, tail pulley side 80 amp). Air volume is 1.15 [m3/ Min / m] is 0.05 [m3/ Min / m], 1.2 [m3/ Min / m], and since this is still insufficient, the nozzle 18 is adjusted to 10 [m3/ Min] as a result of jetting and cooling the granulated surface on the endless conveyor belt to suppress the generation of water vapor, the calculated amount of condensation decreases to -0.001 [kg-water / kg-DryAir], The load current of the drive motor did not exceed the rated value, and the operation was stable.
[0034]
(Example3)
  The humidity in the cylindrical upper trough was 73%, the temperature was 25 ° C, and the upper trough skin surface temperature was 31 ° C, and the drive motor of the endless conveyor belt was stable (load current below the rated value). The temperature dropped and the upper trough inner temperature decreased to 12 ° C and the upper trough iron skin surface temperature decreased to 11 ° C, so the humidity increased to 99% and the dew condensation on the inner wall of the upper trough was 0.0010 [kg-water / kg -DryAir], and it was speculated that the load current of the drive motor determined and set in advance was equivalent to the management dew amount that would result in operation in an unstable state exceeding the rated value (8 amps). 1.0 [m3/ Min / m] to 0.1 [m3/ Min / m] increased to 1.1 [m3/ Min / m], the condensation amount was less than the set value, and the drive motor was able to continue a stable operation state at a rated load current or less.
[0035]
(Example4)
  Humidity 61%, temperature 28 ° C and upper trough skin surface temperature 32 ° C in the cylindrical upper trough, and the drive motor of the endless conveyor belt was stable (load current below the rated value). Since the air temperature decreased, the upper trough inner temperature decreased to 18 ° C and the upper trough iron skin surface temperature decreased to 13 ° C, the humidity increased to 99%, and the dew condensation on the inner wall of the upper trough was 0.0033 [kg-water / kg -DryAir], and the pre-set load current of the drive motor is equal to or higher than the control dew amount (0.030) that is an operation in an unstable state exceeding the rated value (8 amperes). Adjust the opening of the valve 18 to cool air of 10 ° C that is not used from the nozzle 17 to 50 [m3/ Min], the water granulated surface was cooled to suppress the generation of water vapor. However, since the unstable state where the load current of the drive motor exceeded the rated value (8 amperes) continued, the cold air was further reduced to 50 [m3/ Min] increased to 100 [m3As a result, the load current of the drive motor did not exceed the rated value, and a stable operation state was achieved.
[0036]
【The invention's effect】
The present invention predicts in advance that condensation will occur on the inner wall surface of the conveyor casing when transporting an object to be transported that generates water vapor while being transported by the air-floating belt conveyor device, and condensing on the inner wall surface of the conveyor casing. Even if condensation is generated on the inner wall of the conveyor casing, the condensed water is blown away from the gap between the belt and the trough inner wall by supplying the amount of floating air corresponding to the amount of condensation. Therefore, in order to suppress the flow of the condensed water between the cylindrical trough and the conveyor belt as much as possible and / or to suppress the generation of water vapor in the conveyor casing, the surface of the object to be conveyed is cooled with cold air. By cooling, it becomes possible to stably transport a transported object that generates water vapor, and the effect in this field is great. .
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of air for lifting a conveyor belt, the amount of condensation in a conveyor casing, and stable operating conditions.
FIG. 2 is a schematic cross-sectional view of an air levitation belt conveyor device.
FIG. 3 is a schematic cross-sectional view of an air levitation belt conveyor device equipped with a cold air spraying device.
FIG. 4 is a diagram showing a change state of a current value of a drive motor in an unstable operation state.
FIG. 5 is a diagram showing a change state of a current value of a drive motor in a stable operation state.
[Explanation of symbols]
1: Downstream air levitation belt conveyor
2: Upstream air levitation belt conveyor
3: Shoot
4: Conveyor belt
5: Upper trough
6: Lower trough
8: Head pulley
9: Tail pulley
11, 12: Exhaust port
14: Entrance
15: Air supply port
16: Header
17: Nozzle
18: Flow control valve
19: Blower
20: Sensor

Claims (6)

無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える運転状態となった場合に、コンベアケーシング内で被搬送物に冷風を吹付けて該被搬送物を冷却せしめて前記筒状トラフ内壁面での結露の生成量を抑制し前記駆動モーター電流値が定格値以下の運転状態にすることを特徴とする空気浮上式ベルトコンベア装置の運転方法。  An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, when the load current of the drive motor that drives the endless conveyor belt exceeds the rated value, cool air is blown to the object to be conveyed in the conveyor casing to cool the object to be conveyed. An operation method for an air-lifting belt conveyor device, wherein an amount of condensation generated on an inner wall surface of the cylindrical trough is suppressed and an operation state in which the drive motor current value is a rated value or less is set. 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える運転状態となった場合に、前記浮上用圧縮空気量を増加せしめると共に、コンベアケーシング内で被搬送物に冷風を吹付けて該被搬送物を冷却せしめて前記筒状トラフ内壁面での結露の生成量を抑制し前記駆動モーター電流値が定格値以下の運転状態にすることを特徴とする空気浮上式ベルトコンベア装置の運転方法。  An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, when the load current of the drive motor that drives the endless conveyor belt is in an operating state exceeding the rated value, the amount of compressed air for levitation is increased and cold air is applied to the object to be transported in the conveyor casing. An air levitation belt conveyor characterized in that the object to be transported is cooled to reduce the amount of condensation generated on the inner wall surface of the cylindrical trough so that the driving motor current value is less than a rated value. How to operate the device. 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、前記浮上用圧縮空気量を増加せしめて、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えることなく運転できるようにしたことを特徴とする空気浮上式ベルトコンベア装置の運転方法。  An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, the amount of condensation on the inner wall surface of the tubular trough is determined from the humidity in the tubular trough and the temperature of the trough iron skin, and the load of the drive motor that drives the endless conveyor belt that is set in advance When the current exceeds the dew condensation amount exceeding the rated value, the amount of compressed air for floating is increased so that the load current of the drive motor for driving the endless conveyor belt can be operated without exceeding the rated value. A method of operating an air levitation belt conveyor device, characterized in that: 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、コンベアケーシング内の被搬送物に冷風を吹付けて該被搬送物を冷却して結露生成量を抑制し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流値が定格値を超えることなく運転できるようにしたことを特徴とする空気浮上式ベルトコンベア装置の運転方法。An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, the amount of condensation on the inner wall surface of the tubular trough is determined from the humidity in the tubular trough and the temperature of the trough iron skin, and the load of the drive motor that drives the endless conveyor belt that is set in advance When the current exceeds the dew amount exceeding the rated value, cool air is blown on the object to be conveyed in the conveyor casing to cool the object to be dewed, and the amount of dew generated is suppressed. An operation method of an air levitation belt conveyor device, characterized in that operation can be performed without a load current value of a drive motor to be driven exceeding a rated value. 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内の湿度およびトラフ鉄皮の温度から筒状トラフ内壁面での結露発生量を求め、該求めた結露発生量が予め設定した無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超える結露量以上の値となった場合に、前記浮上用圧縮空気量を増加せしめると共に、コンベアケーシング内の被搬送物に冷風を吹付けて該被搬送物を冷却して結露生成量を抑制し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えることなく運転できるようにしたことを特徴とする空気浮上式ベルトコンベア装置の運転方法。  An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, the amount of condensation on the inner wall surface of the tubular trough is determined from the humidity in the tubular trough and the temperature of the trough iron skin, and the load of the drive motor that drives the endless conveyor belt that is set in advance When the current exceeds the dew condensation amount exceeding the rated value, the amount of compressed air for levitation is increased, and cold air is blown onto the object to be conveyed in the conveyor casing to cool the object to be dewed. An air levitation belt characterized in that the generated amount is suppressed and the load current of a drive motor for driving the endless conveyor belt can be operated without exceeding a rated value. Way operation of the conveyer system. 無端コンベアベルトを内蔵した筒状トラフを有し、該筒状トラフの底部から供給した圧縮空気で前記無端コンベアベルトを浮上させる空気浮上式ベルトコンベアで、搬送中に水蒸気を発生する被搬送物を搬送するに際し、筒状トラフ内における温度および湿度から筒状トラフ内壁面での結露発生状況を予測し、前記無端コンベアベルトを駆動する駆動モーターの負荷電流が定格値を超えること予測された場合、または該駆動モーターの負荷電流が定格値を超える運転状態となった場合に、下記(1)式を満足する様に前記浮上用圧縮空気量(X)および/または筒状トラフ内壁への結露量(Y)を調整して、前記駆動モーター電流値が定格値以内で運転できるようにしたことを特徴とする空気浮上式ベルトコンベア装置の運転方法。
aX−bY−c>0 ・・・・・(1)
但し、a,b,cは定数
An air levitation type belt conveyor that has a cylindrical trough with a built-in endless conveyor belt, and that floats the endless conveyor belt with compressed air supplied from the bottom of the cylindrical trough. When transporting, predict the dew generation situation on the inner wall surface of the cylindrical trough from the temperature and humidity in the cylindrical trough, and when it is predicted that the load current of the drive motor that drives the endless conveyor belt exceeds the rated value, Alternatively, when the load current of the drive motor exceeds the rated value, the amount of compressed air for floating (X) and / or the amount of condensation on the inner wall of the cylindrical trough so as to satisfy the following expression (1) (Y) is adjusted so that the drive motor current value can be operated within a rated value.
aX-bY-c> 0 (1)
Where a, b and c are constants
JP2001019368A 2001-01-29 2001-01-29 Operation method of air levitation belt conveyor device Expired - Fee Related JP3742755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001019368A JP3742755B2 (en) 2001-01-29 2001-01-29 Operation method of air levitation belt conveyor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001019368A JP3742755B2 (en) 2001-01-29 2001-01-29 Operation method of air levitation belt conveyor device

Publications (2)

Publication Number Publication Date
JP2002226030A JP2002226030A (en) 2002-08-14
JP3742755B2 true JP3742755B2 (en) 2006-02-08

Family

ID=18885254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001019368A Expired - Fee Related JP3742755B2 (en) 2001-01-29 2001-01-29 Operation method of air levitation belt conveyor device

Country Status (1)

Country Link
JP (1) JP3742755B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292685B2 (en) * 2006-09-20 2013-09-18 横浜ゴム株式会社 Method for evaluating power consumption characteristics of conveyor belt, and method for estimating power consumption of belt conveyor apparatus
EP1935949B1 (en) 2006-12-22 2014-07-16 Canon Kabushiki Kaisha Thermal ink-jet ink and ink cartridge using the ink
JP5691316B2 (en) * 2010-09-09 2015-04-01 新東工業株式会社 Method and apparatus for predicting and detecting condensation or adhesion of powder inside bucket elevator and measuring unit used therefor
JP7487621B2 (en) 2020-09-04 2024-05-21 Ubeマシナリー株式会社 Air-floated belt conveyor

Also Published As

Publication number Publication date
JP2002226030A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
US8202474B2 (en) Conveyor system, composite system and method for coupling metallurgical methods
KR20180090347A (en) Re-discharge system
US9513058B2 (en) Grate cooler for a cement clinker kiln
JP3742755B2 (en) Operation method of air levitation belt conveyor device
JP2013505880A (en) System for extracting and transporting light ash by steel belt conveyor
MX2007013112A (en) Means for conveying material.
KR20110106362A (en) Extracting and cooling system for large flows of heavy ashes with efficiency increase
KR101618246B1 (en) Cooling device for hot bulk material
JP2009068062A (en) Method for operating non-ferrous smelting plant
KR20140008347A (en) System and method for cooling and extraction of heavy ashes with increase in total boiler efficiency
JP4598558B2 (en) Fluidized bed dryer and method for drying wet raw material by fluidized bed dryer
JP2001261136A (en) Air levitation type belt conveyor device
KR20220025013A (en) Simplified chain conveyors for re-conversion of floors
JP3528696B2 (en) Method and apparatus for blowing powder
JP4675495B2 (en) Air-floating belt conveyor device
JP7487621B2 (en) Air-floated belt conveyor
TW202110725A (en) Conveying a material to be conveyed
US6312252B1 (en) Cooler for combustion products
JP7537200B2 (en) Air floating conveyor device
JP2002277172A (en) Method and apparatus for correcting displacement of pallet boggie of a sintering machine
JPH11246023A (en) Bucket conveyor
JP4009384B2 (en) Air conveyor
AU5285099A (en) Method for producing zinc using the is process in an is shaft furnace and corresponding is shaft furnace
KR100829950B1 (en) Damper for raw material supply chute
JP2024017646A (en) Granular material conveyance facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051114

R150 Certificate of patent or registration of utility model

Ref document number: 3742755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101118

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees