JP3739952B2 - Substrate processing equipment - Google Patents

Substrate processing equipment Download PDF

Info

Publication number
JP3739952B2
JP3739952B2 JP33513398A JP33513398A JP3739952B2 JP 3739952 B2 JP3739952 B2 JP 3739952B2 JP 33513398 A JP33513398 A JP 33513398A JP 33513398 A JP33513398 A JP 33513398A JP 3739952 B2 JP3739952 B2 JP 3739952B2
Authority
JP
Japan
Prior art keywords
temperature
substrate processing
pure water
heater
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33513398A
Other languages
Japanese (ja)
Other versions
JP2000164554A (en
Inventor
修治 長良
康彦 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Original Assignee
Screen Holdings Co Ltd
Dainippon Screen Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd, Dainippon Screen Manufacturing Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP33513398A priority Critical patent/JP3739952B2/en
Publication of JP2000164554A publication Critical patent/JP2000164554A/en
Application granted granted Critical
Publication of JP3739952B2 publication Critical patent/JP3739952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、半導体基板や液晶ガラス基板などの薄板状基板(以下、単に「基板」という。)を処理液(純水を含む。)によって基板洗浄やエッチング等の各種の基板処理を行う基板処理装置に関する。
【0002】
【従来の技術】
基板処理槽内に複数枚の基板を収容し、基板処理槽の底部から所定温度に調整された純水を基板処理槽内へ供給し、基板処理槽の上部から純水をオーバーフローさせつつ、基板処理槽の内部に形成される所定温度の純水の上昇流によって基板を洗浄処理する基板処理装置がある。このような基板処理装置の要部構成を図9に示す。なお、図9では基板処理槽からオーバーフローした純水の排水処理部等は図示省略してある。
【0003】
基板処理装置51には、複数枚の基板が収容可能な基板処理槽52が設けられており、基板処理槽52の底部より温水供給管53が開閉弁54を介して連通接続されている。この温水供給管53は、温水供給部55に連通接続されており、この温水供給部55によって所定温度に加熱調整された純水が基板処理槽52に供給される。
【0004】
前記温水供給部55は、工場内に布設された純水供給ラインに設けられた純水取合口に連通接続された純水導入管56と、一端側が前記純水導入管56に接続され、他端側が前記温水供給管53に連通接続された温水管57と、前記温水管57内を流れる純水を加熱するヒータ58とが設けられている。前記温水管57には、前記ヒータ58の下流側にヒータ58により加熱された純水の温度を検出する温度検出器61が付設されている。また、基板処理装置51には前記温度検出器61によって検出された純水の温度が目標温度である基板処理温度になるようにヒータ58を温度制御する温度調節装置62が設けられている。
【0005】
【発明が解決しようとする課題】
前記温度調節装置62に接続される温度検出器61としては、K熱電対のように検出感度の高いものや、白金抵抗体のように前記K熱電対に比して検出感度の低いものがある。
【0006】
前記検出感度の高いK熱電対を温度検出器とし、温度調節装置62によって純水の温度が基板処理温度になるように温度制御した場合の温度波形の典型例を図10(A) に示す。この場合、図から明かなように、純水が温調開始から目標温度である基板処理温度に到達し安定するまでの立ち上がり時間は短く、応答性の良い温調ができるが、立ち上がり後は目標温度での制御精度が悪く、目標温度を中心として上下する凹凸状の温度波形になる。
【0007】
一方、検出感度の低い白金抵抗体を温度検出器として温度制御した場合の温度波形の典型例を図10(B) に示す。この場合、図から明かなように、純水が目標温度に安定するまでの立上り時間は長いが、目標温度に到達後の制御精度は良好で、目標温度に沿った滑らかなを温度波形になる。
【0008】
しかし、従来の基板処理装置では、目標温度への速い立ち上がりと高精度の温調を同時に行うことができなかった。このため、温度制御の精度を重視すると、目標温度への立上り時間が長くなり、基板処理装置の稼働率の低下や純水排出量の増大を招来する。一方、立上り時間の短縮を重視すると、温調精度が低下し、引いては処理基板の品質や歩留りが低下するという問題がある。
【0009】
このような問題は、上記のように基板処理槽へ所定温度の純水を供給する場合に限らず、温度検出器と温度調節器とによって薬液を目標温度である基板処理温度になるように定値制御し、温度調整後の薬液を基板処理部に供給して基板処理を行う種々の基板処理装置においても同様である。
【0010】
本発明はかかる問題に鑑みなされたものであり、基板処理部に供給された処理液(純水、薬液の両者を含む。)によって基板処理を行う基板処理装置において、処理液を基板処理温度に速やかに立ち上げるとともに、基板処理温度に到達後には高精度の温度調節を行うことができる基板処理装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
請求項1にかかる発明は、所定温度に調整された処理液によって基板処理を行う基板処理部と、前記基板処理部に連通接続され、所定温度に調整された処理液を供給する温液管と、前記温液管内を流れる処理液を所定温度に調整する温度調整手段とが設けられた基板処理装置であって、前記温度調整手段の下流側を流れる処理液の温度を検出する検出感度の高い第1温度検出器と、前記温度調整手段の下流側を流れる処理液の温度を検出する検出感度の低い第2温度検出器と、前記第1温度検出器によって検出された処理液の温度が基板処理を行う基板処理温度の近傍温度に設定された急速昇温温度未満のときに前記処理液の温度が前記基板処理温度あるいは前記急速昇温温度になるように前記第1温度検出器によって検出された処理液の温度に基づいて前記温度調整手段を制御し、前記処理液の温度が前記急速昇温温度以上になったときに前記第2温度検出器によって検出された処理液の温度が前記基板処理温度になるように前記第2温度検出器によって検出された処理液の温度に基づいて前記温度調整手段を制御する温度制御部を備えたものである。なお、処理液とは、基板処理に用いられる種々の液体をいい、エッチング等に用いられる薬液のみならず、洗浄処理に用いられる純水をも含む。
【0012】
この基板処理装置によると、温度制御部によって、第1温度検出器によって検出された処理液の温度が急速昇温温度未満のときには前記処理液の温度に基づいて温度調整手段を制御し、一方前記処理液の温度が急速昇温温度以上になったときには第2温度検出器によって検出された処理液の温度により温度調整手段を制御するので、処理液の温度が急速昇温温度に到達するまでは検出感度の高い第1温度検出器を用いて処理液を急速昇温温度に速やかに昇温することができ、処理液の温度が急速昇温温度に到達した後は検出感度の低い第2温度検出器を用いて処理液が基板処理温度になるように高精度の温度制御を行うことができる。このため、処理液を基板処理温度へ速やかに立ち上げることができ、基板処理装置の稼動率を向上させることができる。また、基板処理温度への立ち上がり後は、基板処理温度に高精度に温調された温度の処理液が得られるため、基板処理精度の向上、引いては処理基板の品質や歩留りの向上を図ることができる。
【0013】
請求項2にかかる発明は、所定温度に調整された純水によって基板処理を行う基板処理部と、前記基板処理部に連通接続され、所定温度に調整された純水を供給する温液管と、前記温液管内を流れる純水を加熱するヒータとが設けられた基板処理装置であって、前記ヒータの下流側を流れる純水の温度を検出する検出感度の高い第1温度検出器と、前記ヒータの下流側を流れる純水の温度を検出する検出感度の低い第2温度検出器と、前記第1温度検出器によって検出された純水の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記ヒータを制御する第1ヒータ制御信号を出力する第1温度調節器と、前記第2温度検出器によって検出された純水の温度が前記基板処理温度になるように前記ヒータを制御する第2ヒータ制御信号を出力する第2温度調節器と、前記第1温度検出器によって検出された純水の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1ヒータ制御信号に基づいて前記ヒータを制御し、前記純水の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号に基づいて前記ヒータを制御する選択制御部を備えたものである。
【0014】
この基板処理装置によると、選択制御部によって、第1温度検出器によって検出された純水の温度が急速昇温温度未満のときに第1温度調節器から出力された第1ヒータ制御信号によりヒータを制御し、一方前記純水の温度が急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号によりヒータを制御するので、純水の温度が急速昇温温度に到達するまでは検出感度の高い第1温度検出器を用いて純水を急速昇温温度に速やかに昇温することができ、純水の温度が急速昇温温度に到達した後は検出感度の低い第2温度検出器を用いて純水が基板処理温度になるように高精度の温度制御を行うことができる。このため、純水を基板処理温度へ速やかに立ち上げることができ、基板処理装置の稼動率を向上させることができるほか、立ち上げまでの間に基板処理部から排出される高価な純水の消費量を削減することができる。また、基板処理温度への立ち上がり後は、基板処理温度に高精度に温調された温度の純水が得られるため、基板処理精度の向上、引いては処理基板の品質や歩留りの向上を図ることができる。また、第1、第2温度検出器に対応してそれぞれ第1、第2温度調節器を設けたので、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0015】
また、請求項3にかかる発明は、所定温度に調整された純水によって基板処理を行う基板処理部と、高温の純水が流れる高温水管と低温の純水が流れる純水導入管とに連通接続され、前記高温の純水と低温の純水とが合流混合した純水を前記基板処理部に供給する温液管と、前記高温水管から前記温液管に流入する高温の純水の流量と前記純水導入管から前記温液管に流入する低温の純水の流量との割合を調整する流量割合調整手段とが設けられた基板処理装置であって、前記高温の純水と低温の純水との混合後の純水の温度を検出する検出感度の高い第1温度検出器と、前記高温の純水と低温の純水との混合後の純水の温度を検出する検出感度の低い第2温度検出器と、前記第1温度検出器によって検出された純水の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記流量割合調整手段を制御する第1流量割合制御信号を出力する第1温度調節器と、前記第2温度検出器によって検出された純水の温度が前記基板処理温度になるように前記流量割合調整手段を制御する第2流量割合制御信号を出力する第2温度調節器と、前記第1温度検出器によって検出された純水の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1流量割合制御信号に基づいて前記流量割合調整手段を制御し、前記純水の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2流量割合制御信号に基づいて前記流量割合調整手段を制御する選択制御部を備えたものである。
【0016】
この基板処理装置によると、選択制御部によって、第1温度検出器によって検出された純水の温度が急速昇温温度未満のときに第1温度調節器から出力された第1流量割合制御信号により流量割合調整手段を制御し、一方前記純水の温度が急速昇温温度以上になったときに前記第2温度調節器から出力された第2流量割合制御信号より流量割合調整手段を制御するので、純水の温度が急速昇温温度に到達するまでは検出感度の高い第1温度検出器を用いて純水を急速昇温温度に速やかに昇温することができ、純水の温度が急速昇温温度に到達した後は検出感度の低い第2温度検出器を用いて純水が基板処理温度になるように高精度の温度制御を行うことができる。このため、純水を基板処理温度へ速やかに立ち上げることができ、基板処理装置の稼動率を向上させることができるほか、立ち上げまでの間に基板処理部から排出される高価な純水の消費量を削減することができる。また、基板処理温度への立ち上がり後は、基板処理温度に高精度に温調された温度の純水が得られるため、基板処理精度の向上、引いては処理基板の品質や歩留りの向上を図ることができる。また、第1、第2温度検出器に対応してそれぞれ第1、第2温度調節器を設けたので、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0017】
請求項4にかかる発明は、処理液中に基板を浸漬して基板処理を行う基板処理部と、前記基板処理部からオーバーフローした処理液を前記基板処理部に循環させて供給する循環温液管と、該循環温液管内を流れる処理液を加熱するヒータとが設けられた基板処理装置であって、前記処理液の温度を検出する検出感度の高い第1温度検出器と、前記処理液の温度を検出する検出感度の低い第2温度検出器と、前記第1温度検出器によって検出された処理液の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記ヒータを制御する第1ヒータ制御信号を出力する第1温度調節器と、前記第2温度検出器によって検出された処理液の温度が前記基板処理温度になるように前記ヒータを制御する第2ヒータ制御信号を出力する第2温度調節器と、前記第1温度検出器によって検出された処理液の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1ヒータ制御信号に基づいて前記ヒータを制御し、前記処理液の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号に基づいて前記ヒータを制御する選択制御部を備えたものである。
【0018】
この基板処理装置によると、温度制御部によって、第1温度検出器によって検出された処理液の温度が急速昇温温度未満のときに第1温度調節器から出力された第1ヒータ制御信号によりヒータを制御し、一方前記処理液の温度が急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号によりヒータを制御するので、処理液の温度が急速昇温温度に到達するまでは検出感度の高い第1温度検出器を用いて処理液を急速昇温温度に速やかに昇温することができ、処理液の温度が急速昇温温度に到達した後は検出感度の低い第2温度検出器を用いて処理液が基板処理温度になるように高精度の温度制御を行うことができる。このため、処理液を基板処理温度へ速やかに立ち上げることができ、基板処理装置の稼動率を向上させることができる。また、基板処理温度への立ち上がり後は、基板処理温度に高精度に温調された温度の処理液が得られるため、基板処理精度の向上、引いては処理基板の品質や歩留りの向上を図ることができる。また、エッチング用薬液を処理液として用いる場合など、処理液が基板処理温度を越えることによって生じる処理液の揮発量を抑制することができ、長時間の循環使用時に生じる処理液消費量の削減を図ることができる。また、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0019】
【発明の実施の形態】
以下、本発明の好適な実施形態について図を参照しながら説明する。
図1は本発明の第1実施形態にかかる基板処理装置1の要部構成を示す模式図であり、同図では基板処理槽2からオーバーフローした純水の排水処理部等は図示省略されている。
【0020】
基板処理装置1は、複数枚の基板を収容し、槽内に供給された純水をオーバーフローさせつつ前記基板に対し洗浄処理を行う基板処理槽2と、基板処理槽2の底部に設けられた処理液供給口に開閉弁4を介して接続され、所定温度に調整された純水を前記処理液供給口から基板処理槽2内に供給する温水供給管3と、前記温水供給管3に所定温度に温度調整された純水を供給する温水供給部5とが設けられている。
【0021】
前記温水供給部5は、工場内に布設された一次配管に設けられた純水取合口(純水供給源)とを連通接続する純水導入管6と、一端側が前記純水導入管6に連通接続され、他端側が前記温水供給管3に連通接続された温液管7と、前記温液管7に付設され、管内を流れる純水を加熱するヒータ8とを備え、前記温液管7には前記ヒータ8の下流側に純水の温度を検出する、K熱電対のような検出感度の高い第1温度検出器11および白金抵抗体のような検出感度の低い第2温度検出器12が付設されている。
【0022】
また、基板処理装置1には、前記第1、第2温度検出器11、12や前記ヒータ8等を用いて温液管7内を流れる純水の温度を制御する温度制御部20が設けられている。前記温度制御部20には、図2に示すように、入力機器として前記第1、第2温度検出器11、12、純水の温度制御に関する種々の情報を入力するキーボード、スイッチ等の入力手段21が接続されている。また、出力機器として前記ヒータ8が接続されている。前記入力手段21によって入力される情報としては、基板処理(洗浄)を行う純水の温度である基板処理温度WTや、基板処理温度WTの近傍温度に設定される急速昇温温度QTを規定する基板処理温度WTと急速昇温温度QTとの温度差P(P=WT−QT)等がある。
【0023】
前記温度制御部20は、前記入力手段21が接続され、CPU、メモリ、入出力インターフェイスを有する制御コンピュータ23と、前記第1温度検出器11によって検出された純水の温度が前記制御コンピュータ23を介して入力設定された基板処理温度WTになるように前記ヒータ8を制御する第1ヒータ制御信号を出力する第1温度調節器24と、前記第2温度検出器12によって検出された純水の温度が前記制御コンピュータ23を介して入力設定された基板処理温度WTになるように前記ヒータ8を制御する第2ヒータ制御信号を出力する第2温度調節器25と、後述の温度制御プログラムに従って前記第1ヒータ制御信号及び第2ヒータ制御信号のいずれか一方の制御信号が制御コンピュータ23を介して入力されるヒータ電力調整器26とを備えており、前記制御コンピュータ23のメモリには温度制御プログラムが格納されている。なお、前記制御コンピュータ23は本発明の選択制御部に相当する。
【0024】
前記基板処理槽2には、前記温水供給管3に設けられた開閉弁4を開操作することにより温水供給部5から温度制御部20によって所定温度に温度調整された純水が供給される。ここで、前記制御コンピュータ23による温度制御について、図3を参照して説明する。
【0025】
まず、オぺレータによる入力手段21の操作によって、基板処理(洗浄)情報すなわち基板処理温度WT、基板処理温度WTと急速昇温温度QTとの温度差Pが制御コンピュータ23に入力され、これらの情報はメモリに記憶される(S1)。
【0026】
次に、制御コンピュータ23は、前記基板処理温度WTと温度差Pから急速昇温温度QT(QT=WT−P)を算出し、QTをメモりに記憶するとともに、基板処理温度WTを前記第1、第2温度調節器24、25へ出力する(S2)。
【0027】
基板処理温度WTが入力設定された第1温度調節器24は、このWTを目標温度として、前記第1温度検出器11から検出された純水の温度T1が基板処理温度WTになるようにヒータ8を制御する第1ヒータ制御信号並びに前記T1を制御コンピュータ23に出力する。一方、基板処理温度WTが入力設定された第2温度調節器25も、このWTを目標温度として、前記第2温度検出器12から検出された純水の温度T2が基板処理温度WTになるようにヒータ8を制御する第2ヒータ制御信号を制御コンピュータ23へ出力する。前記T1、第1ヒータ制御信号および第2ヒータ制御信号は制御コンピュータ23に入力され、一時的にメモりに記憶される(S3)。
【0028】
前記純水温度T1が入力された制御コンピュータ23は、純水温度T1と急速昇温温度QTとを比較し(ステップS4)、T1<QTのときは第1ヒータ制御信号をヒータ電力調整器26に出力し(S5)、第1ヒータ制御信号によりヒータ電力調整器26を制御し、T1がWTになるようにヒータ8の出力を調整する。一方、T1≧QTになったとき、第2ヒータ制御信号をヒータ電力調整器26へ出力し(S6)、第2ヒータ制御信号によりヒータ電力調整器26を制御し、T2が基板処理温度WTになるようにヒータ8の出力を調整する。
【0029】
すなわち、図8に示すように、純水温度T1が急速昇温温度QTに到達するまでは、検出感度の高い第1温度検出器11およびこの検出器11を用いた温調に最適な第1温度調節器24を用いてヒータ8を制御するので、純水を急速昇温温度QTに急速に加熱することができる。そして、QTに到達した後は、検出感度の低い第2温度検出器12およびこの検出器12の信号処理に最適な第2温度調節器25を用いてヒータ8を制御するので、基板処理温度WTに高精度に追従した純水温度を得ることができる。従って、基板処理温度WTまでの立上り時間を短くすることができるので、基板処理装置の稼働率を向上させることができ、また立上り時間までの純水の無駄な排出を削減することができる。また、基板処理温度WT到達後は純水温度は基板処理温度WTに高精度に温調されるため、基板処理の均一化による処理基板の品質の向上、歩留りの向上を図ることができる。また、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0030】
前記実施形態では、第1温度調節器24、第2温度調節器25から制御コンピュータ23へ第1ヒータ制御信号、第2ヒータ制御信号を出力し、所定の条件の下でいずれか一方のヒータ制御信号を制御コンピュータ23からヒータ電力調整器26へ出力するようにしたが、第1温度調節器24、第2温度調節器25からの第1ヒータ制御信号、第2ヒータ制御信号が直接入力され、制御コンピュータ23からの選択指令によりいずれか一方の制御信号をヒータ電力調整器26へ出力する信号選択器を設けるようにしてもよい。なお、この信号選択器による制御方法は、後述の第2実施形態の温度制御においても同様に適用することができる。この場合、第1,第2ヒータ制御信号は第1,第2流量割合制御信号に、ヒータ電力調整器は操作信号分配器に対応する。
【0031】
図4は本発明の第2実施形態にかかる基板処理装置1Aの要部構成を示す模式図であり、図5はその温度制御部20Aの機能ブロック図である。これらの図において、図1、図2で示した基板処理装置と同様の構成を有する部分は同符合を付して説明を簡略ないし省略し、異なる構成を中心に説明する。なお、図4においても基板処理槽2からオーバーフローした純水の排水処理部等は図示省略されている。
【0032】
この基板処理装置1Aに設けられた温水供給部5Aは、純水供給源に連通接続され、低温(室温)の純水が流れる純水導入管32と、前記純水導入管32に連通接続された純水分岐管29を介して、管内を流れる純水を基板処理温度よりも高いある一定温度に加熱するヒータ30が設けられた高温水管31と、前記純水導入管32と前記高温水管31とに連通接続され、前記低温の純水と高温の純水とが合流して混合した純水を温水供給管3に供給する温液管7Aとが設けられている。また、前記高温水管31のヒータ30の下流側には高温流量調整弁33が介設され、前記純水導入管32の前記純水分岐管29の下流側には低温流量調整弁34が介設されている。また、第1実施形態と同様、前記温液管7Aには、温液管7A内を流れる混合後の純水の温度を検出する、K熱電対のような検出感度の高い第1温度検出器および白金抵抗体のような検出感度の低い第2温度検出器が付設されている。なお、前記高温流量調整弁33および低温流量調整弁34は、本発明の流量割合調整手段に相当するものである。
【0033】
前記温度制御部20Aは、第1実施形態の温度制御部20と基本的に同様の構成を有するものであるが、出力対象が高温流量調整弁33および低温流量調整弁34であるため、図5に示すように、前記第1温度検出器11によって検出された純水の温度T1が前記制御コンピュータ23を介して入力設定された基板処理温度WTになるように前記流量調整弁33、34を制御する第1流量割合制御信号を出力する第1温度調節器24Aと、前記第2温度検出器12によって検出された純水の温度T2を前記制御コンピュータ23を介して入力設定された基板処理温度WTになるように前記流量調整弁33、34を制御する第2流量割合制御信号を出力する第2温度調節器25Aと、温度制御プログラムに従って選択された前記第1流量割合制御信号又は第2流量割合制御信号の一方が制御コンピュータ23を介して入力される操作信号分配器36とを備えている。操作信号分配器36は流量割合制御信号に基づいて所定の温度が得られるように前記流量調整弁33、34の各弁の開度を制御する弁操作信号を前記流量調整弁33、34に出力する。
【0034】
この実施形態においても、純水温度T1が急速昇温温度QTに到達するまでは、検出感度の高い第1温度検出器11およびこの検出器11を用いた温調に最適な第1温度調節器24Aを用いて流量調整弁33、34を制御するので、純水を急速昇温温度QTに急速に昇温することができる。そして、QTに到達後は、検出感度の低い第2温度検出器12およびこの検出器12の信号処理に最適な第2温度調節器25を用いて流量調整弁33、34を制御するので、基板処理温度WTに高精度に追従した純水温度を得ることができる。また、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0035】
前記実施形態では、純水導入管32から純水分岐管29を介して高温水管31へ純水を導入するようにしたが、工場内に、所定温度に加熱昇温された純水の供給ラインがある場合、図6に示すように、昇温純水供給源と高温水管31とを昇温純水導入管38を介して直接接続するようにしてもよい。この場合、ヒータ30は昇温純水が基板処理温度よりも低い場合に使用すればよく、昇温純水が基板処理温度よりも高い場合には必ずしも必要がない。
【0036】
また、前記実施形態では、流量割合調整手段として、高温流量調整弁33および低温流量調整弁34を用いたが、高温水管31と純水導入管32とが温液管7Aに合流接続される部分に、高温水管31と純水導入管32とが接続される2個の流入口を有し、温液管7Aが接続される流出口を1個有する流量調整弁を1個用いてもよい。この種の流量調整弁は、弁の回動角により流入する2液の流量割合が決まるため、前記操作信号分配器36は不要である。また、前記実施形態においても、操作信号分配器36は必ずしも必要ではなく、制御コンピュータ23によって弁操作信号を流量調整弁33、34へ出力するようにしてもよい。
【0037】
図7は本発明の第3実施形態にかかる基板処理装置1Bの要部構成を示す模式図であり、同図中、図1で示した基板処理装置と同様の構成を有する部分は同符合を付してある。
【0038】
この基板処理装置1Bは、処理液中に基板を浸漬して基板処理を行う基板処理槽2Bと、前記基板処理槽2Bからオーバーフローした処理液を回収する回収槽41と、この回収槽41に回収された処理液を吸い込んで前記基板処理槽2Bに供給する循環温液管42とを有する。前記循環温液管42には、循環ポンプ43、管内を流れる処理液を加熱するヒータ8、フィルター44が同順序で処理液の流れる方向に沿って設けられている。また、前記基板処理槽2Bには、第1実施形態と同様、槽内の処理液の温度を検出する、K熱電対のような検出感度の高い第1温度検出器11および白金抵抗体のような検出感度の低い第2温度検出器12が付設されている。なお、処理液は図示省略した処理液供給管より基板処理槽2Bに供給され、所定時間循環使用された後、開閉弁45を備えた廃液管46より排出される。
【0039】
この基板処理装置1Bにおいても、前記循環温液管42を流れる処理液を所定温度に制御する温度制御部20が設けられているが、この温度制御部は第1実施形態と同じ構成のものであるので、説明を省略する。もっとも、基板処理を行う処理液に関して、第1実施形態では純水が使用され、本実施形態では主に薬液が使用される。
【0040】
この実施形態においても、基板処理槽1内の処理液の温度T1が急速昇温温度QTに到達するまでは、検出感度の高い第1温度検出器11およびこの検出器11を用いた温調に最適な第1温度調節器24を用いてヒータ8を制御するので、処理液を急速昇温温度QTに急速に加熱することができる。そして、QTに到達後は、検出感度の低い第2温度検出器12およびこの検出器12の信号処理に最適な第2温度調節器25を用いてヒータ8を制御するので、基板処理温度WTに高精度に追従した処理液温度を得ることができる。従って、基板処理温度WTまでの立上り時間を短くすることができるので、基板処理装置の稼働率を向上させることができる。また、基板処理温度WTに到達後は処理液温度は基板処理温度WTに高精度に温調されるため、基板処理の均一化による処理基板の品質の向上、歩留りの向上を図ることができる。また、エッチング用薬液を処理液として用いる場合など、処理液が基板処理温度を越えることによって生じる処理液の揮発量を抑制することができ、長時間の循環使用時に生じる処理液消費量の削減を図ることができる。また、各温度検出器の検出信号形態に対応した最適な温度調節器を市場に供給されているものから任意に選択使用することができ、設備コストの低減を図ることができる。
【0041】
上記第1〜第3実施形態においては、急速昇温温度QTを規定する急速昇温温度情報として基板処理温度WTとの温度差Pを採用したが、急速昇温温度QT自体を温度情報としてもよい。また、これらの目標温度は制御コンピュータ23を介して第1温度調節器、第2温度調節器に入力設定したが、これらの温度情報を第1、第2温度調節器に直接入力設定するようにしてもよい。この場合、制御コンピュータ23には、入力手段21から急速昇温温度QTのみを入力するようにしてもよい。また、第1温度検出器11によって検出された処理液温度信号も第1温度調節器を介することなく制御コンピュータ23に直接入力するようにしてもよい。また、第1温度調節器に設定する目標温度としては、上記実施形態のように基板処理温度WTに限らず、急速昇温温度QTとしてもよく、このQTはWTよりも高温に設定することもできる。
【0042】
また、上記第1〜第3実施形態においては、基板処理部として複数枚の基板を処理液(純水を含む。)中に浸漬し、一括して基板処理を行う基板処理槽2、2A、2Bの例を示したが、基板処理槽は1枚の基板を処理するものであってもよい。また、基板処理部としてはかかる基板処理槽に限らず、例えば1枚の基板を回転させつつ、基板表面に種々の処理液を供給して基板処理を行うものであってもよい。なお、第1〜第3実施形態におけるヒータ8、流量調整弁33、34は、請求項1に記載した発明にかかる温度調整手段に相当するものである。
【0043】
【発明の効果】
本発明の基板処理装置によれば、処理液(純水を含む。)の温度を検出感度の高い第1温度検出器および検出感度の低い第2温度検出器とを用いて検出し、処理液の温度が基板処理を行う基板処理温度近傍の急速昇温温度に到達するまでは前記第1温度検出器を用いて処理液が急速昇温温度になるように温度制御を行い、急速昇温温度に到達後は前記第2温度検出器を用いて処理液が基板処理温度になるように温度制御を行うので、基板処理を行う基板処理温度に処理液を速やかに立ち上げることができ、基板処理装置の稼働率を向上させることができ、また基板処理温度に立ち上がり後は処理液を基板処理温度に高精度に温度調整できるので、基板処理精度の向上による品質、歩留りの向上を図ることができる。
【図面の簡単な説明】
【図1】第1実施形態にかかる基板処理装置の要部構成を示す模式図である。
【図2】第1実施形態における温度制御部の機能ブロック図である。
【図3】温度制御手順を示すフローチャートである。
【図4】第2実施形態にかかる基板処理装置の要部構成を示す模式図である。
【図5】第2実施形態における温度制御部の機能ブロック図である。
【図6】第2実施形態の変形例を示す基板処理装置の要部構成を示す模式図である。
【図7】第3実施形態にかかる基板処理装置の要部構成を示す模式図である。
【図8】本発明にかかる温度制御部による温度調整結果を示す温度波形図である。
【図9】従来の基板処理装置の要部構成を示す模式図である。
【図10】検出感度の高い温度検出器を用いて温度制御した場合(A) および検出感度の低い温度検出器を用いて温度制御した場合(B) の温度波形図である。
【符号の説明】
1、1A、1B 基板処理装置
2、2B 基板処理槽
7、7A 温液管
8 ヒータ
11 第1温度検出器
12 第2温度検出器
20、20A 温度制御部
23 制御コンピュータ
24、24A 第1温度調節器
25、25A 第2温度調節器
31 高温水管
32 純水導入管
33 高温流量調整弁
34 低温流量調整弁
42 循環温液管
[0001]
[Technical field to which the invention belongs]
The present invention is a substrate processing for performing various substrate processing such as substrate cleaning and etching on a thin plate substrate (hereinafter simply referred to as “substrate”) such as a semiconductor substrate or a liquid crystal glass substrate with a processing liquid (including pure water). Relates to the device.
[0002]
[Prior art]
A plurality of substrates are accommodated in a substrate processing tank, pure water adjusted to a predetermined temperature is supplied from the bottom of the substrate processing tank into the substrate processing tank, and the substrate is overflowed from the top of the substrate processing tank There is a substrate processing apparatus for cleaning a substrate with an ascending flow of pure water having a predetermined temperature formed inside a processing tank. FIG. 9 shows the main configuration of such a substrate processing apparatus. In FIG. 9, the drainage processing unit of pure water overflowing from the substrate processing tank is not shown.
[0003]
The substrate processing apparatus 51 is provided with a substrate processing tank 52 that can accommodate a plurality of substrates, and a hot water supply pipe 53 is connected to the bottom of the substrate processing tank 52 via an opening / closing valve 54. The hot water supply pipe 53 is connected in communication with a hot water supply unit 55, and pure water heated to a predetermined temperature by the hot water supply unit 55 is supplied to the substrate processing tank 52.
[0004]
The hot water supply unit 55 includes a pure water introduction pipe 56 connected to a pure water connection port provided in a pure water supply line installed in the factory, and one end side connected to the pure water introduction pipe 56. A hot water pipe 57 whose end side is connected to the hot water supply pipe 53 and a heater 58 for heating pure water flowing through the hot water pipe 57 are provided. The hot water pipe 57 is provided with a temperature detector 61 for detecting the temperature of pure water heated by the heater 58 on the downstream side of the heater 58. Further, the substrate processing apparatus 51 is provided with a temperature adjusting device 62 for controlling the temperature of the heater 58 so that the temperature of the pure water detected by the temperature detector 61 becomes the substrate processing temperature which is a target temperature.
[0005]
[Problems to be solved by the invention]
Examples of the temperature detector 61 connected to the temperature control device 62 include a detector having high detection sensitivity such as a K thermocouple and a detector having low detection sensitivity compared to the K thermocouple such as a platinum resistor. .
[0006]
FIG. 10 (A) shows a typical example of a temperature waveform when the K thermocouple having a high detection sensitivity is used as a temperature detector and the temperature control device 62 controls the temperature so that the temperature of pure water becomes the substrate processing temperature. In this case, as is clear from the figure, the rise time from the start of temperature adjustment until the substrate processing temperature, which is the target temperature, stabilizes, is short and the temperature can be adjusted with good responsiveness. The control accuracy at temperature is poor, and the temperature waveform has an uneven shape that goes up and down around the target temperature.
[0007]
On the other hand, FIG. 10B shows a typical example of a temperature waveform when temperature control is performed using a platinum resistor having low detection sensitivity as a temperature detector. In this case, as is clear from the figure, the rise time until the pure water stabilizes at the target temperature is long, but the control accuracy after reaching the target temperature is good, and a smooth waveform along the target temperature is obtained. .
[0008]
However, in the conventional substrate processing apparatus, it was not possible to simultaneously perform a rapid rise to the target temperature and highly accurate temperature control. For this reason, when emphasizing the accuracy of temperature control, the rise time to the target temperature becomes long, leading to a decrease in the operation rate of the substrate processing apparatus and an increase in the amount of pure water discharged. On the other hand, if emphasis is placed on shortening the rise time, there is a problem that the temperature control accuracy is lowered, and in turn, the quality and yield of the processed substrate are lowered.
[0009]
Such a problem is not limited to the case where pure water of a predetermined temperature is supplied to the substrate processing tank as described above, but a constant value is set so that the chemical solution reaches the target substrate processing temperature by the temperature detector and the temperature controller. The same applies to various substrate processing apparatuses that control and supply the chemical solution after temperature adjustment to the substrate processing unit to perform substrate processing.
[0010]
The present invention has been made in view of such a problem. In a substrate processing apparatus that performs substrate processing using a processing liquid (including both pure water and chemicals) supplied to a substrate processing unit, the processing liquid is set to a substrate processing temperature. An object of the present invention is to provide a substrate processing apparatus capable of quickly starting up and performing high-precision temperature adjustment after reaching the substrate processing temperature.
[0011]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a substrate processing unit that performs substrate processing with a processing liquid adjusted to a predetermined temperature, and a hot liquid pipe that is connected to the substrate processing unit and supplies a processing liquid adjusted to a predetermined temperature. And a substrate processing apparatus provided with a temperature adjusting means for adjusting the processing liquid flowing in the hot liquid pipe to a predetermined temperature, and having a high detection sensitivity for detecting the temperature of the processing liquid flowing downstream of the temperature adjusting means. A first temperature detector, a second temperature detector having a low detection sensitivity for detecting the temperature of the processing liquid flowing downstream of the temperature adjusting means, and the temperature of the processing liquid detected by the first temperature detector The temperature of the processing solution is detected by the first temperature detector so that the temperature of the processing liquid becomes the substrate processing temperature or the rapid temperature increase temperature when the temperature is lower than the rapid temperature increase temperature set near the substrate processing temperature for processing. Treatment liquid temperature And controlling the temperature adjusting means so that the temperature of the processing liquid detected by the second temperature detector when the temperature of the processing liquid becomes equal to or higher than the rapid temperature rise temperature becomes the substrate processing temperature. And a temperature control unit for controlling the temperature adjusting means based on the temperature of the processing liquid detected by the second temperature detector. The processing liquid refers to various liquids used for substrate processing, and includes not only chemicals used for etching and the like, but also pure water used for cleaning processing.
[0012]
According to this substrate processing apparatus, the temperature controller controls the temperature adjusting means based on the temperature of the processing liquid when the temperature of the processing liquid detected by the first temperature detector is less than the rapid temperature rise temperature, Since the temperature adjusting means is controlled by the temperature of the processing liquid detected by the second temperature detector when the temperature of the processing liquid becomes equal to or higher than the rapid temperature increase temperature, the temperature of the processing liquid will reach the rapid temperature increase temperature. The first temperature detector with high detection sensitivity can be used to quickly raise the treatment liquid to the rapid temperature rise temperature. After the temperature of the treatment liquid reaches the rapid temperature rise temperature, the second temperature with low detection sensitivity. High-precision temperature control can be performed using the detector so that the processing liquid reaches the substrate processing temperature. For this reason, the processing liquid can be quickly raised to the substrate processing temperature, and the operating rate of the substrate processing apparatus can be improved. In addition, after the rise to the substrate processing temperature, a processing liquid whose temperature is adjusted to the substrate processing temperature with high accuracy can be obtained, so that the substrate processing accuracy is improved, and thus the quality and yield of the processed substrate are improved. be able to.
[0013]
According to a second aspect of the present invention, there is provided a substrate processing unit that performs substrate processing with pure water adjusted to a predetermined temperature; a hot liquid pipe that is connected to the substrate processing unit and supplies pure water adjusted to a predetermined temperature; A substrate processing apparatus provided with a heater for heating pure water flowing in the hot liquid pipe, and a first temperature detector with high detection sensitivity for detecting the temperature of pure water flowing downstream of the heater; A second temperature detector having low detection sensitivity for detecting the temperature of pure water flowing downstream of the heater, and a substrate processing temperature at which the temperature of the pure water detected by the first temperature detector performs substrate processing or the substrate A first temperature controller for outputting a first heater control signal for controlling the heater so as to reach a rapid temperature rise set to a temperature close to the processing temperature; and pure water detected by the second temperature detector Temperature is the substrate processing temperature A second temperature controller for outputting a second heater control signal for controlling the heater so that the temperature of pure water detected by the first temperature detector is lower than the rapid temperature rise temperature. The heater is controlled based on the first heater control signal output from the temperature controller, and the second output from the second temperature controller when the temperature of the pure water exceeds the rapid temperature rise temperature. A selection control unit for controlling the heater based on a heater control signal is provided.
[0014]
According to this substrate processing apparatus, the heater is controlled by the first heater control signal output from the first temperature controller when the temperature of the pure water detected by the first temperature detector is lower than the rapid temperature rise temperature by the selection control unit. On the other hand, when the temperature of the pure water becomes equal to or higher than the rapid temperature rise temperature, the heater is controlled by the second heater control signal output from the second temperature controller. Until the temperature reaches the temperature, the first temperature detector having high detection sensitivity can be used to quickly raise the temperature of the pure water to the rapid temperature rise temperature. After the temperature of the pure water reaches the rapid temperature rise temperature, High-precision temperature control can be performed using the second temperature detector with low detection sensitivity so that pure water becomes the substrate processing temperature. For this reason, the pure water can be quickly raised to the substrate processing temperature, the operating rate of the substrate processing apparatus can be improved, and expensive pure water discharged from the substrate processing section before the startup is started. Consumption can be reduced. In addition, after the rise to the substrate processing temperature, pure water having a temperature precisely adjusted to the substrate processing temperature is obtained, so that the substrate processing accuracy is improved, and in turn, the quality and yield of the processed substrate are improved. be able to. In addition, since the first and second temperature controllers are provided corresponding to the first and second temperature detectors, respectively, the optimum temperature controller corresponding to the detection signal form of each temperature detector is supplied to the market. It can be selected and used arbitrarily from the existing one, and the equipment cost can be reduced.
[0015]
The invention according to claim 3 communicates with the substrate processing section that performs substrate processing with pure water adjusted to a predetermined temperature, a high-temperature water pipe through which high-temperature pure water flows, and a pure water introduction pipe through which low-temperature pure water flows. A hot liquid pipe connected to the substrate processing unit for pure water mixed and mixed with the high temperature pure water and the low temperature pure water; and a flow rate of the high temperature pure water flowing from the high temperature water pipe into the hot liquid pipe And a flow rate ratio adjusting means for adjusting a rate of the flow rate of the low-temperature pure water flowing from the pure water introduction pipe into the hot liquid pipe, wherein the high-temperature pure water and the low-temperature pure water A first temperature detector having a high detection sensitivity for detecting the temperature of pure water after mixing with pure water, and a detection sensitivity for detecting the temperature of pure water after mixing the high temperature pure water and the low temperature pure water. A low second temperature detector and the temperature of pure water detected by the first temperature detector perform substrate processing. A first temperature controller that outputs a first flow rate ratio control signal for controlling the flow rate ratio adjusting means so as to reach a rapid temperature rise temperature set to a plate processing temperature or a temperature in the vicinity of the substrate processing temperature; A second temperature controller for outputting a second flow rate control signal for controlling the flow rate adjusting means so that the temperature of the pure water detected by the temperature detector becomes the substrate processing temperature; and the first temperature detector. And controlling the flow rate ratio adjusting means based on the first flow rate control signal output from the first temperature controller when the temperature of the pure water detected by the temperature is less than the rapid temperature rise temperature, A selection control unit that controls the flow rate ratio adjusting means based on a second flow rate ratio control signal output from the second temperature regulator when the temperature becomes equal to or higher than the rapid temperature rise temperature is provided.
[0016]
According to this substrate processing apparatus, when the temperature of pure water detected by the first temperature detector is lower than the rapid temperature rise temperature by the selection control unit, the first flow rate control signal output from the first temperature controller is used. Since the flow rate adjusting means is controlled, on the other hand, the flow rate adjusting means is controlled by the second flow rate control signal output from the second temperature controller when the temperature of the pure water becomes higher than the rapid temperature rise temperature. Until the temperature of the pure water reaches the rapid temperature rise temperature, the temperature of the pure water can be rapidly raised to the rapid temperature rise temperature by using the first temperature detector with high detection sensitivity. After reaching the temperature increase temperature, it is possible to perform highly accurate temperature control using the second temperature detector having low detection sensitivity so that the pure water becomes the substrate processing temperature. For this reason, the pure water can be quickly raised to the substrate processing temperature, the operating rate of the substrate processing apparatus can be improved, and expensive pure water discharged from the substrate processing section before the startup is started. Consumption can be reduced. In addition, after the rise to the substrate processing temperature, pure water having a temperature precisely adjusted to the substrate processing temperature is obtained, so that the substrate processing accuracy is improved, and in turn, the quality and yield of the processed substrate are improved. be able to. In addition, since the first and second temperature controllers are provided corresponding to the first and second temperature detectors, respectively, the optimum temperature controller corresponding to the detection signal form of each temperature detector is supplied to the market. It can be selected and used arbitrarily from the existing one, and the equipment cost can be reduced.
[0017]
According to a fourth aspect of the present invention, there is provided a substrate processing unit that performs substrate processing by immersing a substrate in a processing solution, and a circulating hot liquid tube that circulates and supplies the processing solution overflowed from the substrate processing unit to the substrate processing unit. And a substrate processing apparatus provided with a heater for heating the processing liquid flowing in the circulating hot liquid pipe, the first temperature detector having high detection sensitivity for detecting the temperature of the processing liquid, A second temperature detector having a low detection sensitivity for detecting the temperature, and a temperature of the processing liquid detected by the first temperature detector is set to a substrate processing temperature at which the substrate processing is performed or a temperature in the vicinity of the substrate processing temperature. A first temperature controller that outputs a first heater control signal for controlling the heater so that the temperature rises, and a temperature of the processing liquid detected by the second temperature detector becomes the substrate processing temperature. The heater A second temperature controller for outputting a second heater control signal to be controlled; and a temperature of the processing liquid detected by the first temperature detector is output from the first temperature controller when the temperature is lower than the rapid temperature rise temperature. The heater is controlled based on the first heater control signal, and based on the second heater control signal output from the second temperature controller when the temperature of the processing liquid becomes equal to or higher than the rapid temperature rise temperature. A selection control unit for controlling the heater is provided.
[0018]
According to this substrate processing apparatus, the heater is generated by the first heater control signal output from the first temperature controller when the temperature of the processing liquid detected by the first temperature detector is lower than the rapid temperature rise temperature by the temperature controller. On the other hand, when the temperature of the processing liquid becomes equal to or higher than the rapid temperature rise temperature, the heater is controlled by the second heater control signal output from the second temperature controller, so that the temperature of the processing liquid rapidly increases. Until the temperature reaches the temperature, the processing liquid can be quickly raised to the rapid temperature rise using the first temperature detector with high detection sensitivity. After the temperature of the treatment liquid reaches the rapid temperature rise, High-precision temperature control can be performed using the second temperature detector with low detection sensitivity so that the processing liquid reaches the substrate processing temperature. For this reason, the processing liquid can be quickly raised to the substrate processing temperature, and the operating rate of the substrate processing apparatus can be improved. In addition, after the rise to the substrate processing temperature, a processing liquid whose temperature is adjusted to the substrate processing temperature with high accuracy can be obtained, so that the substrate processing accuracy is improved, and thus the quality and yield of the processed substrate are improved. be able to. In addition, when using a chemical solution for etching as a processing solution, the amount of processing solution volatilization that occurs when the processing solution exceeds the substrate processing temperature can be suppressed, reducing the amount of processing solution consumption that occurs during prolonged circulation use. Can be planned. Moreover, the optimal temperature controller corresponding to the detection signal form of each temperature detector can be arbitrarily selected from those supplied to the market, and the equipment cost can be reduced.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram showing a configuration of a main part of a substrate processing apparatus 1 according to the first embodiment of the present invention. In FIG. 1, a drainage processing unit of pure water overflowing from the substrate processing tank 2 is not shown. .
[0020]
The substrate processing apparatus 1 is provided at the bottom of the substrate processing tank 2 for storing a plurality of substrates and performing a cleaning process on the substrate while overflowing pure water supplied into the tank. A hot water supply pipe 3 connected to the processing liquid supply port via the open / close valve 4 and supplying pure water adjusted to a predetermined temperature into the substrate processing tank 2 from the processing liquid supply port, and a predetermined supply to the hot water supply pipe 3 There is provided a hot water supply section 5 for supplying pure water whose temperature is adjusted.
[0021]
The hot water supply unit 5 includes a pure water introduction pipe 6 that communicates with a pure water coupling port (pure water supply source) provided in a primary pipe installed in the factory, and one end side of the hot water supply section 5 is connected to the pure water introduction pipe 6. The hot liquid pipe is provided with a hot liquid pipe 7 connected to the other end and connected to the hot water supply pipe 3, and a heater 8 attached to the hot liquid pipe 7 for heating pure water flowing in the pipe. 7 includes a first temperature detector 11 having a high detection sensitivity, such as a K thermocouple, and a second temperature detector having a low detection sensitivity, such as a platinum resistor, for detecting the temperature of pure water downstream of the heater 8. 12 is attached.
[0022]
In addition, the substrate processing apparatus 1 is provided with a temperature control unit 20 that controls the temperature of pure water flowing in the hot liquid pipe 7 using the first and second temperature detectors 11 and 12, the heater 8, and the like. ing. As shown in FIG. 2, the temperature controller 20 includes input means such as the first and second temperature detectors 11 and 12 as input devices, a keyboard for inputting various information related to the temperature control of pure water, and switches. 21 is connected. The heater 8 is connected as an output device. The information input by the input means 21 defines a substrate processing temperature WT that is the temperature of pure water that performs substrate processing (cleaning), and a rapid temperature increase temperature QT that is set in the vicinity of the substrate processing temperature WT. There is a temperature difference P (P = WT−QT) between the substrate processing temperature WT and the rapid temperature rise temperature QT.
[0023]
The temperature control unit 20 is connected to the input means 21, and includes a control computer 23 having a CPU, a memory, and an input / output interface, and the temperature of pure water detected by the first temperature detector 11 is controlled by the control computer 23. A first temperature controller 24 that outputs a first heater control signal for controlling the heater 8 so that the substrate processing temperature WT is set through the input, and pure water detected by the second temperature detector 12. In accordance with a second temperature controller 25 for outputting a second heater control signal for controlling the heater 8 so that the temperature becomes the substrate processing temperature WT input and set via the control computer 23, and the temperature control program to be described later. Heater power to which one of the first heater control signal and the second heater control signal is input via the control computer 23 And a Seiki 26, the temperature control program is stored in the memory of the control computer 23. The control computer 23 corresponds to the selection control unit of the present invention.
[0024]
The substrate processing tank 2 is supplied with pure water whose temperature has been adjusted to a predetermined temperature by the temperature control unit 20 from the hot water supply unit 5 by opening the on-off valve 4 provided in the hot water supply pipe 3. Here, temperature control by the control computer 23 will be described with reference to FIG.
[0025]
First, by the operation of the input means 21 by the operator, the substrate processing (cleaning) information, that is, the substrate processing temperature WT, and the temperature difference P between the substrate processing temperature WT and the rapid temperature rising temperature QT are input to the control computer 23. Information is stored in the memory (S1).
[0026]
Next, the control computer 23 calculates a rapid temperature rise temperature QT (QT = WT−P) from the substrate processing temperature WT and the temperature difference P, stores the QT in a memory, and sets the substrate processing temperature WT to the first temperature. 1. Output to the second temperature controller 24, 25 (S2).
[0027]
The first temperature controller 24 to which the substrate processing temperature WT is input is set, and the heater is used so that the temperature T1 of pure water detected from the first temperature detector 11 becomes the substrate processing temperature WT using the WT as a target temperature. The first heater control signal for controlling 8 and the T1 are output to the control computer 23. On the other hand, the second temperature controller 25 to which the substrate processing temperature WT is input is also set so that the temperature T2 of pure water detected from the second temperature detector 12 becomes the substrate processing temperature WT using this WT as a target temperature. A second heater control signal for controlling the heater 8 is output to the control computer 23. The T1, first heater control signal, and second heater control signal are input to the control computer 23 and temporarily stored in a memory (S3).
[0028]
The control computer 23 to which the pure water temperature T1 has been input compares the pure water temperature T1 with the rapid temperature rise temperature QT (step S4). When T1 <QT, the first heater control signal is sent to the heater power adjuster 26. (S5), the heater power adjuster 26 is controlled by the first heater control signal, and the output of the heater 8 is adjusted so that T1 becomes WT. On the other hand, when T1 ≧ QT, the second heater control signal is output to the heater power regulator 26 (S6), the heater power regulator 26 is controlled by the second heater control signal, and T2 becomes the substrate processing temperature WT. The output of the heater 8 is adjusted so that
[0029]
That is, as shown in FIG. 8, until the pure water temperature T1 reaches the rapid temperature rise temperature QT, the first temperature detector 11 having high detection sensitivity and the first temperature optimum for temperature control using the detector 11 are used. Since the heater 8 is controlled using the temperature controller 24, the pure water can be rapidly heated to the rapid temperature rise temperature QT. After reaching QT, the heater 8 is controlled using the second temperature detector 12 having a low detection sensitivity and the second temperature controller 25 that is optimal for signal processing of the detector 12, so that the substrate processing temperature WT It is possible to obtain a pure water temperature that is highly accurate. Accordingly, since the rise time up to the substrate processing temperature WT can be shortened, the operation rate of the substrate processing apparatus can be improved, and wasteful discharge of pure water up to the rise time can be reduced. In addition, since the pure water temperature is adjusted to the substrate processing temperature WT with high accuracy after the substrate processing temperature WT is reached, the quality of the processed substrate can be improved and the yield can be improved by making the substrate processing uniform. Moreover, the optimal temperature controller corresponding to the detection signal form of each temperature detector can be arbitrarily selected from those supplied to the market, and the equipment cost can be reduced.
[0030]
In the embodiment, the first heater control signal and the second heater control signal are output from the first temperature controller 24 and the second temperature controller 25 to the control computer 23, and either heater control is performed under a predetermined condition. The signal is output from the control computer 23 to the heater power regulator 26, but the first heater control signal and the second heater control signal from the first temperature regulator 24 and the second temperature regulator 25 are directly input, A signal selector that outputs one of the control signals to the heater power adjuster 26 in accordance with a selection command from the control computer 23 may be provided. Note that this control method using the signal selector can be similarly applied to temperature control of a second embodiment described later. In this case, the first and second heater control signals correspond to the first and second flow rate control signals, and the heater power regulator corresponds to the operation signal distributor.
[0031]
FIG. 4 is a schematic diagram showing a main configuration of a substrate processing apparatus 1A according to the second embodiment of the present invention, and FIG. 5 is a functional block diagram of the temperature control unit 20A. In these drawings, portions having the same configurations as those of the substrate processing apparatus shown in FIGS. 1 and 2 are denoted by the same reference numerals, description thereof will be simplified or omitted, and different configurations will be mainly described. In FIG. 4, the drainage treatment unit of pure water overflowing from the substrate processing tank 2 is not shown.
[0032]
The hot water supply unit 5A provided in the substrate processing apparatus 1A is connected to a pure water supply source, and is connected to a pure water introduction pipe 32 through which low temperature (room temperature) pure water flows, and to the pure water introduction pipe 32. The high-temperature water pipe 31 provided with a heater 30 for heating pure water flowing through the pure water branch pipe 29 to a certain temperature higher than the substrate processing temperature, the pure water introduction pipe 32 and the high-temperature water pipe 31. And a hot liquid pipe 7 </ b> A for supplying the hot water supply pipe 3 with pure water obtained by joining and mixing the low-temperature pure water and the high-temperature pure water. A high-temperature flow rate adjustment valve 33 is provided downstream of the heater 30 of the high-temperature water pipe 31, and a low-temperature flow rate adjustment valve 34 is provided downstream of the pure water branch pipe 29 of the pure water introduction pipe 32. Has been. Similarly to the first embodiment, the warm liquid pipe 7A includes a first temperature detector with high detection sensitivity, such as a K thermocouple, which detects the temperature of the pure water after flowing in the warm liquid pipe 7A. And the 2nd temperature detector with low detection sensitivity like a platinum resistor is attached. The high temperature flow rate adjusting valve 33 and the low temperature flow rate adjusting valve 34 correspond to the flow rate ratio adjusting means of the present invention.
[0033]
The temperature control unit 20A has basically the same configuration as the temperature control unit 20 of the first embodiment, but the output targets are the high-temperature flow rate adjustment valve 33 and the low-temperature flow rate adjustment valve 34. As shown in FIG. 4, the flow rate adjusting valves 33 and 34 are controlled so that the temperature T1 of pure water detected by the first temperature detector 11 becomes the substrate processing temperature WT input and set via the control computer 23. A first temperature controller 24A that outputs a first flow rate ratio control signal, and a substrate processing temperature WT that is input and set via the control computer 23 with a temperature T2 of pure water detected by the second temperature detector 12. A second temperature controller 25A for outputting a second flow rate control signal for controlling the flow rate adjusting valves 33 and 34, and the first flow rate control selected according to the temperature control program. One signal or the second flow rate control signal and an operation signal distributor 36 which is input through the control computer 23. The operation signal distributor 36 outputs a valve operation signal for controlling the opening degree of each of the flow rate adjusting valves 33 and 34 to the flow rate adjusting valves 33 and 34 so as to obtain a predetermined temperature based on the flow rate control signal. To do.
[0034]
Also in this embodiment, until the pure water temperature T1 reaches the rapid temperature rise temperature QT, the first temperature detector 11 having high detection sensitivity and the first temperature controller optimal for temperature control using the detector 11 are used. Since the flow rate adjusting valves 33 and 34 are controlled using 24A, it is possible to rapidly raise the temperature of the pure water to the rapid temperature rise temperature QT. After reaching QT, the flow rate adjusting valves 33 and 34 are controlled using the second temperature detector 12 having a low detection sensitivity and the second temperature controller 25 that is optimal for the signal processing of the detector 12. It is possible to obtain a pure water temperature that follows the processing temperature WT with high accuracy. Moreover, the optimal temperature controller corresponding to the detection signal form of each temperature detector can be arbitrarily selected from those supplied to the market, and the equipment cost can be reduced.
[0035]
In the above-described embodiment, pure water is introduced from the pure water introduction pipe 32 to the high temperature water pipe 31 through the pure water branch pipe 29. However, a pure water supply line heated to a predetermined temperature in the factory is used. 6, the heated pure water supply source and the high temperature water pipe 31 may be directly connected via the heated pure water introduction pipe 38 as shown in FIG. In this case, the heater 30 may be used when the heated pure water is lower than the substrate processing temperature, and is not necessarily required when the heated pure water is higher than the substrate processing temperature.
[0036]
In the above embodiment, the high-temperature flow rate adjustment valve 33 and the low-temperature flow rate adjustment valve 34 are used as the flow rate adjustment means. However, the high-temperature water pipe 31 and the pure water introduction pipe 32 are joined and connected to the hot liquid pipe 7A. Alternatively, one flow rate adjusting valve having two inlets to which the high temperature water pipe 31 and the pure water introduction pipe 32 are connected and having one outlet to which the hot liquid pipe 7A is connected may be used. In this type of flow rate adjusting valve, the flow rate ratio of the two liquids flowing in is determined by the rotation angle of the valve, so that the operation signal distributor 36 is unnecessary. Also in the above-described embodiment, the operation signal distributor 36 is not necessarily required, and the control computer 23 may output a valve operation signal to the flow rate adjusting valves 33 and 34.
[0037]
FIG. 7 is a schematic diagram showing a main part configuration of a substrate processing apparatus 1B according to the third embodiment of the present invention. In the figure, parts having the same configuration as the substrate processing apparatus shown in FIG. It is attached.
[0038]
The substrate processing apparatus 1B includes a substrate processing tank 2B that performs substrate processing by immersing a substrate in a processing liquid, a recovery tank 41 that recovers a processing liquid that has overflowed from the substrate processing tank 2B, and a recovery tank 41 that collects the processing liquid. A circulating hot liquid pipe 42 that sucks the processed liquid and supplies it to the substrate processing tank 2B. The circulating hot liquid pipe 42 is provided with a circulation pump 43, a heater 8 for heating the processing liquid flowing in the pipe, and a filter 44 in the same order along the direction in which the processing liquid flows. Further, in the substrate processing tank 2B, as in the first embodiment, the temperature of the processing liquid in the tank is detected, such as a first temperature detector 11 having a high detection sensitivity such as a K thermocouple and a platinum resistor. A second temperature detector 12 having a low detection sensitivity is attached. The processing liquid is supplied to the substrate processing tank 2B from a processing liquid supply pipe (not shown), circulated and used for a predetermined time, and then discharged from a waste liquid pipe 46 provided with an on-off valve 45.
[0039]
This substrate processing apparatus 1B is also provided with a temperature control unit 20 that controls the processing liquid flowing through the circulating hot liquid pipe 42 to a predetermined temperature. This temperature control unit has the same configuration as that of the first embodiment. Since there is, description is abbreviate | omitted. However, with respect to the processing liquid for performing the substrate processing, pure water is used in the first embodiment, and a chemical liquid is mainly used in the present embodiment.
[0040]
Also in this embodiment, until the temperature T1 of the processing liquid in the substrate processing tank 1 reaches the rapid temperature rise temperature QT, the first temperature detector 11 with high detection sensitivity and the temperature control using this detector 11 are used. Since the heater 8 is controlled using the optimum first temperature controller 24, the processing liquid can be rapidly heated to the rapid temperature rise temperature QT. After reaching QT, the heater 8 is controlled using the second temperature detector 12 having a low detection sensitivity and the second temperature controller 25 optimal for signal processing of the detector 12, so that the substrate processing temperature WT is set. It is possible to obtain a processing solution temperature that follows high accuracy. Accordingly, since the rise time to the substrate processing temperature WT can be shortened, the operating rate of the substrate processing apparatus can be improved. Further, after reaching the substrate processing temperature WT, the processing liquid temperature is adjusted to the substrate processing temperature WT with high accuracy, so that the processing substrate quality can be improved and the yield can be improved by uniform processing of the substrate. In addition, when using a chemical solution for etching as a processing solution, the amount of processing solution volatilization that occurs when the processing solution exceeds the substrate processing temperature can be suppressed, reducing the amount of processing solution consumption that occurs during prolonged circulation use. Can be planned. Moreover, the optimal temperature controller corresponding to the detection signal form of each temperature detector can be arbitrarily selected from those supplied to the market, and the equipment cost can be reduced.
[0041]
In the first to third embodiments, the temperature difference P from the substrate processing temperature WT is adopted as the rapid temperature rise temperature information for defining the rapid temperature rise temperature QT. However, the rapid temperature rise temperature QT itself may be used as the temperature information. Good. These target temperatures are input and set to the first temperature controller and the second temperature controller via the control computer 23. However, the temperature information is directly input to the first and second temperature controllers. May be. In this case, only the rapid temperature rise temperature QT may be input to the control computer 23 from the input means 21. Further, the processing liquid temperature signal detected by the first temperature detector 11 may be directly input to the control computer 23 without going through the first temperature controller. In addition, the target temperature set in the first temperature controller is not limited to the substrate processing temperature WT as in the above-described embodiment, but may be a rapid temperature rise temperature QT. The QT may be set higher than the WT. it can.
[0042]
Moreover, in the said 1st-3rd embodiment, the substrate processing tank 2,2A which performs a substrate process collectively by immersing a several board | substrate in a process liquid (a pure water is included) as a substrate processing part. Although the example of 2B was shown, the substrate processing tank may process one substrate. Further, the substrate processing unit is not limited to such a substrate processing tank, and for example, a substrate processing may be performed by supplying various processing liquids to the substrate surface while rotating one substrate. The heater 8 and the flow rate adjusting valves 33 and 34 in the first to third embodiments correspond to the temperature adjusting means according to the first aspect of the invention.
[0043]
【The invention's effect】
According to the substrate processing apparatus of the present invention, the temperature of the processing liquid (including pure water) is detected using the first temperature detector having a high detection sensitivity and the second temperature detector having a low detection sensitivity. Until the temperature of the substrate reaches a rapid temperature rise temperature in the vicinity of the substrate processing temperature at which the substrate processing is performed, the first temperature detector is used to control the temperature so that the processing liquid reaches the rapid temperature rise temperature. Since the temperature control is performed using the second temperature detector so that the processing liquid reaches the substrate processing temperature, the processing liquid can be quickly raised to the substrate processing temperature for performing the substrate processing. The operating rate of the apparatus can be improved and the temperature of the processing liquid can be adjusted to the substrate processing temperature with high accuracy after rising to the substrate processing temperature, so that the quality and yield can be improved by improving the substrate processing accuracy. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing a main configuration of a substrate processing apparatus according to a first embodiment.
FIG. 2 is a functional block diagram of a temperature control unit in the first embodiment.
FIG. 3 is a flowchart showing a temperature control procedure.
FIG. 4 is a schematic diagram showing a main configuration of a substrate processing apparatus according to a second embodiment.
FIG. 5 is a functional block diagram of a temperature control unit in the second embodiment.
FIG. 6 is a schematic diagram showing a configuration of main parts of a substrate processing apparatus showing a modification of the second embodiment.
FIG. 7 is a schematic view showing a main configuration of a substrate processing apparatus according to a third embodiment.
FIG. 8 is a temperature waveform diagram showing a temperature adjustment result by a temperature control unit according to the present invention.
FIG. 9 is a schematic diagram showing a main configuration of a conventional substrate processing apparatus.
FIG. 10 is a temperature waveform diagram when temperature is controlled using a temperature detector with high detection sensitivity (A) and when temperature control is performed using a temperature detector with low detection sensitivity (B).
[Explanation of symbols]
1, 1A, 1B substrate processing equipment
2, 2B Substrate processing tank
7, 7A Hot liquid tube
8 Heater
11 First temperature detector
12 Second temperature detector
20, 20A Temperature controller
23 Control computer
24, 24A first temperature controller
25, 25A second temperature controller
31 Hot water pipe
32 Pure water introduction pipe
33 High-temperature flow control valve
34 Low-temperature flow control valve
42 Circulating hot liquid tube

Claims (4)

所定温度に調整された処理液によって基板処理を行う基板処理部と、
前記基板処理部に連通接続され、所定温度に調整された処理液を供給する温液管と、
前記温液管内を流れる処理液を所定温度に調整する温度調整手段とが設けられた基板処理装置であって、
前記温度調整手段の下流側を流れる処理液の温度を検出する検出感度の高い第1温度検出器と、
前記温度調整手段の下流側を流れる処理液の温度を検出する検出感度の低い第2温度検出器と、
前記第1温度検出器によって検出された処理液の温度が基板処理を行う基板処理温度の近傍温度に設定された急速昇温温度未満のときに前記処理液の温度が前記基板処理温度あるいは前記急速昇温温度になるように前記第1温度検出器によって検出された処理液の温度に基づいて前記温度調整手段を制御し、前記処理液の温度が前記急速昇温温度以上になったときに前記第2温度検出器によって検出された処理液の温度が前記基板処理温度になるように前記第2温度検出器によって検出された処理液の温度に基づいて前記温度調整手段を制御する温度制御部を備えた基板処理装置。
A substrate processing unit for performing substrate processing with a processing liquid adjusted to a predetermined temperature;
A hot liquid pipe connected to the substrate processing unit and supplying a processing liquid adjusted to a predetermined temperature;
A substrate processing apparatus provided with a temperature adjusting means for adjusting a processing liquid flowing in the hot liquid pipe to a predetermined temperature;
A first temperature detector with high detection sensitivity for detecting the temperature of the processing liquid flowing downstream of the temperature adjusting means;
A second temperature detector with low detection sensitivity for detecting the temperature of the processing liquid flowing downstream of the temperature adjusting means;
When the temperature of the processing liquid detected by the first temperature detector is less than the rapid temperature increase temperature set near the substrate processing temperature for performing substrate processing, the temperature of the processing liquid is the substrate processing temperature or the rapid temperature. The temperature adjusting means is controlled based on the temperature of the processing liquid detected by the first temperature detector so that the temperature rises, and the temperature of the processing liquid becomes equal to or higher than the rapid temperature rising temperature. A temperature control unit for controlling the temperature adjusting means based on the temperature of the processing liquid detected by the second temperature detector so that the temperature of the processing liquid detected by the second temperature detector becomes the substrate processing temperature; Provided substrate processing apparatus.
所定温度に調整された純水によって基板処理を行う基板処理部と、
前記基板処理部に連通接続され、所定温度に調整された純水を供給する温液管と、
前記温液管内を流れる純水を加熱するヒータとが設けられた基板処理装置であって、
前記ヒータの下流側を流れる純水の温度を検出する検出感度の高い第1温度検出器と、
前記ヒータの下流側を流れる純水の温度を検出する検出感度の低い第2温度検出器と、
前記第1温度検出器によって検出された純水の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記ヒータを制御する第1ヒータ制御信号を出力する第1温度調節器と、
前記第2温度検出器によって検出された純水の温度が前記基板処理温度になるように前記ヒータを制御する第2ヒータ制御信号を出力する第2温度調節器と、
前記第1温度検出器によって検出された純水の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1ヒータ制御信号に基づいて前記ヒータを制御し、前記純水の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号に基づいて前記ヒータを制御する選択制御部を備えた基板処理装置。
A substrate processing unit that performs substrate processing with pure water adjusted to a predetermined temperature;
A hot liquid pipe connected to the substrate processing unit and supplying pure water adjusted to a predetermined temperature;
A substrate processing apparatus provided with a heater for heating pure water flowing in the hot liquid pipe,
A first temperature detector with high detection sensitivity for detecting the temperature of pure water flowing downstream of the heater;
A second temperature detector having a low detection sensitivity for detecting the temperature of pure water flowing downstream of the heater;
A first heater that controls the heater so that the temperature of pure water detected by the first temperature detector becomes a substrate processing temperature for performing substrate processing or a rapid temperature rise set to a temperature close to the substrate processing temperature. A first temperature controller for outputting a control signal;
A second temperature controller for outputting a second heater control signal for controlling the heater so that the temperature of pure water detected by the second temperature detector becomes the substrate processing temperature;
When the temperature of pure water detected by the first temperature detector is lower than the rapid temperature rise temperature, the heater is controlled based on a first heater control signal output from the first temperature controller, and the pure water The substrate processing apparatus provided with the selection control part which controls the said heater based on the 2nd heater control signal output from the said 2nd temperature regulator, when the temperature of water becomes more than the said rapid temperature rising temperature.
所定温度に調整された純水によって基板処理を行う基板処理部と、
高温の純水が流れる高温水管と低温の純水が流れる純水導入管とに連通接続され、前記高温の純水と低温の純水とが合流混合した純水を前記基板処理部に供給する温液管と、
前記高温水管から前記温液管に流入する高温の純水の流量と前記純水導入管から前記温液管に流入する低温の純水の流量との割合を調整する流量割合調整手段とが設けられた基板処理装置であって、
前記高温の純水と低温の純水との混合後の純水の温度を検出する検出感度の高い第1温度検出器と、
前記高温の純水と低温の純水との混合後の純水の温度を検出する検出感度の低い第2温度検出器と、
前記第1温度検出器によって検出された純水の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記流量割合調整手段を制御する第1流量割合制御信号を出力する第1温度調節器と、
前記第2温度検出器によって検出された純水の温度が前記基板処理温度になるように前記流量割合調整手段を制御する第2流量割合制御信号を出力する第2温度調節器と、
前記第1温度検出器によって検出された純水の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1流量割合制御信号に基づいて前記流量割合調整手段を制御し、前記純水の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2流量割合制御信号に基づいて前記流量割合調整手段を制御する選択制御部を備えた基板処理装置。
A substrate processing unit that performs substrate processing with pure water adjusted to a predetermined temperature;
Connected to a high-temperature water pipe through which high-temperature pure water flows and a pure water introduction pipe through which low-temperature pure water flows, and supplies pure water in which the high-temperature pure water and low-temperature pure water are mixed and mixed to the substrate processing unit. A hot liquid tube,
A flow rate ratio adjusting means for adjusting a ratio between a flow rate of high-temperature pure water flowing from the high-temperature water pipe into the hot liquid pipe and a flow rate of low-temperature pure water flowing from the pure water introduction pipe to the hot liquid pipe; A substrate processing apparatus, comprising:
A first temperature detector with high detection sensitivity for detecting the temperature of pure water after mixing the high-temperature pure water and the low-temperature pure water;
A second temperature detector having low detection sensitivity for detecting the temperature of pure water after mixing the high-temperature pure water and the low-temperature pure water;
The flow rate ratio adjusting means is controlled so that the temperature of pure water detected by the first temperature detector becomes a substrate processing temperature for performing substrate processing or a rapid temperature rising temperature set to a temperature near the substrate processing temperature. A first temperature controller for outputting a first flow rate ratio control signal;
A second temperature controller that outputs a second flow rate ratio control signal for controlling the flow rate ratio adjusting means so that the temperature of pure water detected by the second temperature detector becomes the substrate processing temperature;
The flow rate ratio adjusting means is controlled based on a first flow rate control signal output from the first temperature controller when the temperature of pure water detected by the first temperature detector is lower than the rapid temperature rise temperature. And a selection control unit for controlling the flow rate ratio adjusting means based on a second flow rate control signal output from the second temperature controller when the temperature of the pure water is equal to or higher than the rapid temperature rise temperature. Provided substrate processing apparatus.
処理液中に基板を浸漬して基板処理を行う基板処理部と、
前記基板処理部からオーバーフローした処理液を前記基板処理部に循環させて供給する循環温液管と、
該循環温液管内を流れる処理液を加熱するヒータとが設けられた基板処理装置であって、
前記処理液の温度を検出する検出感度の高い第1温度検出器と、
前記処理液の温度を検出する検出感度の低い第2温度検出器と、
前記第1温度検出器によって検出された処理液の温度が基板処理を行う基板処理温度あるいは前記基板処理温度の近傍温度に設定された急速昇温温度になるように前記ヒータを制御する第1ヒータ制御信号を出力する第1温度調節器と、
前記第2温度検出器によって検出された処理液の温度が前記基板処理温度になるように前記ヒータを制御する第2ヒータ制御信号を出力する第2温度調節器と、
前記第1温度検出器によって検出された処理液の温度が前記急速昇温温度未満のときに前記第1温度調節器から出力された第1ヒータ制御信号に基づいて前記ヒータを制御し、前記処理液の温度が前記急速昇温温度以上になったときに前記第2温度調節器から出力された第2ヒータ制御信号に基づいて前記ヒータを制御する選択制御部を備えた基板処理装置。
A substrate processing unit that performs substrate processing by immersing the substrate in a processing solution;
A circulating hot liquid tube that circulates and supplies the processing liquid overflowed from the substrate processing unit to the substrate processing unit;
A substrate processing apparatus provided with a heater for heating the processing liquid flowing in the circulating hot liquid pipe;
A first temperature detector with high detection sensitivity for detecting the temperature of the treatment liquid;
A second temperature detector having a low detection sensitivity for detecting the temperature of the treatment liquid;
A first heater that controls the heater so that the temperature of the processing liquid detected by the first temperature detector becomes a substrate processing temperature for performing substrate processing or a rapid temperature increase set to a temperature in the vicinity of the substrate processing temperature. A first temperature controller for outputting a control signal;
A second temperature controller for outputting a second heater control signal for controlling the heater so that the temperature of the processing liquid detected by the second temperature detector becomes the substrate processing temperature;
Controlling the heater based on a first heater control signal output from the first temperature controller when the temperature of the processing liquid detected by the first temperature detector is lower than the rapid temperature rise temperature; A substrate processing apparatus comprising a selection control unit for controlling the heater based on a second heater control signal output from the second temperature controller when the temperature of the liquid becomes equal to or higher than the rapid temperature rise temperature.
JP33513398A 1998-11-26 1998-11-26 Substrate processing equipment Expired - Fee Related JP3739952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33513398A JP3739952B2 (en) 1998-11-26 1998-11-26 Substrate processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33513398A JP3739952B2 (en) 1998-11-26 1998-11-26 Substrate processing equipment

Publications (2)

Publication Number Publication Date
JP2000164554A JP2000164554A (en) 2000-06-16
JP3739952B2 true JP3739952B2 (en) 2006-01-25

Family

ID=18285147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33513398A Expired - Fee Related JP3739952B2 (en) 1998-11-26 1998-11-26 Substrate processing equipment

Country Status (1)

Country Link
JP (1) JP3739952B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4731372B2 (en) * 2006-03-28 2011-07-20 大日本スクリーン製造株式会社 Substrate processing apparatus schedule creation method and program thereof
US11410861B2 (en) 2017-02-15 2022-08-09 Tokyo Electron Limited Substrate liquid processing apparatus
JP6999392B2 (en) * 2017-02-15 2022-01-18 東京エレクトロン株式会社 Substrate liquid processing equipment

Also Published As

Publication number Publication date
JP2000164554A (en) 2000-06-16

Similar Documents

Publication Publication Date Title
JP2007085582A (en) Operating method of electric water heater
JP3739952B2 (en) Substrate processing equipment
JPH0337111B2 (en)
JP4104805B2 (en) Heat pump water heater
US7744699B2 (en) Substrate treating apparatus and method
JP2001217219A (en) Method and device for treating liquid
JP3860353B2 (en) Substrate processing equipment
JP2002140119A (en) Work temperature controller
JP3810306B2 (en) Abnormality diagnosis method for bath return temperature sensor
KR200413517Y1 (en) Water supply apparatus for a mixer
JPH08170807A (en) Steam heating equipment
JP2005134028A (en) Storage type water heater
JP2861268B2 (en) Hot water mixing control device of washing machine
KR20110062525A (en) Apparatus and method for controlling temperature, and chemical supply apparatus with the same
JP2001263812A (en) Water heater
KR100790719B1 (en) Chemical Bath Controllable Temperature and Its Temperature Control Method
JPH04320730A (en) Cold and hot water feeder
JPH05115680A (en) Supply method of water in bath tub to washing machine
JPH01222117A (en) Bath heater with hot water supplying device
JP3568884B2 (en) Automatic water heater
JP3761981B2 (en) Substrate processing apparatus and substrate processing method
JP2000274810A (en) Full automatic bath hot water supply apparatus
JP2006329542A (en) Bath device
JPH09126546A (en) One-boiler/two-path type hot water supply system
JPH06180144A (en) Method of controlling bathwater filling for automatic bath heater

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees