JP3741222B2 - Manufacturing method of semiconductor integrated circuit device - Google Patents

Manufacturing method of semiconductor integrated circuit device Download PDF

Info

Publication number
JP3741222B2
JP3741222B2 JP51880899A JP51880899A JP3741222B2 JP 3741222 B2 JP3741222 B2 JP 3741222B2 JP 51880899 A JP51880899 A JP 51880899A JP 51880899 A JP51880899 A JP 51880899A JP 3741222 B2 JP3741222 B2 JP 3741222B2
Authority
JP
Japan
Prior art keywords
integrated circuit
semiconductor integrated
circuit device
manufacturing
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP51880899A
Other languages
Japanese (ja)
Inventor
英夫 有馬
健一 山本
昭男 長谷部
賢一郎 森永
邦彦 西
正訓 柴本
一真 三浦
雄二 和田
進 春日部
弘二 芹沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Application granted granted Critical
Publication of JP3741222B2 publication Critical patent/JP3741222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/32Holders for supporting the complete device in operation, i.e. detachable fixtures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

技術分野
本発明は、半導体集積回路装置の製造技術における電子部品、電子回路との電気的接触及び分離が可能な接続用端子、ソケット、及びボードに関し、特に微細ピッチの電子部品や回路の検査、試験等を実施するための微細ピッチ接続が可能な接続用端子、ソケット、及びボードを対象とした接続技術に関する。
背景技術
間瀬等の日本特開平1−201931号公報及び山崎等の日本特開平2−37735号公報には、銀、パラジウム銀合金、白金、錫、ニッケル、チタン、モリブデンその他の金属粉末を含むペーストによる印刷配線上に、はんだバンプ等を接触させるようにエポキシ樹脂によって接合するチップの実装方法が開示されている。
更に、矢田の特開平8−304462号公報には、銅等の印刷配線上のニッケルメッキ層上に、更に金メッキ層を形成したパッド部に錫、その合金、インジュウムバンプ等を接触させるバーンイン方法が開示されている。
発明の開示
微細ピッチ部品の一例としてCSP(Chip Size Package)接触端子について述べる。
CSPは端子をエリアアレイ状に形成するBGA(Ball Grid Array)の一種であり、通常のBGAと比較してピッチが微細なものを言う。CSPでは現在0.5mmピッチの製品が出回りはじめた段階であるが、このピッチは更に微細化する動向にある。
現在の0.5mmピッチの製品での特性試験やバーンインを行う上ではBGA等で実施している方式を利用している。この方式はシリコーンゴムの中にAuめっきしたワイヤを一定方向に多数埋め込み、このシリコーンゴムシートを介してCSPの端子であるはんだボールとシリコーンゴムシートの下に配置してある回路板のパッドとの間の接続を確保するものである。
この方式では、下記の4つの欠点がある。
(1)位置合わせ精度が劣る。これは、厚いゴムシートを介し、しかも介在するワイヤが斜めに入っているため、CSPのはんだボールと回路基板のパッドとの正確な接続が確保しにくいためである。
(2)コストが高い。シート自体がAuめっきワイヤを高密度にゴム中に埋め込む複雑な構成を取っているため、その製造コストが高いものとなる。
(3)繰り返し使用回数が少ない。高密度化の上で細いワイヤを使用しており、繰り返し使用により、ワイヤが折れる。このため、繰り返し使用回数が少ない。
(4)被接続端子等への汚染。製品となるCSPのはんだボールが直接シリコーンゴムに接するため、低分子シリコーン樹脂がはんだボール等に付着する。特にバーンイン等の高温処理をするとはんだボール表面に低分子のシリコーン樹脂が多く付着する。これがCSPを基板等に実装する際に接続不良を発生させることになる。
本発明での課題は、(1)位置合わせ精度を向上し、(2)低コスト化し、(3)繰り返し使用ができ、(4)高温での使用でも接続部に汚染を与えない様にすることである。
上記の課題を解決するために、端子の導体表面に導電性粒子をはんだ、あるいはろう材で固定した構造を持ち、接触により電気的接続を確保する接続用端子構造とした。
また、この接続用端子において、端子が面状に配置した複数の端子から成り、それらの端子とそれら端子からの配線とで面状の回路板を形成し、この回路板上に被接続端子を持つ部品あるいは回路を搭載し、これを上記回路板に押さえるソケットの構造とした。更にそのソケットを大形回路基板上に搭載しボードとした。
また、端子の導体表面に導電性粒子をはんだ、あるいはろう材で固定した構造を持ち、接触により電気的接続を確保する接続用端子構造とした。
この構造により、端子と被接続端子、CSPでははんだボールとの間にワイヤ入りゴムシートを介在させないことになり、被接続端子と接続子との位置合わせ精度が向上する。また、はんだやろう材で固定するとはんだやろう材となじむ端子以外の端子間には導電粒子が広がらないため端子間の短絡は生じない。端子として導電粒子をはんだ等で固定すれば良いため、一定方向のワイヤを高密度にゴム中に並べるという複雑な操作を必要としないため、低コストで接続を確保することができる。また接続子は導体粒子がはんだ等で固定された強固な構造を有しているため、半永久的に繰り返し使用することができる。また、端子と被接触子の間には、被接触子等を汚す物質は無く、高温でも使用する事が可能である。
また、ソケットやボードの場合も、この様な特徴を持つ端子を用いるため、上記同様、高位置合わせ精度、低コストで、繰り返し使用可能で、高温での使用でも接続部に汚染を与えないソケット及びボードとなる。
本願の主要な発明の概要を項分けして以下に示す。
1.以下の工程を含む半導体集積回路装置の製造方法;
(a) 半導体集積回路装置の主要部(たとえばチップ又はチップを含むパッケージ本体等)を構成する半導体集積回路チップ又はチップリード複合体(たとえばマイクロBGAパッケージ本体すなわちはんだボールを除いた部分等)の外部接続バンプ形成部(たとえばチップリード複合体に下面に設けられたバンプ形成用電極等)に設けられたはんだバンプ(たとえば電極上に作られた共晶はんだボール等)を、配線板(たとえばフレキシブルテープ回路等)の第1の主面上に設けられ、前記はんだバンプよりも硬い金属から成る複数の金属粒子がはんだ層に埋め込まれた測定側電極パッド部(すなわち接続端子等)に接触させる工程、
(b) 前記はんだバンプを、前記複数の金属粒子と接触するように前記測定側電極パッド部に押し当てた状態で前記半導体集積回路チップ又はチップリード複合体中の半導体集積回路チップに対して、バーンインテストを実行する工程、
(c) 前記バーンインテストの結果に基づいて、半導体集積回路装置の良否又は等級(良否のみ又は等級のみを判断しても好いことは言うまでもない)を決定する工程。
2.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その主要領域(たとえばその本体すなわち表面のコート等を除いた部分等)がニッケル、チタン、クロム、コバルト、鉄、銅、タングステン、又はモリブデン、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
3.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その表面に前記主要領域を構成する成分よりも前記はんだバンプのはんだと反応しにくい金属被覆層を有するものである。
4.本発明の半導体集積回路装置の製造方法は、上記金属被覆層(たとえば厚さ0.数μm程度のメッキ層等)は、ロジウム、金、銀、錫、鉛、インジウム、白金、又はパラジウム、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
5.本発明の半導体集積回路装置の製造方法は、上記金属粒子の平均粒径は3μmから50μmである。
6.本発明の半導体集積回路装置の製造方法は、上記チップリード複合体はCSPパッケージ(たとえばマイクロBGA、WPP等)である。
7.本発明の半導体集積回路装置の製造方法は、上記配線板はフィルム状配線板又はフィルム配線シートである。
8.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その主要領域がニッケル或いはニッケルを主要成分とする合金からなる。
9.本発明の半導体集積回路装置の製造方法は、上記金属被覆層は、ロジウム或いはロジウムを主要成分とする合金からなる。
10.本発明の半導体集積回路装置の製造方法は、上記金属粒子の平均粒径は10μmから40μmである。
11.以下の工程を含む半導体集積回路装置の製造方法;
(a) 半導体集積回路装置の主要部を構成する半導体集積回路チップ又はチップリード複合体の外部接続バンプ形成部に設けられたはんだバンプを、フィルム状配線板の第1の主面上に設けられ、前記はんだバンプよりも硬い金属から成る複数の金属粒子がバインダ層(たとえば共晶はんだ層等)に埋め込まれた測定側電極パッド部に接触させる工程、
(b) 前記はんだバンプを、前記複数の金属粒子と接触するように前記測定側電極パッド部に押し当てた状態で前記半導体集積回路チップ又はチップリード複合体中の半導体集積回路チップに対して、バーンインテストを実行する工程、
(c) 前記バーンインテストの結果に基づいて、半導体集積回路装置の良否又は等級を決定する工程。
12.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その主要領域がニッケル、チタン、クロム、コバルト、鉄、銅、タングステン、又はモリブデン、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
13.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その表面に前記主要領域を構成する成分よりも前記はんだバンプのはんだと反応しにくい金属被覆層を有するものである。
14.本発明の半導体集積回路装置の製造方法は、上記金属被覆層は、ロジウム、金、銀、錫、鉛、インジウム、白金、又はパラジウム、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
15.本発明の半導体集積回路装置の製造方法は、上記金属粒子の平均粒径は3μmから50μmである。
16.本発明の半導体集積回路装置の製造方法は、上記チップリード複合体はCSPパッケージである。
17.以下の工程を含む半導体集積回路装置の製造方法;
(a) 半導体集積回路装置の主要部を構成する半導体集積回路チップ又はチップリード複合体の外部接続バンプ形成部に設けられたはんだバンプを、配線板の第1の主面上に設けられ、前記はんだバンプよりも硬い金属から成る複数の金属粒子がはんだ層に埋め込まれた測定側電極パッド部に接触させる工程、
(b) 前記はんだバンプを、前記複数の金属粒子と接触させた状態で前記半導体集積回路チップ又はチップリード複合体中の半導体集積回路チップに対して、バーンインテストを実行する工程、
(c) 前記バーンインテストの結果に基づいて、半導体集積回路装置の良否又は等級を決定する工程。
18.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その主要領域がニッケル、チタン、クロム、コバルト、鉄、銅、タングステン、又はモリブデン、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
19.本発明の半導体集積回路装置の製造方法は、上記金属粒子は、その表面に前記主要領域を構成する成分よりも前記はんだパンプのはんだと反応しにくい金属被覆層を有するものである。
20.本発明の半導体集積回路装置の製造方法は、上記金属被覆層は、ロジウム、金、銀、錫、鉛、インジウム、白金、又はパラジウム、或いはこれらの少なくとも一つを主要成分とする合金からなるものである。
更に、本願のその他の発明の概要を項分けして以下に示す。
1.本発明の半導体集積回路装置の製造方法は、接続端子が、この接続端子の導体表面に導電性粒子をはんだ、あるいはろう材で固定した構造を持ち、該導電性粒子と被接続端子との接触により電気的接続を確保するものである。
2.本発明の半導体集積回路装置の製造方法は、前記導電性粒子の母材が、Ti、Cr、Co、Ni、Fe、Cu、W、またはMoの中の少なくとも1種類以上から成るものである。
3.本発明の半導体集積回路装置の製造方法は、前記導電性粒子の表面に、Au、Ag、Sn、Pb、In、Rh、Pt、またはPdを被覆したものである。
4.本発明の半導体集積回路装置の製造方法は、前記導電性粒子の平均粒径を50ミクロンメーター以下で3ミクロンメーター以上とするものである。
5.本発明の半導体集積回路装置の製造方法は、接続端子が、この接続端子の導体表面に導電性粒子をはんだ、あるいはろう材で固定して、該導電性粒子の先端を残して前記接続端子の表面を絶縁膜で被覆したものである。
6.本発明の半導体集積回路装置の製造方法は、ソケットが、接続端子と、この接続端子に接続する相手の被接続端子を重ねた状態で、これらの両接続端子間に圧力を加える加圧機構とを備えたものである。
本発明の目的は、位置合わせ精度の向上と低コスト化とを実現する半導体集積回路装置の製造方法を提供することにある。
さらに、本発明の他の目的は、繰り返して使用ができ、高温での使用においても接続部に汚染を与えない半導体集積回路装置の製造方法を提供することにある。
本発明の前記ならびにその他の目的と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【図面の簡単な説明】
図1は本発明の実施の形態1の接続端子の構造を表す平面図と断面図、図2は本発明の実施の形態2の接続端子の構造を表す平面図と断面図、図3は本発明の実施の形態3の接続端子の構造を表す平面図、図4〜図7は本発明の接続端子を備えたソケットの実施の形態の構成図、図8は本発明の接続端子、ソケットを備えたバーンインボードの構造を表す平面図、図9ははんだボールを用いたBGA半導体パッケージを接続端子を介して、ボードに接続した実施の形態の断面構造図、図10ははんだボールを用いたBGA半導体パッケージを接続端子を介して、ボードに接続した実施の形態の断面構造図、図11は本発明の接続端子、ソケットを備えた実施の形態のモジュールの構造を表す平面図、図12は本発明の接続端子、ソケットを備えた実施の形態のモジュールの構造を表す平面図、および断面図、図13は本発明の端子接続構造の詳細を示す模式断面図、図14はその部分拡大模式断面図、図15は本発明の対象となるファンアウト型CSPの基本的構造を示す模式断面図、図16は本発明の対象となるWPPすなわちウエハプロセスパッケージ(Wafer Process Package)の基本的構造を示す模式断面図、図17は本発明の対象となるベアチップ実装の基本的構造を示す模式断面図、図18は本発明の対象となるμBGAすなわちマイクロボールグリッドアレー(Micro-Ball Grid Array)の基本的構造を示す模式断面図である。
発明を実施するための最良の形態
以下の実施の形態では特に必要なとき以外は同一または同様な部分の説明を原則として繰り返さない。
更に、以下の実施の形態では便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなくなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合及び原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良いものとする。
更に、以下の実施の形態において、その構成要素(要素ステップ等を含む)は、特に明示した場合及び原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことはいうまでもない。
同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合及び原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは上記数値及び範囲についても同様である。
以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の機能を有する部材には同一の符号を付し、その繰り返しの説明は省略する。
また、本願で「半導体集積回路装置」と言うときは、シリコンウエハ上に作られるものだけでなく、特にそうでない旨明示された場合をのぞき、TFT液晶等の他の基板上に作られるもの等も含むものとする。
更に、本願において「ウエハ又は半導体ウエハ」と言うときは、全部が単結晶のシリコンウエハ等に限定されず、その上に半導体集積回路装置を集積する絶縁基板、部分的半導体基板集積回路製造用の基板等も含むものとする。
更に、本願において「バーンインテスト」と言うときは、加熱による加速試験、スクリーニング試験の外、ストレスを加えて製品の潜在的欠陥を調べるエージングその他の試験等も含むものとする。
更に、本願において「配線板」と言うときは、ガラスエポキシ、セラミック等の基板に同等で配線をパターニングしたものの外、ポリイミドフィルム上に銅フィルム等の配線パターンを配置したもの等も含むものとする。
更に、本願において「チップリード複合体」と言うときは、半導体集積回路チップとそれに電気的に接続されたリードフレームから切り離されたリード群を含む組立体の外、各種のCSPやウエハプロセスパッケージのごとくチップとそれと電気的に接続された引き出し電極を含む組立構造体等も含むものとする。
更に、本願において「はんだ」と言うときは、鉛錫系の共晶はんだの外、錫金はんだ、高温はんだ、錫はんだその他摂氏450度以下の融点を有するろう付け用金属合金等も含むものとする。
更に、本願において「バインダ層」と言うときは、はんだ層の外、エポキシレジン系接着剤層等有機系のものも含むものとする。
(実施の形態1)
図1に接続端子の構造を表す平面図と断面図を示す。断面図は、平面図中にA−A’部分の断面構造を示す。リード1は、銅リードに共晶はんだめっきしたものである。リード1の先端には平均粒径50μmの銅粉末をはんだで固定し接続端子2を作成してある。これは、リード1の先端を所定深さの銅粉末とフラックスを混ぜたペースト中に漬け、リード先端に銅粒子を付けた状態で、加熱することにより複数の銅粒子をリード1の先端に固定した。これらのリード1をモールド型に入れ樹脂を注入して、リード固定樹脂枠3を作成した。モールド時にリード1は所定の形状に成形される。この接続端子を利用する際には、樹脂枠3の4隅にある穴にネジを固定ネジ4を4個で基板等に固定する。固定ネジ4には部品押さえ板5がついている。このリード固定樹脂枠3内部にたとえば被接続端子であるはんだボール7を持つ半導体パッケージ6を入れ、パッケージ裏面を4枚の部品押さえ板5で固定して使用する。この構造の接続端子2を採用することにより、従来のバネを入れたピンを用いる接続端子の場合より、低コストの接続端子2を実現できた。
(実施の形態2)
図2に別の接続端子の構造を表す平面図と断面図を示す。断面図は、平面図中にA−A’部分の断面構造を示す。接続端子2はアルミナ基板8の上に形成している。形成方法は引き出し配線9、引き出し端子10と同様に厚膜印刷技術で形成した。具体的には、次の様にして製造した。アルミナ基板8には被測定部品であるセラミックパッケージ13を固定するための固定穴12が4個開いているものを用いた。この上に銀−パラジウムペーストを用いてスクリーン印刷技術で引き出し配線9、接続端子2及び引き出し端子10を形成する。引き出し端子10の上には更に金ペーストを用いて上塗りする。これをベルト炉を用いて900℃で焼成する。その後、錫一銀粒子、金めっきした平均粒径30μmのタングステン粉末、フラックス用樹脂粒子、更に溶剤を混ぜペースト状にしたものを接続端子2上に上塗りし、これを800℃のベルト炉で、タングステン粒子の錫−銀のろう材で固定した。最後にセラミック製のガイド11をセラミック接着剤で固定した。
この接続端子2の使用法は、被測定部品であるセラミックパッケージ13を被測定部品搭載位置16に搭載し、その接続端子2上には、セラミックパッケージ13のリード14を乗せ、そのリード部を銅製の押さえ棒15を2本用いて、固定穴12にさしたネジで固定する。
この接続端子2を用いると、被測定部品であるセラミックパッケージ13の200℃迄の信頼性を含む各種の特性評価を実施することができた。これは、従来のバネを入れたピンを用いる接続端子の場合より、低コストでしかも高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子2を実現できた。
尚タングステン粉末の他にモリブデン、チタン、クロム粉末を用いても接続端子2を形成した。これらの場合もタングステン粉末の場合と同様の特性を得ることができる。
(実施の形態3)
図3に別の接続端子の構造を表す平面図を示す。接続端子2は約45mm角のフレキシブルテープ回路17の上に形成している。形成方法は通常のフレキシブルプリント回路(FPC)と同様のフォトリソグラフィ技術を用いて製造した。回路の絶縁フィルム材はポリイミドであり、引き出し配線9、引き出し端子10、及び接続端子2は銅で形成した。引き出し端子10は銅の上に更にニッケル及び金でめっきした。接続端子2の銅の上には共晶はんだでロジウムめっきした平均粒径25μmのニッケル粒子を固定した。引き出し配線9の上には、レジスト膜を被覆した。接続端子2は、直径0.3mmの大きさであり、そのピッチが0.5mm、2列配列で、総数152個である。
この接続端子2の上には、0.5mmピッチで152ピンのBGA半導体パッケージのはんだボール端子が接続される。BGAは、被測定部品搭載位置16に搭載し、総加重300gを掛けてテープ回路17に固定する。また、テープ外周に配置している引き出し端子10は、幅0.5mmで長さ2mmであり、ピッチ1.0mmで形成してある。
図3の接続端子2を用いたソケット25の断面図を図4に示す。接続端子2を形成したフレキシブルテープ回路17をソケット台18上に乗せ、固定する。このテープ回路上にソケット25のパッケージガイド19を乗せ、ガイドピン24で固定する。そこに、接続端子であるはんだボール7の付いたBGAタイプの半導体パッケージ6を搭載する。その上にパッケージ押さえ20を加圧用バネ21で固定したソケット蓋22を被せる。具体的には、ソケット蓋22に形成したガイドピン用穴23にガイドピン24を差し、固定する。
この様にして、接続端子2に半導体パッケージ6のはんだボール7を接触させることにより、その間の接続抵抗値は最大でも0.2Ωとすることができた。これにより、従来特性評価が難しかった微細ピッチのBGAの特性測定が容易になった。
また、このテープ回路上の接続端子2を搭載したソケット25は、BGAのバーンインをも実施することができる。バーンインでは、テープ回路17を含めて約130℃に上げ、約8時間連続動作をさせた。この際、BGAのはんだボールの熱変形は生じたが、接続端子2とBGAのはんだボールとの接続抵抗値は全て0.5Ω以下を確保することができた。これにより、従来困難であった微細ピッチBGAのバーンインを、量産レベルで実施できることが可能になる。また、この接続端子2は高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子を実現できた。
尚ニッケル粉末の他にコバルト、鉄粉末を用いても接続端子2を形成した。これらの場合も上記同様にニッケル粉末の場合と同様の特性を得ることができた。
(実施の形態4)
図3のテープ回路17の接続端子2の部分に更にエポキシ系の樹脂を被覆し更にその上から加圧・加熱して接続端子2を製造した。この接続端子2は、ニッケル粒子がはんだの他樹脂でも固定した構造になっている。ニッケル粒子の頭は加圧時に樹脂が脇に移動する為表に出現している。
(実施の形態5)
図4と同様のソケットで、フレキシブルテープ回路17の下に厚さ0.3mmの弾性膜を形成したソケットを製造した。また加圧用バネ21については弾力性の低いものを適用した。このソケット中に152ピンのBGA半導体パッケージを入れ、特性評価を実施した。BGAに掛かる総加重は200gであった。
室温における接続端子2とBGAのはんだ端子間の接続抵抗値は最大でも0.2Ωとすることができた。BGAのバーンイン試験では、テープ回路17、ソケット25を含めて約130℃に上げ、約8時間連続動作をさせた。この際、BGAのはんだボールの熱変形は殆ど無く、接続端子2とBGAはんだボールとの接続抵抗値は全て0.5Ω以下を確保することができた。
これにより、実施の形態3と同様、微細ピッチのBGAの特性測定が容易になり、また、従来困難であった微細ピッチBGAのバーンインを、量産レベルで実施できることが可能になった。また、この接続端子2は高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子2を実現できた。
尚、上記のソケット25の製造では、接続端子2には金めっきしたニッケル粒子を適用したが、金めっきの他に、銀、錫、鉛、インジウム、ロジューム、白金、及びパラジュームを検討し、抵抗値の上では金めっきと同程度の値を得ることができた。これにより、めっきとしては、金めっきに限らず、銀、錫、鉛、インジウム、ロジューム、白金、及びパラジュームも十分適用できることを確認した。
(実施の形態6)
図5に別の接続端子を持つソケット25の構造を表す断面図と平面図を示す。断面図は、平面図中のA−A’部分の断面構造を示す。このソケット25の中には、被測定部品であるBGAタイプの半導体パッケージ6を4個搭載できる構造になっている。
接続端子2は約70mm角のフレキシブルテープ回路17の上に形成してある。形成方法は通常のフレキシブルプリント回路(FPC)と同様のフォトリソグラフィ技術を用いて製造した。回路の絶縁フィルム材はポリイミドであり、引き出し配線9、引き出し端子10、及び接続端子2は銅で形成した。引き出し端子10は銅の上に更にニッケル及び金でめっきした。接続端子2の銅の上には共晶はんだでロジウムめっきした平均粒径25μmのニッケル粒子を固定した。引き出し配線9の上には、レジスト膜を被覆した。接続端子2は、直径0.3mmの大きさであり、そのピッチが0.5mm、2列配列で、1個のBGAで総数152個、4個のBGAで総数608個である。
この接続端子2の上には、0.5mmピッチで152ピンのBGA半導体パッケージ4個のはんだボール端子が接続される。BGAは、被測定部品搭載位置16に搭載し、総加重800gを掛けてテープ回路17に固定する。ソケット蓋22の開閉には、実施の形態3と異なり、パッケージガイド19と蝶つがい26で一体化しており、蓋22を閉じた場合にはロック27で、蓋22を固定できる構造になっている。また、このソケット25では、実施の形態5と同様に、テープ回路17の下に弾性膜28を設置した。
このテープ回路上に形成した接続端子2を用いることにより、BGAのはんだボール7と接続端子2との接続抵抗値は全て確保でき、その値は最大でも0.2Ωであった。これにより、従来特性評価が難しかった微細ピッチのBGAの特性測定が容易になった。また、このテープ回路上の接続端子2は、BGAのバーンインをも実施することができた。バーンインでは、テープ回路17を含めて約130℃に上げ、約8時間連続動作をさせた。この際、BGAのはんだボール7の熱変形はあったが、接続端子2とBGAのはんだボール7との接続抵抗値は全て0.5Ω以下を確保することができた。これにより、従来困難であった微細ピッチBGAのバーンインを、量産レベルで実施できることが可能になった。また、この接続端子2は高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子2を実現できた。
(実施の形態7)
図6に別の接続端子を持つソケットの構造を表す断面図と平面図を示す。断面図は、平面図中のA−A’部分の断面構造を示す。このソケット25は1枚のテープ回路17に4組のパッケージガイド19、パッケージ押さえ20、及びソケット蓋22を持った構造で、これらの各組には、1個のBGAを搭載できる。
接続端子2は約45mm幅で約280mm長さのフレキシブルテープ回路17の上に形成している。形成方法は通常のフレキシブルプリント回路(FPC)と同様のフォトリソグラフィ技術を用いて製造した。回路の絶縁フィルム材はポリイミドであり、引き出し配線9、引き出し端子10、及び接続端子2は銅で形成した。引き出し端子10は銅の上に更にニッケル及び金でめっきした。接続端子2の銅の上には共晶はんだでロジウムめっきした平均粒径25μmのニッケル粒子を固定した。引き出し配線9の上には、レジスト膜を被覆した。接続端子2は、直径0.3mmの大きさであり、そのピッチが0.5mm、2列配列で、1個のBGAで総数152個、4個のBGAで総数608個である。
この接続端子2の上には、0.5mmピッチで152ピンのBGA半導体パッケージのはんだボール端子が接続される。各BGAは、被測定部品搭載位置16に搭載し、加重200gを掛けてテープ回路17に固定する。
このテープ回路上に形成した接続端子2を用いることにより、BGAのはんだボールと接続端子2との接続抵抗値は全て確保でき、その値は最大でも0.2Ωであった。これにより、従来特性評価が難しかった微細ピッチのBGAの特性測定が容易になった。また、このテープ回路上の接続端子2は、BGAのバーンインをも実施することができた。バーンインでは、テープ回路17を含めて約130℃に上げ、約8時間連続動作をさせた。この際、BGAのはんだボール7の熱変形はあったが、接続端子2とBGAのはんだボール7との接続抵抗値は全て0.5Ω以下を確保することができた。これにより、従来困難であった微細ピッチBGAのバーンインを、量産レベルで実施できることが可能でなった。また、この接続端子2は高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子2を実現できた。
(実施の形態8)
図7に別の接続端子を持つソケット25の構造を表す断面図と平面図を示す。断面図は、平面図中のA−A’部分の断面構造を示す。このソケット25の基本構造は実施の形態7と類似している。異なる点は次の2点。それは、テープ回路17を含めたソケット25の外形は約45mm角で、1つのソケット25には、1個のBGAを搭載できる構造とした点、及びテープ回路17の引き出し端子10は、ソケット裏面に曲げ、そこに固定しており、更に引き出し端子10の表面上には接続端子2と同様の構造を付与している点である。
接続端子2と引き出し端子10には、銅の上に共晶はんだでロジウムめっきした平均粒径25μmのニッケル粒子を固定した。引き出し配線9の上には、レジスト膜を被覆した。接続端子2は、直径0.3mmの大きさであり、そのピッチが0.5mm、2列配列で、1個のBGAで総数152個である。引き出し端子10は幅が0.5mmで長さが2mm、ピッチが1.0mmで総数は接続端子2と同様152個である。この引き出し端子10は、ボード29上にの同位置のボード接続端子30に重ねて使用する。
この接続端子2の上には、0.5mmピッチで152ピンのBGAタイプの半導体パッケージ6のはんだボール端子が接続される。各BGAは、被測定部品搭載位置16に搭載し、加重200gを掛けてテープ回路17に固定する。
このテープ回路上に形成した接続端子2を用いることにより、BGAのはんだボール7と接続端子2との接続抵抗値は全て確保でき、その値は最大でも0.2Ωであった。これにより、従来特性評価が難しかった、微細ピッチのBGAの特性測定が容易になった。
(実施の形態9)
図8にバーンインボード31の構造を表す平面図を示す。ボード29の上には、図7のソケット25を16個搭載している。この他ボード上には、抵抗体、コンデンサ、IC等を搭載しているが、複雑になるので省略する。ボード端部にはバーンインの際に、バーンイン装置と接続するためのボード端子32があり、その端子数は約120である。この各ソケット25にBGAタイプの半導体パッケージ6を入れ固定することにより、BGAのはんだボール7と接続端子2との接続抵抗値は全て確保でき、その値は最大でも0.2Ωであった。このバーンインボード31を用いてバーンインを実施することができた。バーンインでは、テープ回路17を含めて約130℃に上げ、約8時間連続動作をさせた。この際、BGAのはんだボール7の熱変形はあったが、接続端子2とBGAのはんだボール7との接続抵抗値は全て0.5Ω以下を確保することができた。これにより、従来困難であった微細ピッチBGAのバーンインを、量産レベルで実施できることが可能になった。また、この接続端子2は高い耐久性を持ち、信頼性が高く、また、被測定物を取り替え半永久的に使える接続端子2を実現できた。
尚、上記実施の形態では、BGAタイプの半導体パッケージ6として、0.5mmピッチの152ピンを実装する例を上げたが、上記効果はピン数、部品外形、ピッチに依存するものではないことは、明らかである。
(実施の形態10)
図9に被接続端子としてはんだボール7を用いたBGAタイプの半導体パッケージ6を接続端子2を介して、ボード29に接続した断面構造図を示す。
ボード29の上面には、配線の他、BGAと接続する為の接続端子2を対応する位置に設けている。接続端子2は配線と同じ銅の上に共晶はんだでめっきし、ロジウムめっきした平均粒径25μmのニッケル粒子を固定した。接続端子2は、直径0.3mmの大きさであり、そのピッチが0.5mm、2列配列で、1個のBGAで総数152個である。引き出し端子10は幅が0.5mmで長さが2mm、ピッチが1.0mmで総数は接続端子2と同様152個である。この引き出し端子10は、ボード29上の同位置の接続端子2に重ねて使用できる。BGAである半導体パッケージ6とボード29との仮固定の上で、BGA上に約200gの重りを乗せた。この状態でボード29の機能を電気的に測定した。機能測定で、所定の機能を確認した場合には、重りを乗せたまま、エポキシ系の樹脂33を半導体パッケージ6の下面に注入し、その後150℃で樹脂を固化した。
この様に、本発明の接続端子2を利用することにより、実装部品の特性を確認した後に部品の固定を実施するため、良品のみを実装できる。これにより、従来不良品を実装した場合には、ボード全体を不良品として、廃棄あるいは、部分的に手直ししていた無駄を省略できるようになった。
(実施の形態11)
図10の被接続端子としてはんだボール7を用いたBGAである半導体パッケージ6を接続端子2を介して、ボード29に接続した断面構造図を示す。
基本構造は実施の形態9と同じであるが、BGAである半導体パッケージ6とボード29との固定には、ばね性を持つメタルフレーム36と弾性35を用いる。ボード29のBGAを搭載する部分のコーナー部近傍にメタルフレーム36の足を固定するための貫通孔34を4カ所に設ける。メタルフレーム36には、弾性体35を入れ、更にBGAである半導体パッケージ6を入れる。これをマウンタでメタルフレーム36の足がボード29の貫通孔34に入る様に基板に搭載する。メタルフレーム36の足は貫通孔挿入後に先端が開く構造になっており、この足が固定されていることと、弾性体35が圧縮されていることで、半導体パッケージ6がはんだボール7と接続端子2を介してボード29と電気的に接続する。接続後、ボード単位で電気的検査を実施し、この半導体パッケージ6の機能不十分である場合は、メタルフレーム36をボード29から外して半導体パッケージ6を交換し、それが良品であることを確認する。この様に、本発明の接続端子2を利用することにより、実装部品の特性確認や部品交換が容易であるため、従来、ボード全体を不良品として、廃棄あるいは、部分的に手直ししていた無駄を省略できるようになった。
(実施の形態12)
図11にモジュール37の構造を表す平面図を示す。ボード29の上には、図7のソケット25を1個搭載している。この他、ボード上には、SRAM38を6個搭載している。ボード端部にはパーソナルコンピュータの本体と接続するためのボード端子32があり、その端子数は約50である。このソケット25にマイクロコンピュータ機能を持つBGAタイプの半導体パッケージ6を入れ固定することにより、BGAである半導体パッケージ6のはんだボール7と接続端子2との接続抵抗値は全て確保でき、その値は最大でも0.2Ωであった。このモジュール37を用いてパーソナルコンピュータを組み立てることができた。このモジュール37を採用することにより、モジュール自体の機能検査段階で、BGAタイプの半導体パッケージ6が不良品である場合、ただちに良品に交換することが容易であり、従来不良のモジュールを廃棄していた場合と比較して、コスト低減になった。この方式は、特に半導体パッケージ6内のマイクロコンピュータチップや半導体パッケージ6の開発当初で有効であった。
(実施の形態13)
図12にモジュール37の構造を表す平面図及びA−A’部の断面図を示す。モジュール37の機能は実施の形態11に説明したモジュールと同じである。
ボード29の上には、SRAMチップ38を6個、及びマイクロコンピュータチップ39を1個搭載している。各チップにははんだボール7で形成した被接続端子を形成してある。このはんだボール7はボード29上の接続端子2に接しており、これを保持する為に、チップとボード29間には樹脂33を充填・硬化してある。ボード端部にはパーソナルコンピュータの本体と接続するためのボード端子32があり、その端子数は約50である。このモジュール37を用いてパーソナルコンピュータを組み立てることができた。このモジュール37を採用することにより、モジュール自体に大きさが、実施の形態11のモジュールと較して、約1/2の面積と小形化できた。また半導体チップを搭載し、これに加重を掛けて機能検査する段階で、半導体チップが不良品である場合、ただちに良品に交換することが容易であり、従来組み立て後、不良のモジュールを廃棄していた場合と比較して、コスト低減になった。
(実施の形態14)
以上の各実施の形態に共通した接触部分の構造及び働き等の詳細を特に図5又は図6に説明されている構造に対応した例を用いて、より詳しく説明する。
図13において、半導体チップ(たとえばシリコン単結晶)又はチップリード複合体51はその下面にボンディングパッド又はバンプ形成用パッド52を有する。このバンプ形成用パッド52上にははんだボール7(図12参照)又ははんだバンプ53(たとえば直径0.25mmで0.5mmピッチ)が形成されている。測定器側は比較的剛性のある絶縁基板57上のくぼみ部にエラストマー等の弾性部材シート58(たとえば厚さ300μm)が配置されており、バーンイン時の良好なコンタクト(望ましくは接触抵抗2Ω以下)を保証している。配線基板57上には品種に対応した銅フィルム等(たとえば厚さ18μm)の配線パターンを有する配線板56が配置されており、この配線パターンの測定側パッド部にははんだ層55が形成されており、このはんだ層中には一部が突出するようにニッケル等の金属粒子54が埋め込まれている。バーンイン時にはこの金属粒子54のいくつかが、はんだバンプ53の表面の酸化膜を突き破り、良好な電気的接触を確保する。
図14において、上記金属粒子54の表面には上記主要領域を構成する金属よりもバンプのはんだと反応しにくい金属又は合金より成る金属被覆層59が形成されている。なお、この金属被覆層59に上記心材よりも酸化されにくい材料を用いた場合にはニッケル等の心材の表面酸化等を防止して電気的接触を改善する効果を持つ。
上記はんだバンプ53形成用のはんだ材料としては、共晶はんだ(たとえば組成62Sn/95Pb、融点摂氏183度)、錫銀はんだ(たとえば組成96.5Sn/3.5Ag、融点摂氏221度)、又は高温はんだ(たとえば組成5Sn/95Pb、融点摂氏約310度)等が最適である。
上記はんだ層55形成用のはんだ材料としては、メッキによる錫はんだ(たとえば組成100%Sn、融点摂氏232度)、高温はんだ(たとえば組成5Sn/95Pb、融点摂氏約310度)、錫銀はんだ(たとえば組成96.5Sn/3.5Ag、融点摂氏221度)等が最適である。
バーンインテストは、たとえば摂氏125度程度の温度で通常よりも1割程度高い電源電圧を供給して(ある種のストレスを加えて)行われる。また必要に応じて熱サイクル等も適用される。
なお、バーンインテスト後には被検査集積回路パッケージ等と検査装置側パッケージは機械的に分離される。すなわち機械的押しつけや一時的接着のための接着剤を除去することにより、電気的接触が解除される。このときバンプの損傷は加熱して物理的に融合させたときに比較して小さいので、そのまま又は適切な回復処理の後、最終製品等に製品として実装することができる。
上記金属粒子主要領域の金属すなわち、心材としては、たとえばニッケル、チタン、クロム、コバルト、鉄、銅、タングステン、又はモリブデン、或いはこれらの少なくとも一つを主要成分とする合金等を使用することができる。また、金属被覆層59の材料としてはロジウム、金、銀、錫、鉛、インジウム、白金、又はパラジウム、或いはこれらの少なくとも一つを主要成分とする合金等を使用することができる。
(実施の形態15)
以上の各実施の形態において、製造処理又は測定対象となるパッケージの構造についてより詳しく説明する。
図15において、配線シート62の上面に半導体チップ60が固着されており、周辺の枠体61で補強された部分には半導体チップ60の各端子と配線シート62を介して電気的に接続されたはんだバンプ53が形成されている。
図16において、半導体チップ60のデバイス形成面上に各端子63はポリイミド多層配線64を介して外部パッド65と電気的に接続されており、その各外部パッド65上にはんだバンプ53が形成されている。
図17において、半導体チップ60のデバイス形成面上の各端子66上にははんだバンプ53が形成されている。
図18において、多層配線基板69の上面には半導体チップ60がデバイス面を上にして固着されており、半導体チップ60のデバイス形成面上の各端子66(図17参照)はボンディングワイヤ68等を介して多層配線基板69と電気的に接続されており、更に多層配線基板69を介してその対応する各外部パッド上に形成されたはんだバンプ53と電気的に接続されている。上記半導体チップ60とボンディングワイヤ68はレンジ67により封止されている。
本発明のバーンイン工程は、以上のような少なくとも外部端子がはんだバンプ53のごとく酸化されやすいボール状の金属端子で作られた半導体集積回路装置全般に適用可能である。更に、ボールピッチ(バンプピッチ)が1mmから0.5mm前後又はそれ以下の微細ピッチ製品に適用して特に有効である.
以上、本発明者によってなされた発明を発明の実施の形態1〜15に基づき具体的に説明したが、本発明は前記発明の実施の形態1〜15に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることは言うまでもない。
たとえば、図8に示すバーンインボード31では、ソケット25が16個搭載されている場合を説明したが、その搭載数は16個に限定されるものではなく、1個または16個以外の複数個であってもよい。
産業上の利用可能性
本発明によれば、以下の効果が得られる。
(1)接続端子と拡大回路を一体化し、従来の測定系の端子とフィルム上導体とが分離していた場合と比較して、位置合わせ精度が向上する。これは、分離している場合は各々の位置合わせが必要となるため、そこで位置ズレが発生する。また、フィルム等を用いると、それ自体のズレ、変形があり、繰り返し使用により精度は大幅に低減する。更にバーンインの様に温度を掛ける場合には、設定時に位置ずれが無くても、構成部品が多い場合は熱膨張の差から位置ズレが生じる。このためこの構成を採用することにより、従来限界とされてきた0.5mmピッチ以下の微細ピッチのBGA,CSPに対応できる。
(2)このことは、パッケージ形態、パッケージの有無に依存しないため、ベアチップの検査、バーンイン等にも適用できる。
(3)接続端子には、はんだ等より固い金属粒子を用いているため、はんだボールとの接触時に粒子の角がはんだボール表面の酸化膜を破りその新生面と金属粒子が接触するため、確実な電気接続を確保することができる。また、上記(1)の理由から、接続部の位置精度が高いことから、バーンイン時にオープンあるいはショート等が接続部で発生しにくいため、はんだボールとの電気的接触を確実にとれる。
(4)ソケット構成としては、接続端子と拡大回路を一体化し、他の加圧部、ガイド部を別構成としている。拡大回路等の電気的部分は、従来の生産性の高い露光・現像方式で回路を形成できる。また、加圧部等は従来の生産性の高いモールド技術で製造できる。本発明の接続部分も、生産性の高い印刷技術で製造できる。この為、従来、電気的部分と機械的部分を混然と複雑な方式で製造していた場合と比較して、製造コスト低減が図れる。また、端子数、形状等が異なる場合には従来、個々に製造していたソケットを、例えば端子ピッチが同じであれば、同じ拡大回路を使える等の対応が容易であるので、個々のパッケージに対して個々のソケットを製造する必要がないため、ソケットの低コスト化が容易に図れる。
(5)上記(1)及び(3)の理由により、確実な検査が実施できることにより、製品信頼性が向上する。
(6)上記(4)の理由により、従来方式のソケットで対応した場合には、非常に高価なソケットを準備しなければならない点と比較すると、製品の低コスト化が図れる。
(7)金属粒子の平均粒径を3μmから50μm(更に望ましくは10μmから40μm)とすることにより、接続信頼性の向上を図ることができる。即ち、平均粒径を3μm未満にすると、被接続端子に用いるはんだバンプ等の表面の酸化膜を破る効果が減り、被接続端子との接続信頼性が悪くなる。また、平均粒径が50μmを越えると、接続端子間の短絡が発生し易くなる。しかし、十分な注意をすれば平均粒径が50μmを越える金属粒子の使用も可能であることは言うまでもない。
Technical field
The present invention relates to an electronic component in a manufacturing technology of a semiconductor integrated circuit device, a connection terminal, a socket, and a board that can be electrically contacted with and separated from the electronic circuit, and particularly, inspection, testing, etc. of a fine pitch electronic component or circuit. The present invention relates to a connection technique for connecting terminals, sockets, and boards capable of fine pitch connection.
Background art
Japanese Patent Laid-Open No. 1-201931 (Mase et al.) And Japanese Laid-Open Patent Publication No. 2-37735 (Yamazaki et al.) Describe printing with paste containing silver, palladium silver alloy, platinum, tin, nickel, titanium, molybdenum and other metal powders. A chip mounting method is disclosed in which a solder bump or the like is bonded to the wiring by using an epoxy resin so as to be in contact therewith.
Further, Yada's Japanese Patent Laid-Open No. 8-304462 discloses a burn-in method in which tin, an alloy thereof, indium bump, or the like is brought into contact with a pad portion in which a gold plating layer is further formed on a nickel plating layer on a printed wiring such as copper. Is disclosed.
Disclosure of the invention
A CSP (Chip Size Package) contact terminal will be described as an example of a fine pitch component.
CSP is a kind of BGA (Ball Grid Array) in which terminals are formed in an area array, and has a finer pitch than a normal BGA. In CSP, products with a pitch of 0.5 mm are currently on the market, but this pitch is in the trend of further miniaturization.
In conducting the characteristic test and burn-in with the current 0.5 mm pitch product, the system implemented by BGA is used. This method embeds a large number of Au-plated wires in silicone rubber in a certain direction, and through this silicone rubber sheet, a solder ball that is a terminal of a CSP and a pad of a circuit board disposed under the silicone rubber sheet. The connection between them is ensured.
This method has the following four drawbacks.
(1) The alignment accuracy is inferior. This is because it is difficult to ensure accurate connection between the solder balls of the CSP and the pads of the circuit board because the intervening wires are obliquely inserted through the thick rubber sheet.
(2) Cost is high. Since the sheet itself has a complicated structure in which the Au plating wire is embedded in rubber at high density, the manufacturing cost is high.
(3) The number of repeated use is small. A thin wire is used for higher density, and the wire is broken by repeated use. For this reason, the number of repeated uses is small.
(4) Contamination of connected terminals. Since the product CSP solder balls are in direct contact with the silicone rubber, the low molecular silicone resin adheres to the solder balls and the like. In particular, when a high temperature treatment such as burn-in is performed, a large amount of low molecular silicone resin adheres to the surface of the solder ball. This causes connection failure when the CSP is mounted on a substrate or the like.
The problems in the present invention are (1) improving the alignment accuracy, (2) reducing the cost, (3) being able to be used repeatedly, and (4) not causing the connection to be contaminated even at high temperatures. That is.
In order to solve the above-described problems, a connection terminal structure having a structure in which conductive particles are fixed to a conductor surface of a terminal with solder or brazing material and electrical connection is ensured by contact is provided.
Further, in this connection terminal, the terminal is composed of a plurality of terminals arranged in a plane shape, and a planar circuit board is formed by these terminals and wiring from these terminals, and the connected terminal is placed on this circuit board. It has a socket structure in which the components or circuits that it has are mounted and pressed against the circuit board. Furthermore, the socket was mounted on a large circuit board to form a board.
In addition, a connection terminal structure having a structure in which conductive particles are fixed to the conductor surface of the terminal with solder or brazing material to ensure electrical connection by contact is provided.
With this structure, the rubber sheet containing a wire is not interposed between the terminal and the connected terminal, and in the CSP, the solder ball, and the alignment accuracy between the connected terminal and the connector is improved. In addition, since the conductive particles do not spread between terminals other than the terminals compatible with the solder or brazing material when fixed with solder or brazing material, a short circuit between the terminals does not occur. Since it is only necessary to fix the conductive particles as a terminal with solder or the like, a complicated operation of arranging wires in a certain direction in the rubber at a high density is not required, so that connection can be ensured at low cost. Further, since the connector has a strong structure in which the conductor particles are fixed with solder or the like, it can be used repeatedly semipermanently. In addition, there is no substance that contaminates the contacted element between the terminal and the contacted element, and the terminal can be used even at a high temperature.
Also, in the case of sockets and boards, since terminals having such characteristics are used, as described above, sockets that can be repeatedly used with high alignment accuracy, low cost, and do not contaminate the connection even when used at high temperatures. And board.
The outline of the main invention of the present application is divided into the following items.
1. A method of manufacturing a semiconductor integrated circuit device including the following steps:
(a) Outside of a semiconductor integrated circuit chip or a chip lead composite (for example, a part excluding a micro BGA package body, ie, a solder ball) constituting a main part (for example, a package body including a chip or a chip) of a semiconductor integrated circuit device Solder bumps (for example, eutectic solder balls formed on the electrodes) provided on the connection bump forming part (for example, bump forming electrodes provided on the lower surface of the chip lead composite) are connected to the wiring board (for example, flexible tape). A step of bringing a plurality of metal particles made of a metal harder than the solder bump into contact with a measurement-side electrode pad portion (that is, a connection terminal or the like) provided on a first main surface of a circuit or the like)
(b) With respect to the semiconductor integrated circuit chip in the semiconductor integrated circuit chip or the chip lead composite in a state in which the solder bump is pressed against the measurement-side electrode pad portion so as to come into contact with the plurality of metal particles, The process of performing the burn-in test,
(c) A step of determining pass / fail or grade of the semiconductor integrated circuit device based on the result of the burn-in test (it goes without saying that pass / fail or judging only the grade).
2. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particle has a main region (for example, a portion excluding its main body, that is, a surface coating, etc.) of nickel, titanium, chromium, cobalt, iron, copper, tungsten, Alternatively, it is made of molybdenum or an alloy containing at least one of them as a main component.
3. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particle has a metal coating layer on the surface thereof that is less likely to react with the solder of the solder bump than the component constituting the main region.
4). In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal coating layer (for example, a plating layer having a thickness of about several μm) is formed of rhodium, gold, silver, tin, lead, indium, platinum, palladium, or It is made of an alloy containing at least one of these as a main component.
5. In the method for manufacturing a semiconductor integrated circuit device of the present invention, the average particle diameter of the metal particles is 3 μm to 50 μm.
6). In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the chip lead composite is a CSP package (for example, micro BGA, WPP, etc.).
7). In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the wiring board is a film-like wiring board or a film wiring sheet.
8). In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particles are made of nickel or an alloy containing nickel as a main component.
9. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal coating layer is made of rhodium or an alloy containing rhodium as a main component.
10. In the method for manufacturing a semiconductor integrated circuit device of the present invention, the average particle diameter of the metal particles is 10 μm to 40 μm.
11. A method of manufacturing a semiconductor integrated circuit device including the following steps:
(a) A solder bump provided on an external connection bump forming portion of a semiconductor integrated circuit chip or chip lead composite constituting the main part of the semiconductor integrated circuit device is provided on the first main surface of the film-like wiring board. A step of bringing a plurality of metal particles made of a metal harder than the solder bump into contact with a measurement-side electrode pad portion embedded in a binder layer (for example, a eutectic solder layer);
(b) With respect to the semiconductor integrated circuit chip in the semiconductor integrated circuit chip or the chip lead composite in a state in which the solder bump is pressed against the measurement-side electrode pad portion so as to come into contact with the plurality of metal particles, The process of performing the burn-in test,
(c) determining the quality or grade of the semiconductor integrated circuit device based on the result of the burn-in test;
12 In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particles are mainly composed of nickel, titanium, chromium, cobalt, iron, copper, tungsten, or molybdenum, or an alloy containing at least one of them as a main component. It consists of
13. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particle has a metal coating layer on the surface thereof that is less likely to react with the solder of the solder bump than the component constituting the main region.
14 In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal coating layer is made of rhodium, gold, silver, tin, lead, indium, platinum, palladium, or an alloy containing at least one of them as a main component. It is.
15. In the method for manufacturing a semiconductor integrated circuit device of the present invention, the average particle diameter of the metal particles is 3 μm to 50 μm.
16. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the chip lead composite is a CSP package.
17. A method of manufacturing a semiconductor integrated circuit device including the following steps:
(a) a solder bump provided on an external connection bump forming portion of a semiconductor integrated circuit chip or chip lead composite constituting the main part of the semiconductor integrated circuit device is provided on a first main surface of the wiring board; A step of bringing a plurality of metal particles made of metal harder than the solder bump into contact with the measurement-side electrode pad portion embedded in the solder layer;
(b) performing a burn-in test on the semiconductor integrated circuit chip or the semiconductor integrated circuit chip in the chip lead composite in a state where the solder bumps are in contact with the plurality of metal particles;
(c) determining the quality or grade of the semiconductor integrated circuit device based on the result of the burn-in test;
18. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particles are mainly composed of nickel, titanium, chromium, cobalt, iron, copper, tungsten, or molybdenum, or an alloy containing at least one of them as a main component. It consists of
19. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal particles have a metal coating layer on the surface thereof that is less likely to react with the solder of the solder bump than the components constituting the main region.
20. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the metal coating layer is made of rhodium, gold, silver, tin, lead, indium, platinum, palladium, or an alloy containing at least one of them as a main component. It is.
Furthermore, the summary of other inventions of the present application is divided into the following items.
1. In the method for manufacturing a semiconductor integrated circuit device of the present invention, the connection terminal has a structure in which conductive particles are fixed to the conductor surface of the connection terminal with solder or brazing material, and the contact between the conductive particles and the connected terminal is achieved. This ensures electrical connection.
2. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the base material of the conductive particles is made of at least one of Ti, Cr, Co, Ni, Fe, Cu, W, and Mo.
3. In the method for producing a semiconductor integrated circuit device of the present invention, the surface of the conductive particles is coated with Au, Ag, Sn, Pb, In, Rh, Pt, or Pd.
4). In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the average particle diameter of the conductive particles is 50 micrometers or less and 3 micrometers or more.
5. In the method of manufacturing a semiconductor integrated circuit device according to the present invention, the connection terminal is formed by fixing the conductive particles on the conductor surface of the connection terminal with solder or brazing material, leaving the tips of the conductive particles. The surface is covered with an insulating film.
6). The method of manufacturing a semiconductor integrated circuit device according to the present invention includes a socket, a pressurizing mechanism that applies pressure between the connection terminals and a connection target of a counterpart connected to the connection terminals. It is equipped with.
An object of the present invention is to provide a method of manufacturing a semiconductor integrated circuit device that achieves improvement in alignment accuracy and cost reduction.
It is another object of the present invention to provide a method for manufacturing a semiconductor integrated circuit device that can be used repeatedly and does not contaminate the connection even when used at high temperatures.
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.
[Brief description of the drawings]
1 is a plan view and a cross-sectional view showing the structure of a connection terminal according to Embodiment 1 of the present invention, FIG. 2 is a plan view and a cross-sectional view showing the structure of a connection terminal according to Embodiment 2 of the present invention, and FIG. Fig. 4 is a plan view showing the structure of the connection terminal according to the third embodiment of the invention, Figs. 4 to 7 are configuration diagrams of the embodiment of the socket having the connection terminal of the present invention, and Fig. 8 is the connection terminal and socket of the present invention. FIG. 9 is a cross-sectional structural view of an embodiment in which a BGA semiconductor package using solder balls is connected to the board via connection terminals, and FIG. 10 is a BGA using solder balls. FIG. 11 is a plan view showing the structure of the module of the embodiment provided with the connection terminal and socket of the present invention, and FIG. Inventive connection terminal and socket FIG. 13 is a schematic cross-sectional view showing details of the terminal connection structure of the present invention, FIG. 14 is a partially enlarged schematic cross-sectional view thereof, and FIG. FIG. 16 is a schematic cross-sectional view showing the basic structure of a target fan-out CSP, FIG. 16 is a schematic cross-sectional view showing the basic structure of a WPP, that is, a wafer process package, and FIG. FIG. 18 is a schematic cross-sectional view showing the basic structure of a μBGA, ie, a micro-ball grid array (Micro-Ball Grid Array), which is an object of the present invention. .
BEST MODE FOR CARRYING OUT THE INVENTION
In the following embodiments, the description of the same or similar parts will not be repeated in principle unless particularly necessary.
Further, in the following embodiment, when it is necessary for the sake of convenience, the description will be divided into a plurality of sections or embodiments. However, unless otherwise specified, they are not irrelevant to each other. Is related to some or all of the other modifications, details, supplementary explanations, and the like.
Also, in the following embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle, etc. Except, it is not limited to the specific number, and it may be more or less than the specific number.
Further, in the following embodiments, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. Needless to say.
Similarly, in the following embodiments, when referring to the shape, positional relationship, etc., of components, etc., the shape is substantially the same unless otherwise specified or otherwise apparent in principle. And the like are included. The same applies to the above numerical values and ranges.
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.
In addition, the term “semiconductor integrated circuit device” is used not only on a silicon wafer but also on a substrate such as a TFT liquid crystal unless otherwise specified. Shall also be included.
Further, in the present application, the term “wafer or semiconductor wafer” is not limited to a single crystal silicon wafer or the like, but is used for manufacturing an insulating substrate or a partial semiconductor substrate integrated circuit on which a semiconductor integrated circuit device is integrated. Including substrates and the like.
Further, in the present application, the term “burn-in test” includes not only an accelerated test by heating and a screening test, but also aging and other tests for investigating potential defects of products by applying stress.
Further, in the present application, the term “wiring board” includes not only those obtained by patterning wiring on a substrate such as glass epoxy or ceramic, but also those obtained by arranging a wiring pattern such as a copper film on a polyimide film.
Further, in the present application, the term “chip lead composite” refers to various CSPs and wafer process packages in addition to an assembly including a semiconductor integrated circuit chip and a lead group separated from a lead frame electrically connected thereto. Thus, an assembly structure including a chip and a lead electrode electrically connected to the chip is also included.
Furthermore, the term “solder” in this application includes lead-tin eutectic solder, tin-gold solder, high-temperature solder, tin solder, and other metal alloys for brazing having a melting point of 450 ° C. or less.
Furthermore, in the present application, the term “binder layer” includes not only a solder layer but also an organic material such as an epoxy resin adhesive layer.
(Embodiment 1)
FIG. 1 shows a plan view and a cross-sectional view showing the structure of the connection terminal. The cross-sectional view shows the cross-sectional structure of the AA ′ portion in the plan view. The lead 1 is a copper lead plated with eutectic solder. A connection terminal 2 is formed by fixing a copper powder having an average particle diameter of 50 μm with solder at the tip of the lead 1. This is because the tip of the lead 1 is dipped in a paste in which copper powder and flux of a predetermined depth are mixed, and the copper particles are attached to the tip of the lead, and the plurality of copper particles are fixed to the tip of the lead 1 by heating. did. These leads 1 were put into a mold and resin was injected to prepare a lead fixing resin frame 3. At the time of molding, the lead 1 is formed into a predetermined shape. When this connection terminal is used, four fixing screws 4 are fixed to the board or the like in the holes at the four corners of the resin frame 3. The fixing screw 4 has a component pressing plate 5. For example, a semiconductor package 6 having solder balls 7 as connected terminals is placed inside the lead fixing resin frame 3 and the back surface of the package is fixed by four component pressing plates 5 for use. By adopting the connection terminal 2 having this structure, the connection terminal 2 can be realized at a lower cost than the conventional connection terminal using a pin with a spring.
(Embodiment 2)
FIG. 2 shows a plan view and a cross-sectional view showing the structure of another connection terminal. The cross-sectional view shows the cross-sectional structure of the AA ′ portion in the plan view. The connection terminal 2 is formed on the alumina substrate 8. The formation method was the same as that of the lead-out wiring 9 and the lead-out terminal 10 by the thick film printing technique. Specifically, it was produced as follows. The alumina substrate 8 used was one having four fixing holes 12 for fixing a ceramic package 13 as a part to be measured. On this, the lead wiring 9, the connection terminal 2, and the lead terminal 10 are formed by a screen printing technique using silver-palladium paste. On the lead-out terminal 10, a gold paste is further applied. This is fired at 900 ° C. using a belt furnace. Thereafter, tin-silver particles, gold-plated tungsten powder with an average particle size of 30 μm, resin particles for flux, and a paste mixed with a solvent were applied onto the connection terminal 2, and this was applied in a belt furnace at 800 ° C. Fixed with a tin-silver brazing material of tungsten particles. Finally, the ceramic guide 11 was fixed with a ceramic adhesive.
The connection terminal 2 is used in such a manner that a ceramic package 13 that is a component to be measured is mounted at a component mounting position 16, a lead 14 of the ceramic package 13 is placed on the connection terminal 2, and the lead portion is made of copper. The two holding rods 15 are fixed with screws inserted into the fixing holes 12.
When this connection terminal 2 was used, various characteristics evaluation including reliability up to 200 ° C. of the ceramic package 13 which is a part to be measured could be performed. This is a lower cost, higher durability and higher reliability than the conventional connection terminal that uses a pin with a spring, and can realize a connection terminal 2 that can be used semipermanently by replacing the object to be measured. It was.
The connection terminals 2 were formed using molybdenum, titanium, or chromium powder in addition to the tungsten powder. In these cases, the same characteristics as in the case of tungsten powder can be obtained.
(Embodiment 3)
FIG. 3 is a plan view showing the structure of another connection terminal. The connection terminal 2 is formed on a flexible tape circuit 17 of about 45 mm square. The formation method was manufactured using the same photolithography technique as that of a normal flexible printed circuit (FPC). The insulating film material of the circuit was polyimide, and the lead wiring 9, the lead terminal 10, and the connection terminal 2 were formed of copper. The lead terminal 10 was further plated with nickel and gold on copper. On the copper of the connection terminal 2, nickel particles having an average particle diameter of 25 μm plated with rhodium with eutectic solder were fixed. A resist film was coated on the lead wiring 9. The connection terminals 2 have a diameter of 0.3 mm, a pitch of 0.5 mm, a two-row arrangement, and a total of 152 pieces.
On this connection terminal 2, a solder ball terminal of a 152-pin BGA semiconductor package with a pitch of 0.5 mm is connected. The BGA is mounted at the part to be measured mounting position 16 and fixed to the tape circuit 17 by applying a total weight of 300 g. The lead terminals 10 arranged on the outer periphery of the tape have a width of 0.5 mm, a length of 2 mm, and a pitch of 1.0 mm.
FIG. 4 shows a cross-sectional view of the socket 25 using the connection terminal 2 of FIG. The flexible tape circuit 17 on which the connection terminals 2 are formed is placed on the socket base 18 and fixed. The package guide 19 of the socket 25 is placed on the tape circuit and fixed with the guide pins 24. A BGA type semiconductor package 6 with solder balls 7 as connection terminals is mounted thereon. A socket lid 22 on which the package holder 20 is fixed with a pressurizing spring 21 is placed thereon. Specifically, the guide pin 24 is inserted into the guide pin hole 23 formed in the socket lid 22 and fixed.
In this way, by bringing the solder balls 7 of the semiconductor package 6 into contact with the connection terminals 2, the connection resistance value between them could be 0.2Ω at the maximum. This facilitates the measurement of the characteristics of a fine pitch BGA, which has been difficult to evaluate in the past.
The socket 25 on which the connection terminal 2 on the tape circuit is mounted can also perform BGA burn-in. In the burn-in, the temperature was raised to about 130 ° C. including the tape circuit 17 and operated continuously for about 8 hours. At this time, thermal deformation of the BGA solder balls occurred, but the connection resistance values between the connection terminals 2 and the BGA solder balls could all be 0.5Ω or less. This makes it possible to carry out burn-in of fine pitch BGA, which has been difficult in the past, at a mass production level. Further, the connection terminal 2 has high durability, high reliability, and a connection terminal that can be used semipermanently by replacing the object to be measured.
The connection terminal 2 was formed using cobalt or iron powder in addition to nickel powder. In these cases as well, the same characteristics as in the case of nickel powder could be obtained.
(Embodiment 4)
The connection terminal 2 of the tape circuit 17 in FIG. 3 was further coated with an epoxy resin, and further pressurized and heated from above, to manufacture the connection terminal 2. The connection terminal 2 has a structure in which nickel particles are fixed by a resin other than solder. The head of the nickel particles appears in the table because the resin moves to the side during pressurization.
(Embodiment 5)
A socket similar to that shown in FIG. 4 was manufactured in which an elastic film having a thickness of 0.3 mm was formed under the flexible tape circuit 17. As the pressurizing spring 21, a spring having low elasticity was used. A 152-pin BGA semiconductor package was placed in this socket, and the characteristics were evaluated. The total weight applied to the BGA was 200 g.
The connection resistance value between the connection terminal 2 and the BGA solder terminal at room temperature could be 0.2Ω at the maximum. In the BGA burn-in test, the temperature including the tape circuit 17 and the socket 25 was raised to about 130 ° C. and allowed to operate continuously for about 8 hours. At this time, there was almost no thermal deformation of the BGA solder balls, and the connection resistance values between the connection terminals 2 and the BGA solder balls were all ensured to be 0.5Ω or less.
As a result, as in the third embodiment, it is possible to easily measure the characteristics of the fine pitch BGA, and it is possible to perform burn-in of the fine pitch BGA, which has been difficult in the past, at the mass production level. Further, the connection terminal 2 has high durability and high reliability, and the connection terminal 2 that can be used semipermanently by replacing the object to be measured was realized.
In the manufacture of the socket 25 described above, gold-plated nickel particles were applied to the connection terminal 2, but in addition to gold plating, silver, tin, lead, indium, rhodium, platinum, and paradium were studied and resistance was increased. In terms of value, a value comparable to that of gold plating was obtained. As a result, it was confirmed that the plating is not limited to gold plating but also silver, tin, lead, indium, rhodium, platinum, and paradium can be sufficiently applied.
(Embodiment 6)
FIG. 5 shows a cross-sectional view and a plan view showing the structure of the socket 25 having another connection terminal. The cross-sectional view shows a cross-sectional structure of the AA ′ portion in the plan view. The socket 25 has a structure in which four BGA type semiconductor packages 6 which are components to be measured can be mounted.
The connection terminal 2 is formed on a flexible tape circuit 17 of about 70 mm square. The formation method was manufactured using the same photolithography technique as that of a normal flexible printed circuit (FPC). The insulating film material of the circuit was polyimide, and the lead wiring 9, the lead terminal 10, and the connection terminal 2 were formed of copper. The lead terminal 10 was further plated with nickel and gold on copper. On the copper of the connection terminal 2, nickel particles having an average particle diameter of 25 μm plated with rhodium with eutectic solder were fixed. A resist film was coated on the lead wiring 9. The connection terminals 2 have a diameter of 0.3 mm, a pitch of 0.5 mm, a two-row arrangement, a total number of 152 for one BGA, and a total number of 608 for four BGAs.
On this connection terminal 2, four solder ball terminals of 152 pin BGA semiconductor packages with a pitch of 0.5 mm are connected. The BGA is mounted at the part to be measured mounting position 16 and is fixed to the tape circuit 17 by applying a total weight of 800 g. Unlike the third embodiment, the socket lid 22 is integrated with the package guide 19 and the hinge 26 unlike the third embodiment, and the lid 22 can be fixed with a lock 27 when the lid 22 is closed. . In the socket 25, an elastic film 28 is installed under the tape circuit 17 as in the fifth embodiment.
By using the connection terminals 2 formed on the tape circuit, all the connection resistance values of the BGA solder balls 7 and the connection terminals 2 can be secured, and the maximum value was 0.2Ω. This facilitates the measurement of the characteristics of a fine pitch BGA, which has been difficult to evaluate in the past. Further, the connection terminal 2 on the tape circuit was able to perform BGA burn-in. In the burn-in, the temperature was raised to about 130 ° C. including the tape circuit 17 and operated continuously for about 8 hours. At this time, although the BGA solder balls 7 were thermally deformed, the connection resistance values between the connection terminals 2 and the BGA solder balls 7 were all ensured to be 0.5Ω or less. This makes it possible to carry out burn-in of fine pitch BGA, which has been difficult in the past, at a mass production level. Further, the connection terminal 2 has high durability and high reliability, and the connection terminal 2 that can be used semipermanently by replacing the object to be measured was realized.
(Embodiment 7)
FIG. 6 shows a cross-sectional view and a plan view showing the structure of a socket having another connection terminal. The cross-sectional view shows the cross-sectional structure of the AA ′ portion in the plan view. The socket 25 has a structure in which one set of a tape circuit 17 includes four sets of package guides 19, a package holder 20, and a socket lid 22, and one BGA can be mounted on each set.
The connection terminal 2 is formed on a flexible tape circuit 17 having a width of about 45 mm and a length of about 280 mm. The formation method was manufactured using the same photolithography technique as that of a normal flexible printed circuit (FPC). The insulating film material of the circuit was polyimide, and the lead wiring 9, the lead terminal 10, and the connection terminal 2 were formed of copper. The lead terminal 10 was further plated with nickel and gold on copper. On the copper of the connection terminal 2, nickel particles having an average particle diameter of 25 μm plated with rhodium with eutectic solder were fixed. A resist film was coated on the lead wiring 9. The connection terminals 2 have a diameter of 0.3 mm, a pitch of 0.5 mm, a two-row arrangement, a total number of 152 for one BGA, and a total number of 608 for four BGAs.
On this connection terminal 2, a solder ball terminal of a 152-pin BGA semiconductor package with a pitch of 0.5 mm is connected. Each BGA is mounted at the part to be measured mounting position 16 and is fixed to the tape circuit 17 with a weight of 200 g.
By using the connection terminals 2 formed on the tape circuit, all the connection resistance values between the BGA solder balls and the connection terminals 2 could be secured, and the maximum value was 0.2Ω. This facilitates the measurement of the characteristics of a fine pitch BGA, which has been difficult to evaluate in the past. Further, the connection terminal 2 on the tape circuit was able to perform BGA burn-in. In the burn-in, the temperature was raised to about 130 ° C. including the tape circuit 17 and operated continuously for about 8 hours. At this time, although the BGA solder balls 7 were thermally deformed, the connection resistance values between the connection terminals 2 and the BGA solder balls 7 were all ensured to be 0.5Ω or less. This makes it possible to carry out burn-in of fine pitch BGA, which has been difficult in the past, at a mass production level. Further, the connection terminal 2 has high durability and high reliability, and the connection terminal 2 that can be used semipermanently by replacing the object to be measured was realized.
(Embodiment 8)
FIG. 7 shows a cross-sectional view and a plan view showing the structure of the socket 25 having another connection terminal. The cross-sectional view shows a cross-sectional structure of the AA ′ portion in the plan view. The basic structure of the socket 25 is similar to that of the seventh embodiment. The difference is the following two points. The outer shape of the socket 25 including the tape circuit 17 is about 45 mm square, and one socket 25 can be mounted with one BGA. The lead terminal 10 of the tape circuit 17 is provided on the back surface of the socket. It is bent and fixed there, and further has the same structure as the connection terminal 2 on the surface of the lead terminal 10.
Nickel particles having an average particle diameter of 25 μm, which were rhodium-plated with eutectic solder on copper, were fixed to the connection terminal 2 and the lead terminal 10. A resist film was coated on the lead wiring 9. The connection terminals 2 have a diameter of 0.3 mm, a pitch of 0.5 mm, a two-row arrangement, and a total of 152 pieces in one BGA. The lead terminals 10 have a width of 0.5 mm, a length of 2 mm, a pitch of 1.0 mm, and a total number of 152 like the connection terminals 2. The lead terminal 10 is used by being overlapped with the board connection terminal 30 at the same position on the board 29.
On this connection terminal 2, solder ball terminals of a 152-pin BGA type semiconductor package 6 with a pitch of 0.5 mm are connected. Each BGA is mounted at the part to be measured mounting position 16 and is fixed to the tape circuit 17 with a weight of 200 g.
By using the connection terminals 2 formed on the tape circuit, all the connection resistance values of the BGA solder balls 7 and the connection terminals 2 can be secured, and the maximum value was 0.2Ω. This makes it easy to measure the characteristics of a fine pitch BGA, which has been difficult to evaluate conventionally.
(Embodiment 9)
FIG. 8 is a plan view showing the structure of the burn-in board 31. On the board 29, 16 sockets 25 of FIG. In addition, a resistor, a capacitor, an IC, and the like are mounted on the board, but they are omitted because they are complicated. At the end of the board, there are board terminals 32 for connection with a burn-in device at the time of burn-in, and the number of terminals is about 120. By inserting and fixing the BGA type semiconductor package 6 in each socket 25, all the connection resistance values between the BGA solder balls 7 and the connection terminals 2 can be secured, and the maximum value was 0.2Ω. Burn-in could be performed using this burn-in board 31. In the burn-in, the temperature was raised to about 130 ° C. including the tape circuit 17 and operated continuously for about 8 hours. At this time, although the BGA solder balls 7 were thermally deformed, the connection resistance values between the connection terminals 2 and the BGA solder balls 7 were all ensured to be 0.5Ω or less. This makes it possible to carry out burn-in of fine pitch BGA, which has been difficult in the past, at a mass production level. Further, the connection terminal 2 has high durability and high reliability, and the connection terminal 2 that can be used semipermanently by replacing the object to be measured was realized.
In the above embodiment, an example in which 152 pins with a 0.5 mm pitch are mounted as the BGA type semiconductor package 6 has been described. However, the above effect does not depend on the number of pins, the external shape of the component, and the pitch. ,it is obvious.
(Embodiment 10)
FIG. 9 shows a cross-sectional structure diagram in which a BGA type semiconductor package 6 using solder balls 7 as connected terminals is connected to the board 29 via the connecting terminals 2.
On the upper surface of the board 29, in addition to wiring, connection terminals 2 for connection to the BGA are provided at corresponding positions. The connection terminals 2 were plated with eutectic solder on the same copper as the wiring, and rhodium-plated nickel particles having an average particle diameter of 25 μm were fixed. The connection terminals 2 have a diameter of 0.3 mm, a pitch of 0.5 mm, a two-row arrangement, and a total of 152 pieces in one BGA. The lead terminals 10 have a width of 0.5 mm, a length of 2 mm, a pitch of 1.0 mm, and a total number of 152 like the connection terminals 2. The lead terminal 10 can be used by being overlapped with the connection terminal 2 at the same position on the board 29. On the BGA semiconductor package 6 and the board 29, a weight of about 200 g was placed on the BGA. In this state, the function of the board 29 was measured electrically. When a predetermined function was confirmed by the function measurement, the epoxy resin 33 was injected into the lower surface of the semiconductor package 6 with the weight placed thereon, and then the resin was solidified at 150 ° C.
In this way, by using the connection terminal 2 of the present invention, since the components are fixed after confirming the characteristics of the mounted components, only good products can be mounted. As a result, when a defective product has been mounted in the past, the entire board can be regarded as a defective product, and waste that has been discarded or partially corrected can be omitted.
(Embodiment 11)
FIG. 11 shows a cross-sectional structure diagram in which a semiconductor package 6, which is a BGA using solder balls 7 as connected terminals in FIG. 10, is connected to a board 29 via connecting terminals 2.
Although the basic structure is the same as that of the ninth embodiment, a metal frame 36 having elasticity and an elasticity 35 are used for fixing the semiconductor package 6 which is a BGA and the board 29. Through holes 34 for fixing the legs of the metal frame 36 are provided at four locations in the vicinity of the corner portion of the board 29 where the BGA is mounted. An elastic body 35 is placed in the metal frame 36, and further a semiconductor package 6 that is a BGA is placed. This is mounted on the substrate by a mounter so that the legs of the metal frame 36 enter the through holes 34 of the board 29. The legs of the metal frame 36 have a structure in which the tip is opened after the through-hole is inserted, and the semiconductor package 6 is connected to the solder balls 7 and the connection terminals by fixing the legs and compressing the elastic body 35. 2 is electrically connected to the board 29. After the connection, electrical inspection is performed on a board basis. If the function of the semiconductor package 6 is insufficient, the metal frame 36 is removed from the board 29, the semiconductor package 6 is replaced, and it is confirmed that it is a non-defective product. To do. As described above, by using the connection terminal 2 of the present invention, it is easy to confirm the characteristics of the mounted component and replace the component. Therefore, it has been a waste that the entire board has been discarded or partially reworked as a defective product. Can be omitted.
(Embodiment 12)
FIG. 11 is a plan view showing the structure of the module 37. On the board 29, one socket 25 of FIG. In addition, six SRAMs 38 are mounted on the board. At the end of the board, there are board terminals 32 for connection with the main body of the personal computer, and the number of terminals is about 50. By inserting and fixing the BGA type semiconductor package 6 having a microcomputer function in the socket 25, all the connection resistance values of the solder balls 7 and the connection terminals 2 of the BGA semiconductor package 6 can be secured, and the value is the maximum. But it was 0.2Ω. Using this module 37, a personal computer could be assembled. By adopting this module 37, when the BGA type semiconductor package 6 is a defective product at the functional inspection stage of the module itself, it is easy to immediately replace it with a non-defective product, and the conventional defective module has been discarded. Compared to the case, the cost was reduced. This method was particularly effective at the beginning of development of the microcomputer chip in the semiconductor package 6 and the semiconductor package 6.
(Embodiment 13)
FIG. 12 is a plan view showing the structure of the module 37 and a cross-sectional view taken along the line AA ′. The function of the module 37 is the same as that described in the eleventh embodiment.
On the board 29, six SRAM chips 38 and one microcomputer chip 39 are mounted. Each chip has a connection terminal formed of a solder ball 7. The solder balls 7 are in contact with the connection terminals 2 on the board 29, and a resin 33 is filled and cured between the chip and the board 29 in order to hold it. At the end of the board, there are board terminals 32 for connection with the main body of the personal computer, and the number of terminals is about 50. Using this module 37, a personal computer could be assembled. By adopting this module 37, the size of the module itself can be reduced to about 1/2 of the area compared to the module of the eleventh embodiment. In addition, when a semiconductor chip is mounted and a function test is performed by applying a weight to it, if the semiconductor chip is defective, it is easy to immediately replace it with a non-defective product. After assembly, the defective module is discarded. Compared to the case, the cost was reduced.
(Embodiment 14)
Details of the structure and operation of the contact portion common to the above embodiments will be described in more detail using an example corresponding to the structure illustrated in FIG. 5 or FIG.
In FIG. 13, a semiconductor chip (for example, silicon single crystal) or a chip lead composite 51 has a bonding pad or a bump forming pad 52 on its lower surface. Solder balls 7 (see FIG. 12) or solder bumps 53 (for example, a diameter of 0.25 mm and a pitch of 0.5 mm) are formed on the bump forming pad 52. On the measuring instrument side, an elastic member sheet 58 (e.g., 300 μm in thickness) such as an elastomer is disposed in a recessed portion on a relatively rigid insulating substrate 57, and good contact during burn-in (desirably, contact resistance is 2Ω or less). Guarantee. A wiring board 56 having a wiring pattern of a copper film or the like (for example, thickness 18 μm) corresponding to the product type is disposed on the wiring board 57, and a solder layer 55 is formed on the measurement side pad portion of the wiring pattern. In this solder layer, metal particles 54 such as nickel are embedded so as to partially protrude. At the time of burn-in, some of the metal particles 54 break through the oxide film on the surface of the solder bump 53 to ensure good electrical contact.
In FIG. 14, a metal coating layer 59 made of a metal or an alloy that is less likely to react with bump solder than the metal constituting the main region is formed on the surface of the metal particles 54. In addition, when a material that is less oxidized than the core material is used for the metal coating layer 59, it has an effect of improving the electrical contact by preventing the surface oxidation of the core material such as nickel.
As the solder material for forming the solder bump 53, eutectic solder (for example, composition 62Sn / 95Pb, melting point 183 degrees Celsius), tin silver solder (for example, composition 96.5Sn / 3.5Ag, melting point 221 degrees Celsius), or high temperature Solder (for example, composition 5Sn / 95Pb, melting point about 310 degrees Celsius) or the like is optimal.
Examples of the solder material for forming the solder layer 55 include tin solder by plating (for example, composition 100% Sn, melting point 232 degrees Celsius), high-temperature solder (for example, composition 5 Sn / 95 Pb, melting point about 310 degrees Celsius), tin silver solder (for example, A composition of 96.5Sn / 3.5Ag and a melting point of 221 degrees Celsius) is optimal.
The burn-in test is performed, for example, by supplying a power supply voltage about 10% higher than usual at a temperature of about 125 degrees Celsius (with some kind of stress applied). Moreover, a thermal cycle etc. are applied as needed.
After the burn-in test, the inspected integrated circuit package and the like and the inspection apparatus side package are mechanically separated. That is, the electrical contact is released by removing the adhesive for mechanical pressing or temporary bonding. At this time, the damage of the bump is small as compared with the case where it is heated and physically fused, so that it can be mounted as a product on the final product or the like as it is or after an appropriate recovery process.
As the metal in the metal particle main region, that is, the core material, for example, nickel, titanium, chromium, cobalt, iron, copper, tungsten, molybdenum, or an alloy containing at least one of them as a main component can be used. . As the material of the metal coating layer 59, rhodium, gold, silver, tin, lead, indium, platinum, palladium, or an alloy containing at least one of them as a main component can be used.
(Embodiment 15)
In each of the embodiments described above, the structure of the package that is the manufacturing process or measurement target will be described in more detail.
In FIG. 15, the semiconductor chip 60 is fixed to the upper surface of the wiring sheet 62, and the portion reinforced by the peripheral frame body 61 is electrically connected to each terminal of the semiconductor chip 60 via the wiring sheet 62. Solder bumps 53 are formed.
In FIG. 16, each terminal 63 is electrically connected to an external pad 65 via a polyimide multilayer wiring 64 on the device formation surface of the semiconductor chip 60, and a solder bump 53 is formed on each external pad 65. Yes.
In FIG. 17, solder bumps 53 are formed on the terminals 66 on the device formation surface of the semiconductor chip 60.
In FIG. 18, a semiconductor chip 60 is fixed to the upper surface of the multilayer wiring board 69 with the device surface facing upward, and each terminal 66 (see FIG. 17) on the device forming surface of the semiconductor chip 60 is connected to a bonding wire 68 or the like. The wiring board 69 is electrically connected to the multilayer wiring board 69, and is further electrically connected to the solder bumps 53 formed on the corresponding external pads via the multilayer wiring board 69. The semiconductor chip 60 and the bonding wire 68 are sealed by a range 67.
The burn-in process of the present invention can be applied to all semiconductor integrated circuit devices in which at least the external terminals are made of ball-shaped metal terminals that are easily oxidized like the solder bumps 53 as described above. Furthermore, it is particularly effective when applied to a fine pitch product having a ball pitch (bump pitch) of about 1 mm to about 0.5 mm or less.
As mentioned above, the invention made by the present inventor has been specifically described based on the first to fifteenth embodiments of the invention. However, the present invention is not limited to the first to fifteenth embodiments, and the gist thereof is as follows. It goes without saying that various changes can be made without departing from the scope.
For example, in the burn-in board 31 shown in FIG. 8, the case where 16 sockets 25 are mounted has been described. However, the number of mounted sockets is not limited to 16, and one or a plurality other than 16 may be used. There may be.
Industrial applicability
According to the present invention, the following effects can be obtained.
(1) The connecting terminal and the enlarged circuit are integrated, and the alignment accuracy is improved as compared with the case where the terminal of the conventional measurement system and the conductor on the film are separated. In the case of separation, each position needs to be aligned, and thus a positional shift occurs. In addition, when a film or the like is used, there is a shift or deformation of the film itself, and the accuracy is greatly reduced by repeated use. Further, when temperature is applied as in burn-in, even if there is no position shift at the time of setting, if there are many components, a position shift occurs due to a difference in thermal expansion. For this reason, by adopting this configuration, it is possible to cope with BGA and CSP having a fine pitch of 0.5 mm or less, which has been regarded as a limit in the past.
(2) Since this does not depend on the package form and the presence or absence of the package, it can also be applied to bare chip inspection, burn-in, and the like.
(3) Since metal particles harder than solder or the like are used for the connection terminals, the corners of the particles break the oxide film on the surface of the solder ball and come into contact with the newly formed surface and the metal particle when in contact with the solder ball. An electrical connection can be ensured. For the reason (1) above, since the position accuracy of the connecting portion is high, an open or short circuit is unlikely to occur in the connecting portion at the time of burn-in, so that electrical contact with the solder ball can be ensured.
(4) As a socket configuration, the connection terminal and the enlarged circuit are integrated, and the other pressurizing unit and guide unit are configured separately. An electrical part such as an enlarged circuit can form a circuit by a conventional exposure / development method with high productivity. Moreover, a pressurizing part etc. can be manufactured with the conventional mold technology with high productivity. The connecting portion of the present invention can also be manufactured with a highly productive printing technique. For this reason, the manufacturing cost can be reduced as compared with the case where the electrical part and the mechanical part are conventionally manufactured by a complicated method. In addition, when the number of terminals, shape, etc. are different, it is easy to handle sockets that have been manufactured individually, for example, if the terminal pitch is the same, using the same expanded circuit, etc. On the other hand, since it is not necessary to manufacture individual sockets, the cost of the sockets can be easily reduced.
(5) For the reasons (1) and (3) above, reliable inspection can be carried out, thereby improving product reliability.
(6) For the reason of the above (4), when the conventional socket is used, the cost of the product can be reduced compared with the point that a very expensive socket must be prepared.
(7) The connection reliability can be improved by setting the average particle size of the metal particles to 3 to 50 μm (more desirably 10 to 40 μm). That is, when the average particle size is less than 3 μm, the effect of breaking the oxide film on the surface of the solder bump or the like used for the connected terminal is reduced, and the connection reliability with the connected terminal is deteriorated. On the other hand, when the average particle diameter exceeds 50 μm, a short circuit between the connection terminals tends to occur. However, it goes without saying that metal particles having an average particle size exceeding 50 μm can be used with sufficient care.

Claims (9)

以下の工程を含む半導体集積回路装置の製造方法;
(a)半導体集積回路装置の主要部を構成する半導体集積回路チップ又はチップリード複合体の外部接続バンプ形成部に設けられたはんだバンプを、配線板の第1の主面上に設けられ、前記はんだバンプよりも硬い金属から成る複数の金属粒子がはんだ層又はバインダ層に埋め込まれた測定側電極パッド部に接触させる工程、
(b)前記はんだバンプを、前記複数の金属粒子と接触するように前記測定側電極パッド部に押し当てた状態で前記半導体集積回路チップ又はチップリード複合体中の半導体集積回路チップに対して、バーンインテストを実行する工程、
(c)前記バーンインテストの結果に基づいて、半導体集積回路装置の良否又は等級を決定する工程。
A method of manufacturing a semiconductor integrated circuit device including the following steps:
(A) A solder bump provided on an external connection bump forming portion of a semiconductor integrated circuit chip or chip lead composite constituting the main part of the semiconductor integrated circuit device is provided on the first main surface of the wiring board, A step of bringing a plurality of metal particles made of a metal harder than a solder bump into contact with a measurement-side electrode pad portion embedded in a solder layer or a binder layer ;
(B) With respect to the semiconductor integrated circuit chip in the semiconductor integrated circuit chip or the chip lead composite in a state where the solder bump is pressed against the measurement-side electrode pad portion so as to be in contact with the plurality of metal particles, The process of performing the burn-in test,
(C) determining the quality or grade of the semiconductor integrated circuit device based on the result of the burn-in test.
請求項1記載の半導体集積回路装置の製造方法であって、上記金属粒子は、その主要領域がニッケル、チタン、クロム、コバルト、鉄、銅、タングステン、又はモリブデン、或いはこれらの少なくとも一つを主要成分とする合金からなることを特徴とする半導体集積回路装置の製造方法。2. The method of manufacturing a semiconductor integrated circuit device according to claim 1, wherein the metal particles are mainly made of nickel, titanium, chromium, cobalt, iron, copper, tungsten, molybdenum, or at least one of them. A method for manufacturing a semiconductor integrated circuit device comprising an alloy as a component. 請求項2記載の半導体集積回路装置の製造方法であって、上記金属粒子は、その表面に前記主要領域を構成する成分よりも前記はんだバンプのはんだと反応しにくい金属被覆層を有することを特徴とする半導体集積回路装置の製造方法。3. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the metal particles have a metal coating layer on the surface thereof that is less likely to react with the solder of the solder bumps than a component constituting the main region. A method for manufacturing a semiconductor integrated circuit device. 請求項3記載の半導体集積回路装置の製造方法であって、上記金属被覆層は、ロジウム、金、銀、錫、鉛、インジウム、白金、又はパラジウム、或いはこれらの少なくとも一つを主要成分とする合金からなることを特徴とする半導体集積回路装置の製造方法。4. The method of manufacturing a semiconductor integrated circuit device according to claim 3, wherein the metal coating layer includes rhodium, gold, silver, tin, lead, indium, platinum, palladium, or at least one of them as a main component. A method for manufacturing a semiconductor integrated circuit device comprising an alloy. 請求項4記載の半導体集積回路装置の製造方法であって、上記金属粒子の平均粒径は3μmから50μmであることを特徴とする半導体集積回路装置の製造方法。5. The method of manufacturing a semiconductor integrated circuit device according to claim 4, wherein the average particle diameter of the metal particles is 3 to 50 [mu] m. 請求項5記載の半導体集積回路装置の製造方法であって、上記チップリード複合体はCSPパッケージであることを特徴とする半導体集積回路装置の製造方法。6. The method of manufacturing a semiconductor integrated circuit device according to claim 5, wherein the chip lead composite is a CSP package. 請求項5記載の半導体集積回路装置の製造方法であって、上記配線板はフィルム状配線板又はフィルム配線シートであることを特徴とする半導体集積回路装置の製造方法。6. The method of manufacturing a semiconductor integrated circuit device according to claim 5, wherein the wiring board is a film-like wiring board or a film wiring sheet. 請求項5記載の半導体集積回路装置の製造方法であって、上記金属粒子は、その主要領域がニッケル或いはニッケルを主要成分とする合金からなることを特徴とする半導体集積回路装置の製造方法。6. The method of manufacturing a semiconductor integrated circuit device according to claim 5, wherein the metal particles are made of nickel or an alloy containing nickel as a main component. 請求項6記載の半導体集積回路装置の製造方法であって、上記金属被覆層は、ロジウム或いはロジウムを主要成分とする合金からなることを特徴とする半導体集積回路装置の製造方法。7. The method of manufacturing a semiconductor integrated circuit device according to claim 6, wherein the metal coating layer is made of rhodium or an alloy containing rhodium as a main component.
JP51880899A 1997-09-19 1998-09-18 Manufacturing method of semiconductor integrated circuit device Expired - Fee Related JP3741222B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25465297 1997-09-19
PCT/JP1998/004226 WO1999015908A1 (en) 1997-09-19 1998-09-18 Method for manufacturing semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JP3741222B2 true JP3741222B2 (en) 2006-02-01

Family

ID=17267995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51880899A Expired - Fee Related JP3741222B2 (en) 1997-09-19 1998-09-18 Manufacturing method of semiconductor integrated circuit device

Country Status (2)

Country Link
JP (1) JP3741222B2 (en)
WO (1) WO1999015908A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100488113B1 (en) * 1999-08-03 2005-05-06 켄이치 니노미야 Design support system, design support method, and medium storing design support program
DE19961791C2 (en) * 1999-12-21 2002-11-28 Infineon Technologies Ag Arrangement for testing chips using a printed circuit board
TWI241669B (en) * 2003-05-01 2005-10-11 Celerity Res Inc Planarizing and testing of BGA packages
JP4723195B2 (en) * 2004-03-05 2011-07-13 株式会社オクテック Probe manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03120742A (en) * 1989-10-04 1991-05-22 Hitachi Ltd Ageing of semiconductor device, and device therefor
JPH0829454A (en) * 1994-07-15 1996-02-02 Fujitsu Ltd Test card of semiconductor chip and testing method of semiconductor chip
JPH08304462A (en) * 1995-03-07 1996-11-22 Nitto Denko Corp Probe structure for burn in test
JP2944537B2 (en) * 1996-10-14 1999-09-06 山一電機株式会社 Flexible wiring board for contacting electronic components

Also Published As

Publication number Publication date
WO1999015908A1 (en) 1999-04-01

Similar Documents

Publication Publication Date Title
US6559666B2 (en) Method and device for semiconductor testing using electrically conductive adhesives
KR100838434B1 (en) Probe card
US20040070413A1 (en) Probe sheet, probe card, semiconductor test equipment and semiconductor device fabrication method
EP0856889A2 (en) Semiconductor device mount structure and semiconductor device mounting method
US20010054906A1 (en) Probe card and a method of manufacturing the same
JP6918518B2 (en) Electrical property inspection jig
JP2000292485A (en) Socket for electrical inspection of bag package and inspection method employing it
JP6241502B2 (en) Electrical test contact and electrical test socket using the same
JP5593018B2 (en) Compliant microelectronic assembly
KR100980369B1 (en) Probe Needle Structure and Manufacturing Method of The Same
KR20060130683A (en) Method for manufacturing semiconductor integrated circuit device
JP5918205B2 (en) Test apparatus and test method thereof
TW201346288A (en) A method for manufacturing a semiconductor device
JPH0541425A (en) Probe apparatus
US20030173587A1 (en) Assembly of semiconductor device and wiring substrate
EP0803132A1 (en) Flip chip bonding with non-conductive adhesive
JP3741222B2 (en) Manufacturing method of semiconductor integrated circuit device
US6245582B1 (en) Process for manufacturing semiconductor device and semiconductor component
JP3720887B2 (en) Contact device
JPH03108734A (en) Semiconductor device and manufacture thereof
JPH1183937A (en) Substrate for testing of semiconductor apparatus and method for testing semiconductor apparatus
JPH0758173A (en) Semiconductor-device burning in method, and semiconductor device
JP2021012041A (en) Inspection tool for inspecting electrical characteristics
JPH11204590A (en) Electrode plate and apparatus for testing electronic component continuity using the same
JP2000180471A (en) Probe substrate for inspecting bare chip

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091118

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees