JP3739559B2 - Method for determining the service life of immersion nozzles for continuous casting - Google Patents

Method for determining the service life of immersion nozzles for continuous casting Download PDF

Info

Publication number
JP3739559B2
JP3739559B2 JP02643198A JP2643198A JP3739559B2 JP 3739559 B2 JP3739559 B2 JP 3739559B2 JP 02643198 A JP02643198 A JP 02643198A JP 2643198 A JP2643198 A JP 2643198A JP 3739559 B2 JP3739559 B2 JP 3739559B2
Authority
JP
Japan
Prior art keywords
hollow chamber
erosion
continuous casting
nozzle
powder line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02643198A
Other languages
Japanese (ja)
Other versions
JPH11207447A (en
Inventor
利行 室井
和己 小栗
満 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP02643198A priority Critical patent/JP3739559B2/en
Publication of JPH11207447A publication Critical patent/JPH11207447A/en
Application granted granted Critical
Publication of JP3739559B2 publication Critical patent/JP3739559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造においてタンディシュからモールド内へ溶鋼を鋳込むとき溶鋼が空気に触れて酸化したり、溶鋼が飛散するのを防止するため、またモールドパウダーが溶鋼中に巻き込まれるのを防止するためタンディッシュの排出孔に取付けて使用される連続鋳造用浸漬ノズルの耐用寿命の判定方法に関する。
【0002】
【従来の技術】
連続鋳造用浸漬ノズルの本体1は図4に例示するように、ノズル内孔2と吐出孔3が設けられ、その材質にAl23−SiO2−Cから成る材質を用いると共に、モールド内の溶鋼4の酸化防止、スラブ半凝固部とモールド間の潤滑、抜熱制御等の目的で投入されるモールドパウダー5と接触する外表面のパウダーライン部6にモールドパウダー5に対する耐蝕性の高いZrO2−C材質層7を形成した構造のものが主流となっている。
このような浸漬ノズル1では、使用中とくにパウダーライン部6がアルカリ成分や弗化物を含むモールドパウダー5によって激しく溶損侵食されるので、ノズル使用後、パウダーライン部6の肉厚の減少を測定して溶損速度を算出し、この算出結果から浸漬ノズル1の耐用寿命を判定している。
【0003】
【発明が解決しようとする課題】
しかしながら、鋳造速度や鋳造温度の変化、モールドパウダー5の種類の変更、モールド湯面の変動等、連続鋳造における各種操業条件の変化に起因して浸漬ノズル1のパウダーライン部6が予測に反する異常溶損を来すことがあり、パウダーライン部6の厚みの測定に基づく推定では高精度に浸漬ノズル1の耐用寿命を判定することは困難であった。
本発明はかかる問題点に鑑み、連続鋳造用浸漬ノズルの耐用寿命を高精度に判定できる方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
請求項1に記載の発明は連続鋳造用浸漬ノズルの耐用寿命判定方法であって、ノズル本体の内部にノズル内孔を囲む環状の中空室を区画形成し、ノズル本体外部から前記中空室に不活性ガスを供給し、連続鋳造中にノズル本体のパウダーライン部の溶損浸食が進行して中空室とパウダーライン部外表面間の肉厚が薄くなるために生ずる中空室の不活性ガスの溶損浸食部からの漏出による中空室の圧力の低下叉は中空室に供給される不活性ガスの流量増加に基づいて前記中空室とパウダーライン部外表面間の肉厚の減少を推定することを特徴とする。
【0005】
【発明の作用・効果】
ノズル本体を構成するAl23−SiO2−C等の材質やパウダーライン部を構成するZrO2−C等の材質には溶鋼に対する耐蝕性を高めるため低通気率のもの、例えば通気率が1.0×10-3〜10-5darcyの材質が用いられるので、中空室に供給された不活性ガスがノズル本体内部の気孔を通って中空室の外部に漏出することは殆どない。従って、浸漬ノズルの使用開始当初に中空室の圧力が低下したり、中空室へ供給される不活性ガスの流量が増加することはない。
しかし、連続鋳造中にノズル本体のパウダーライン部の溶損侵食が進行して中空室とパウダーライン部外表面の間の肉厚が薄くなると、中空室の不活性ガスが溶損侵食部から漏出するので、中空室の圧力が低下したり中空室へ供給される不活性ガスの流量が増加する。
さらに、パウダーライン部の溶損侵食が進行してノズル本体の外表面から中空室まで達すると、中空室の圧力が急激に低下し、流量も急増する。
このように、パウダーライン部の溶損侵食の進行に伴って中空室の圧力が低下したり、中空室へ供給される不活性ガスの流量が増加するので、圧力低下または流量増加を検知し、それに基づいてパウダーライン部の溶損侵食の状態を推定することにより、連続鋳造の操業条件の違いに拘らず、浸漬ノズルの耐用寿命を高精度に判定することが可能となる。
【0006】
【発明の実施の形態】
以下に本発明を図面に基づき説明するに、図1には本発明の一実施形態に係る連続鋳造用浸漬ノズルの耐用寿命判定方法が模式的に示されている。当該判定方法では、図示の構造を有する浸漬ノズルが使用される。この浸漬ノズルの本体10はAl23−SiO2−C材質から成り、内部にノズル内孔11と吐出口12が形成されている。溶鋼13の湯面に投入したモールドパウダー14や溶融スラグと接触するノズル本体10の外表面のパウダーライン部15にはモールドパウダー14に対する耐蝕性を高めるためにZrO2−C材質層15Aが形成されている。Al23−SiO2−C材質及びZrO2−C材質にはいずれも通気率が1.0×10-3〜10-5darcyのものが使用されている。
【0007】
ノズル本体10の内部には内孔11を囲む環状の中空室16が区画形成されている。中空室16の下部はパウダーライン部15を形成するZrO2−C材質層15Aに隣接するように設けられている。またノズル本体10には中空室16と本体外部を連通する通孔17が形成され、該通孔17に鉄パイプ18が接続されている。気密保持のため鉄パイプ18と通孔17の内壁の間にモルタル19を充填し、環状の鉄皮20で通孔17の外側開口端を被覆している。
鉄パイプ18は不活性ガスを充填したボンベ21にフレキシブルホース22を介して接続され、ボンベ21に圧力計23と流量計24が付設されている。
【0008】
浸漬ノズル10の耐用寿命を判定するには、操業中、ボンベ21から不活性ガスを中空室16へ供給し、中空室16の圧力の低下叉は中空室16へ供給される不活性ガスの流量の増加を圧力計23及び流量計24で検知する。
ノズル本体10の材質及びパウダーライン部15の材質はいずれも低通気率のものを使用しているので、浸漬ノズル10の使用開始当初は中空室16の不活性ガスが外部へ漏出することは殆どない。従って、圧力計23及び流量計24の指針は変化しない。
操業中にノズル本体10のパウダーライン部15が溶損侵食され、図2に模式的に示すように中空室16とパウダーライン部15外表面の間の肉厚が薄くなると、ボンベ21から供給された中空室16の不活性ガスが溶損侵食部から漏出するので、中空室16の圧力が低下したり中空室16へ供給される不活性ガスの流量が増加する。
さらに、パウダーライン部15の溶損侵食が進行し、図3に模式的に示すようにノズル本体10の外表面から中空室16まで達すると、中空室16の圧力が急激に低下し、流量も急増する。
このように、パウダーライン部15の溶損侵食の進行に伴って中空室16の圧力が低下したり、中空室16へ供給される不活性ガスの流量が増加するので、中空室16のノズル本体10外表面からの深さやノズル10使用開始当初に中空室16へ供給するガス圧力を実験等に基づいて適切に設定しておき、中空室16の圧力低下や流量増加を圧力計23や流量計24の指針で読み取ってパウダーライン部15の溶損の状態を推定し、浸漬ノズル10の耐用寿命を判定する。
例えば、浸漬ノズル10の使用開始当初に1kg/cm2であった圧力計23の指示が、溶損侵食に伴うガス漏出で0.3kg/cm2まで低下したときに耐用寿命の終わりが近いと判断して浸漬ノズル10の交換の準備を行ったり、あるいは溶損侵食が中空室16まで達して圧力計の指示が0になったとき、浸漬ノズル10が安全使用の限界に至ったものと判定して、浸漬ノズル10を交換する。
【0009】
本実施形態に係る浸漬ノズルの耐用寿命判定方法は以上の通りであって、圧力室16の圧力低下叉は流量増加を圧力計23叉は流量計24の指針から読み取ってパウダーライン部15の溶損の状態を推定するので、操業中でも正確に浸漬ノズル10の安全な使用限界を判別することができ、操業の安全性が向上する。
なお、本実施形態ではボンベに付設した圧力計や流量計を観察して溶損侵食の状態を推定しているが、中空室の圧力低下や流量増加を自動的に記録して点検したり、所定レベルの圧力低下や流量増加を検知して警報を発生するように構成すれば、より安全性が向上する。
【図面の簡単な説明】
【図1】 本発明の一実施形態に懸かる連続鋳造用浸漬ノズルの耐用寿命判定方法を示す説明図である。
【図2】 同耐用寿命判定方法に用いる浸漬ノズルの主要部の拡大断面図である。
【図3】 同耐用寿命判定方法に用いる浸漬ノズルの主要部の拡大断面図である。
【図4】 従来の連続鋳造用浸漬ノズルを示す断面図である。
【符号の説明】
10…連続鋳造用浸漬ノズル、11…内孔、14…モールドパウダー、15…パウダーライン部、16…中空室、21…不活性ガスボンベ、23…圧力計、24…流量計。
[0001]
BACKGROUND OF THE INVENTION
The present invention prevents molten steel from being oxidized by contact with air or molten steel when casting molten steel from a tundish into a mold in continuous casting, and also prevents mold powder from being caught in molten steel. Therefore, the present invention relates to a method for determining the useful life of a continuous casting immersion nozzle used by being attached to a tundish discharge hole.
[0002]
[Prior art]
As shown in FIG. 4, the main body 1 of the continuous casting immersion nozzle is provided with a nozzle inner hole 2 and a discharge hole 3, and a material made of Al 2 O 3 —SiO 2 —C is used as the material, and ZrO, which has high corrosion resistance to the mold powder 5 in the powder line portion 6 on the outer surface that comes into contact with the mold powder 5 introduced for the purpose of preventing oxidation of the molten steel 4, lubrication between the semi-solidified portion of the slab and the mold, and controlling heat removal. A structure in which a 2- C material layer 7 is formed is the mainstream.
In such a submerged nozzle 1, since the powder line portion 6 is severely eroded and eroded by the mold powder 5 containing an alkali component or fluoride during use, the reduction in the thickness of the powder line portion 6 is measured after the nozzle is used. Thus, the melting rate is calculated, and the useful life of the immersion nozzle 1 is determined from the calculation result.
[0003]
[Problems to be solved by the invention]
However, the powder line portion 6 of the immersion nozzle 1 is contrary to prediction due to changes in various operating conditions in continuous casting, such as changes in casting speed and casting temperature, changes in the type of mold powder 5 and changes in the mold surface. It is difficult to determine the service life of the immersion nozzle 1 with high accuracy by estimation based on the measurement of the thickness of the powder line portion 6 in some cases.
The present invention has been made in view of such a problem, and an object thereof is to provide a method capable of determining the service life of a continuous casting immersion nozzle with high accuracy.
[0004]
[Means for Solving the Problems]
The invention according to claim 1 is a method for determining the service life of a continuous casting immersion nozzle, in which an annular hollow chamber surrounding a nozzle inner hole is defined in the nozzle body, and the hollow chamber is not formed outside the nozzle body. When the active gas is supplied and the erosion erosion of the powder line part of the nozzle body progresses during continuous casting and the thickness between the hollow chamber and the outer surface of the powder line part becomes thin, dissolution of the inert gas in the hollow chamber occurs. The decrease in the pressure between the hollow chamber and the outer surface of the powder line is estimated based on the decrease in the pressure of the hollow chamber due to leakage from the damaged portion or the increase in the flow rate of the inert gas supplied to the hollow chamber. Features.
[0005]
[Operation and effect of the invention]
A material such as Al 2 O 3 —SiO 2 —C constituting the nozzle body and a material such as ZrO 2 —C constituting the powder line portion have a low air permeability, for example, an air permeability, in order to improve corrosion resistance against molten steel. Since a material of 1.0 × 10 −3 to 10 −5 darcy is used, the inert gas supplied to the hollow chamber hardly leaks out of the hollow chamber through the pores inside the nozzle body. Therefore, the pressure of the hollow chamber does not decrease at the beginning of use of the immersion nozzle, and the flow rate of the inert gas supplied to the hollow chamber does not increase.
However, if the erosion of the powder line part of the nozzle body progresses during continuous casting and the thickness between the hollow chamber and the outer surface of the powder line part becomes thin, the inert gas in the hollow chamber leaks from the erosion part. As a result, the pressure in the hollow chamber decreases or the flow rate of the inert gas supplied to the hollow chamber increases.
Furthermore, when the erosion erosion of the powder line portion proceeds and reaches the hollow chamber from the outer surface of the nozzle body, the pressure of the hollow chamber is rapidly decreased and the flow rate is also rapidly increased.
Thus, the pressure of the hollow chamber decreases with the progress of erosion erosion of the powder line part, or the flow rate of the inert gas supplied to the hollow chamber increases, so the pressure drop or flow rate increase is detected, By estimating the state of erosion and erosion of the powder line portion based on this, it becomes possible to determine the service life of the immersion nozzle with high accuracy regardless of the operating conditions of continuous casting.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 schematically shows a service life determination method for a continuous casting immersion nozzle according to an embodiment of the present invention. In the determination method, an immersion nozzle having the illustrated structure is used. The main body 10 of the immersion nozzle is made of an Al 2 O 3 —SiO 2 —C material, and has a nozzle inner hole 11 and a discharge port 12 formed therein. A ZrO 2C material layer 15 A is formed on the powder line portion 15 on the outer surface of the nozzle body 10 that comes into contact with the molten mold slag 14 and the molten mold slag 14, in order to improve the corrosion resistance against the mold powder 14. ing. As the Al 2 O 3 —SiO 2 —C material and the ZrO 2 —C material, those having an air permeability of 1.0 × 10 −3 to 10 −5 darcy are used.
[0007]
An annular hollow chamber 16 surrounding the inner hole 11 is defined in the interior of the nozzle body 10. The lower portion of the hollow chamber 16 is provided adjacent to the ZrO 2C material layer 15 A forming the powder line portion 15. The nozzle body 10 is formed with a through hole 17 that communicates the hollow chamber 16 with the outside of the main body, and an iron pipe 18 is connected to the through hole 17. A mortar 19 is filled between the inner wall of the iron pipe 18 and the through-hole 17 for airtight maintenance, and the outer open end of the through-hole 17 is covered with an annular iron skin 20.
The iron pipe 18 is connected to a cylinder 21 filled with an inert gas via a flexible hose 22, and a pressure gauge 23 and a flow meter 24 are attached to the cylinder 21.
[0008]
In order to determine the service life of the immersion nozzle 10, during operation, an inert gas is supplied from the cylinder 21 to the hollow chamber 16, and the pressure in the hollow chamber 16 decreases or the flow rate of the inert gas supplied to the hollow chamber 16. Is detected by the pressure gauge 23 and the flow meter 24.
Since the material of the nozzle body 10 and the material of the powder line portion 15 are both low-permeability materials, the inert gas in the hollow chamber 16 hardly leaks to the outside at the beginning of use of the immersion nozzle 10. Absent. Therefore, the guidelines for the pressure gauge 23 and the flow meter 24 do not change.
When the powder line portion 15 of the nozzle body 10 is melted and eroded during operation and the wall thickness between the hollow chamber 16 and the outer surface of the powder line portion 15 is reduced as schematically shown in FIG. Further, since the inert gas in the hollow chamber 16 leaks from the erosion part, the pressure in the hollow chamber 16 decreases or the flow rate of the inert gas supplied to the hollow chamber 16 increases.
Furthermore, when the erosion erosion of the powder line portion 15 progresses and reaches the hollow chamber 16 from the outer surface of the nozzle body 10 as schematically shown in FIG. 3, the pressure in the hollow chamber 16 rapidly decreases and the flow rate also increases. Increase rapidly.
As described above, the pressure of the hollow chamber 16 decreases or the flow rate of the inert gas supplied to the hollow chamber 16 increases as the erosion erosion of the powder line portion 15 progresses. The depth from the outer surface 10 and the gas pressure supplied to the hollow chamber 16 at the beginning of use of the nozzle 10 are appropriately set based on experiments and the like. The life of the immersion nozzle 10 is determined by estimating the state of melting of the powder line portion 15 by reading with 24 pointers.
For example, instruction of the beginning to 1 kg / cm 2 at a pressure gauge 23 of the immersion nozzle 10, when the near end of its useful life when the drop in gas leakage due to corrosion erosion to 0.3 kg / cm 2 Judgment is made for replacement of the immersion nozzle 10, or when the erosion reaches the hollow chamber 16 and the pressure gauge indicates 0, it is determined that the immersion nozzle 10 has reached the limit of safe use. Then, the immersion nozzle 10 is replaced.
[0009]
The method for determining the service life of the submerged nozzle according to the present embodiment is as described above. The pressure drop in the pressure chamber 16 or the increase in the flow rate is read from the pointer of the pressure gauge 23 or the flow meter 24 to dissolve the powder line 15. Since the state of loss is estimated, the safe use limit of the immersion nozzle 10 can be accurately determined even during operation, and the safety of operation is improved.
In this embodiment, the state of erosion erosion is estimated by observing the pressure gauge and flow meter attached to the cylinder, but the pressure drop and flow rate increase in the hollow chamber are automatically recorded and checked, If it is configured to generate a warning by detecting a pressure drop or flow rate increase at a predetermined level, the safety is further improved.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a method for determining a useful life of an immersion nozzle for continuous casting according to an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of a main part of an immersion nozzle used in the same service life determination method.
FIG. 3 is an enlarged cross-sectional view of a main part of an immersion nozzle used in the same service life determination method.
FIG. 4 is a cross-sectional view showing a conventional continuous casting immersion nozzle.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Submerged nozzle for continuous casting, 11 ... Inner hole, 14 ... Mold powder, 15 ... Powder line part, 16 ... Hollow chamber, 21 ... Inert gas cylinder, 23 ... Pressure gauge, 24 ... Flow meter.

Claims (1)

ノズル本体の内部にノズル内孔を囲む環状の中空室を区画形成し、ノズル本体外部から前記中空室に不活性ガスを供給し、連続鋳造中にノズル本体のパウダーライン部の溶損浸食が進行して中空室とパウダーライン部外表面間の肉厚が薄くなるために生ずる中空室の不活性ガスの溶損浸食部からの漏出による中空室の圧力の低下叉は中空室に供給される不活性ガスの流量増加に基づいて前記中空室とパウダーライン部外表面間の肉厚の減少を推定することを特徴とする連続鋳造用浸漬ノズルの耐用寿命判定方法。An annular hollow chamber surrounding the nozzle bore is formed inside the nozzle body, inert gas is supplied to the hollow chamber from the outside of the nozzle body, and erosion erosion of the powder line portion of the nozzle body proceeds during continuous casting As a result, since the thickness between the hollow chamber and the outer surface of the powder line portion becomes thin , the pressure in the hollow chamber decreases due to leakage of the inert gas in the hollow chamber from the erosion-eroded portion, or the pressure supplied to the hollow chamber does not increase. A method for determining the useful life of a continuous casting immersion nozzle, wherein a decrease in thickness between the hollow chamber and the outer surface of the powder line is estimated based on an increase in the flow rate of the active gas.
JP02643198A 1998-01-22 1998-01-22 Method for determining the service life of immersion nozzles for continuous casting Expired - Fee Related JP3739559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02643198A JP3739559B2 (en) 1998-01-22 1998-01-22 Method for determining the service life of immersion nozzles for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02643198A JP3739559B2 (en) 1998-01-22 1998-01-22 Method for determining the service life of immersion nozzles for continuous casting

Publications (2)

Publication Number Publication Date
JPH11207447A JPH11207447A (en) 1999-08-03
JP3739559B2 true JP3739559B2 (en) 2006-01-25

Family

ID=12193333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02643198A Expired - Fee Related JP3739559B2 (en) 1998-01-22 1998-01-22 Method for determining the service life of immersion nozzles for continuous casting

Country Status (1)

Country Link
JP (1) JP3739559B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1716945A1 (en) * 2005-04-26 2006-11-02 Vesuvius Crucible Company Immersed pour tube, installation comprising it, process of manufacture and use thereof.
JP4824969B2 (en) * 2005-08-19 2011-11-30 株式会社神戸製鋼所 Nozzle refractory management method

Also Published As

Publication number Publication date
JPH11207447A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP4814559B2 (en) Container for molten metal, use of the container and method for determining the interface layer
CN112059127A (en) Continuous temperature measuring device for tundish molten steel
CN113260471B (en) Stopper rod for continuous casting and continuous casting method
JP3739559B2 (en) Method for determining the service life of immersion nozzles for continuous casting
WO2018108789A1 (en) Stopper equipped with an integrated slag detection device
JP3739558B2 (en) Method for determining the service life of long nozzles for continuous casting
JP5741314B2 (en) Immersion nozzle and continuous casting method of steel using the same
JP4815821B2 (en) Continuous casting method of aluminum killed steel
JP2019098394A (en) Method and device for evaluating quality of steel
JPH0330461B2 (en)
KR101516785B1 (en) Submerged entry nozzle
JP2795157B2 (en) Continuous casting method
CN215033573U (en) Prevent inhaling anti erosion immersion nozzle of gas
KR20140129902A (en) Continuous casting nozzle and method for controllign thereof
JP3449169B2 (en) Method for measuring molten steel flow velocity in casting mold and detection rod for measuring molten steel flow velocity used in this method
US20050200056A1 (en) Apparatus and method for determining fluid depth
JP4044649B2 (en) Porous plug
KR20090078125A (en) Apparatus for sensing a crack of submerged entry nozzle
JPH0133258Y2 (en)
JP3412955B2 (en) Continuous casting method
KR200307661Y1 (en) Tundish upper nozzle for anti-sticking type of interposition material
KR101779987B1 (en) Sampling device and complex probe including the same
JPH0599726A (en) Method for detecting level of molten metal in tundish
JPH0230122Y2 (en)
JP2001025847A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees