JP3738179B2 - Internal intermediate pressure type multi-stage compression rotary compressor - Google Patents

Internal intermediate pressure type multi-stage compression rotary compressor Download PDF

Info

Publication number
JP3738179B2
JP3738179B2 JP2000294763A JP2000294763A JP3738179B2 JP 3738179 B2 JP3738179 B2 JP 3738179B2 JP 2000294763 A JP2000294763 A JP 2000294763A JP 2000294763 A JP2000294763 A JP 2000294763A JP 3738179 B2 JP3738179 B2 JP 3738179B2
Authority
JP
Japan
Prior art keywords
cylinder
discharge
support member
cover
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000294763A
Other languages
Japanese (ja)
Other versions
JP2002098083A (en
Inventor
俊行 江原
晴久 山崎
悟 今井
昌也 只野
淳志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000294763A priority Critical patent/JP3738179B2/en
Publication of JP2002098083A publication Critical patent/JP2002098083A/en
Application granted granted Critical
Publication of JP3738179B2 publication Critical patent/JP3738179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、第1の回転圧縮要素で圧縮されたCO2冷媒ガスを中間圧の密閉容器内に吐出し、この中間圧の冷媒ガスを第2の回転圧縮要素で圧縮する内部中間圧型多段圧縮式ロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来この種内部中間圧型多段圧縮式ロータリコンプレッサでは、高低圧差の大きい冷媒、例えば炭酸ガスの一例としての二酸化炭素(CO2)を冷媒として用いた場合、冷媒圧力は高圧となる第2の回転圧縮要素で約100kg/Cm2Gに達し、一方、低段側となる第1の回転圧縮要素で約30kg/Cm2Gとなる。密閉容器内に設けられた第2の回転圧縮要素が高圧になると、第2の回転圧縮要素の吐出消音室と電動要素間を仕切るカバーが電動要素側に変形してしまう。それに対して、第1の回転圧縮要素で圧縮されたCO2冷媒ガスを中間圧の密閉容器内に吐出して中間圧にしカバーの変形を防止していた。
【0003】
【発明が解決しようとする課題】
しかしながら、CO2冷媒ガスを中間圧の密閉容器内に吐出し、この中間圧の冷媒ガスを第2の回転圧縮要素で圧縮する内部中間圧型多段圧縮式ロータリコンプレッサにおいては、第2の回転圧縮要素は極めて高圧となる。このため、電動要素側の密閉容器内を中間圧にしてもまだ第2の回転圧縮要素の吐出消音室のカバーが変形してしまう問題があった。
【0004】
また、カバーの鋼製が弱いと第2の回転圧縮要素のシリンダ内部と連通する吐出消音室が高圧になった場合、吐出消音室からリークした冷媒ガスを再圧縮して入力上昇を引き起こしてしまう不都合もあった。
【0005】
本発明は、係る従来技術の課題を解決するために成されたものであり、カバーの重量を最小限に抑えつつカバーの剛性を高め変形を抑えることができる内部中間圧型多段圧縮式ロータリコンプレッサを提供することを目的とする。
【0006】
【課題を解決するための手段】
即ち、本発明の内部中間圧型多段圧縮式ロータリコンプレッサは、密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、第1の回転圧縮要素で圧縮されたCO2冷媒ガスを密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを第2の回転圧縮要素で圧縮するものであって、各回転圧縮要素をそれぞれ構成するシリンダ及び電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを兼用する支持部材と、各支持部材に形成され、各シリンダ内部とそれぞれ連通する吐出消音室と、各支持部材にそれぞれ取り付けられ、各吐出消音室の開口部をそれぞれ閉塞するカバーとを備え、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーは肉厚部と肉薄部とから構成されており、肉厚部を吐出消音室に対応させたものである。
【0007】
本発明によれば、各回転圧縮要素をそれぞれ構成するシリンダ及び電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを兼用する支持部材と、各支持部材に形成され、各シリンダ内部とそれぞれ連通する吐出消音室と、各支持部材にそれぞれ取り付けられ、各吐出消音室の開口部をそれぞれ閉塞するカバーとを備えており、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーは肉厚部と肉薄部とから構成されており、肉厚部を吐出消音室に対応させたので、吐出消音室に対応するカバーの肉厚部の変形強度を大幅に増強することが可能となる。これにより、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室が高圧になった場合でもカバーの変形を阻止することが可能となる。従って、カバーの剛性を大幅に高められるので、吐出消音室からの冷媒ガスのリークを再圧縮して入力上昇を引き起こしてしまうなどの不都合を未然に防止することができ、内部中間圧型多段圧縮式ロータリコンプレッサの性能を大幅に向上することができるようになるものである。
【0008】
特に、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーの、シリンダ開口面に対応する部分を肉厚部とし、他の部分は肉薄部としているので、カバー全体を厚くすることにより増大してしまう重量を低減させている。従って、カバーの重量を最小限に抑えつつカバーの剛性を高め変形を抑えることができるようになるものである。
【0009】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の内部中間圧型多段圧縮式ロータリコンプレッサの実施例として第1及び第2の圧縮要素32、34を備えた2段圧縮式コンプレッサ10の縦断側面図、図2は同図1の2段圧縮式コンプレッサ10の平面図をそれぞれ示している。図中10は内部中間圧型多段圧縮式ロータリコンプレッサとしての2段圧縮式コンプレッサで、この2段圧縮式コンプレッサ10は鋼板からなる円筒状の密閉容器12と、この密閉容器12の内部空間に配置収納された電動要素14及びこの電動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる回転圧縮機構部18にて構成されている。
【0010】
密閉容器12は、底部をオイル溜とし、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞するお椀状の蓋体12Bとの2部材で構成され、かつこの蓋体12Bには電動要素14に電力を供給するターミナル端子(配線を省略)20を設けている。
【0011】
電動要素14は、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隙を設けて挿入配置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。
【0012】
ステータ22は、リング状の電磁鋼板を積層した積層体26と、この積層体26に巻装されたステータコイル28を有している。また、ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、両者により交流モータを構成している。なお、交流モータの代わりにロータに永久磁石を埋設したDCモータを使用することもできる。
【0013】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。すなわち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置されたシリンダ38、シリンダ40と、この上下シリンダ38、40内を180度の位相差を有して回転軸16に設けた上下偏心部42、44に嵌合されて偏心回転する上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側38A、40Aと高圧室側38B、40Bに区画する後述する上下ベーン50、52と、上下シリンダ38、40の各開口面を閉塞して回転軸16の軸受けを兼用する支持部材(上部支持部材54と下部支持部材56)で構成される。
【0014】
上部支持部材54および下部支持部材56には、上下シリンダ38、40の内部と適宜連通する吸込通路58、60と吐出消音室62、64が形成されると共に、これら両吐出消音室62、64の開口部はそれぞれカバーにより閉塞される。即ち、吐出消音室62はカバーとしての上部カバー66、吐出消音室64はカバーとしての下部カバー68にて閉塞される。尚、吐出消音室64と密閉容器12内で上部カバー66の電動要素14側は連通路63にて連通されている。
【0015】
上部カバー66は第2の回転圧縮要素34のシリンダ38内部と連通する吐出消音室62の開口部を閉塞して、密閉容器12内を吐出消音室62と電動要素14側とを仕切る。該上部カバー66は肉厚部66Aと、この肉厚部66A以外の肉薄部66Bとから構成している(図3、図4)。該肉厚部66Aは肉薄部66Bより電動要素14側に突出させて、肉厚部66Aの変形強度を肉薄部66Bより増強している。
【0016】
即ち、上部カバー66は高圧側(第2の回転圧縮要素34)の吐出消音室62に対応する部分(肉厚部66A)の厚みを、他の部分(肉薄部66B)よりも厚くして、吐出消音室62が高圧になった場合、上部カバー66が電動要素14側へ変形してしまうのを防止し、必要最小限の肉厚化により2段圧縮式コンプレッサ10の重量を低減させている。そして、上部カバー66に肉厚部66Aを設けることにより、上部カバー66の剛性を大幅に高め、吐出消音室62と電動要素14側との圧力差が大きい場合でも、上部カバー66の面積の大きい肉厚部66Aが変形してしまうのを防止している。また、上部カバー66の剛性を大幅に高めることにより、吐出消音室62からの冷媒ガスのリークを再圧縮して入力上昇を引き起こしてしまうなどの不都合を未然に防止している。
【0017】
また、上部カバー66にはこの上部カバー66を固定するための複数のネジ穴67Aを設けている。該ネジ穴67Aは、上部カバー66を吐出消音室62側に凹陥する段差を備えた段差部67に形成されている。即ち、上部カバー66には肉厚部66Aより吐出消音室62側に低く凹陥形成した段差部67が設けられ、この段差部67にネジ穴67Aが設けられている。この段差部67は後述する取付ボルト78の頭部と略同一とされている。係る、上部カバー66に段差部67を設けることにより、取付ボルト78が肉厚部66Aより突出してしまうのを防止している。尚、段差部67は肉厚部66Aより吐出消音室62側に薄く形成しており、肉薄部66Bと段差部67とが同じ厚さでも差し支えない。また、取付ボルト78の頭部が肉厚部66Aより僅かならば突出しても差し支えない。これにより、電動要素14との絶縁距離は、従来と同様に設計でき、2段圧縮式コンプレッサ10全体の大きさも大きくならずに済む。
【0018】
前記上部支持部材54、下部支持部材56にはシリンダ38、40内と吐出消音室62、64(凹陥部121、131)とを連通する吐出ポート39、41が設けられている(図5、図6、図7、図8)。吐出ポート39、41の吐出消音室62、64側は所定の形状に凹陥した凹陥部121、131が形成され、その凹陥部121、131内に吐出ポート39、41が開口している。この吐出ポート39、41は後述するベーンに略接して設けられると共に、吐出ポート39、41周囲には吐出ポート39、41より大きな径の弁座39A、41Aが設けられている。
【0019】
弁座39A、41Aは凹陥部121、131(吐出消音室62、64)側に少許突出して設けられており、この弁座39A、41Aには縦長略矩形状の金属板からなる弾性部材にて構成された弁体122、132の一側が当接して密着する(、図6、図8、図11)。弁体122、132には弁体122、132と略同形状のストッパー123、133が二重に設けられており、弁体122、132とストッパー123、133の他側は凹陥部121、131内に吐出ポート39、41と所定の間隔を存して設けられたネジ穴125、135にネジ124、134で固定される。
【0020】
該ストッパー123、133は弁体122、132より厚くて強度を有する材質で、他側より一側(弁座39A、41A側)に行くに従って弁体122、132より離間して行く湾曲形状を呈している。即ち、ストッパー123、133は弁体122、132の一側が弁座39A、41Aより弾性離間した際、弁体122、132が弾性限界を超えて変形してしまうのを防止している。また、弁体122、132は、吐出ポート39、41の周囲に形成された弁座39A、41Aに一定の付勢力で当接して弾性力で吐出ポート39、41を閉塞すると共に開閉する。
【0021】
また、吐出ポート39、41は図5、図6、図7、図8に示す如き弁座39A、41A内に設けられている。この吐出ポート39、41は弁座39A、41Aの中心より偏位した位置に設けられると共に、吐出ポート39、41の一側は後述するベーンに略接して設けられている(図9、図10実線)。即ち、吐出ポート39、41はシリンダ38、シリンダ40の中心を軸にして円周方向に偏位させている。この場合、吐出ポート39、41より大きい場合は引き出し線が点線の吐出ポート39、41位置に偏位する。
【0022】
これにより、シリンダ38、シリンダ40内がベーン50、52により低圧室側38A、40Aと高圧室側38B、40Bに区画されて高圧室側38B、40Bで圧縮する冷媒ガスの圧損発生を防止している。尚、吐出ポート39、41がベーンより離間すると、シリンダ38、40内で圧縮された冷媒ガスが吐出ポート39、41から吐出されても、吐出ポート39、41とベーン間に冷媒ガスが残り圧縮効率が低下してしまうので、吐出ポート39、41はできる限りベーンに近接させて圧縮効率を向上させている。
【0023】
係る、吐出ポート39、41は弁座39A、41A内で径の拡大縮小ができ、また、位置の変更ができる。これによって、弁座39A、41A位置を変更することなく吐出ポート39、41径の拡大縮小、及び、位置を変更できる。従って、上部支持部材54、下部支持部材56の成形金型の大幅な変更せずに吐出ポート39、41の径の拡大縮小、位置の変更を変更するだけで第1及び第2の回転圧縮要素32、34の排除容積を自由に変更することができるようになり、2段圧縮式コンプレッサ10の自由な設計が可能となる。
【0024】
また、第2の回転圧縮要素34に設けた吐出ポート39を第1の回転圧縮要素32に設けた吐出ポート41よりも小径に形成している。これは、第2の回転圧縮要素34の吐出ポート39より吐出する冷媒ガスの体積流量より第1の回転圧縮要素32の吐出ポート41より吐出する冷媒ガスの体積流量が大きいという状況に対応したものである。また、第2の回転圧縮要素34の排除容積を、第1の回転圧縮要素32の排除容積の55%以上85%以下に設定している。
【0025】
即ち、低圧の第1の回転圧縮要素32の吐出ポート41径より高圧の第2の回転圧縮要素34の吐出ポート39径を小さくしているので、第1の回転圧縮要素32の圧力損失が減少して2段圧縮式コンプレッサ10の能力を最大に引き出すことができる。また、圧力損失を減少させることにより第1の回転圧縮要素32と第2の回転圧縮要素34の圧縮バランスも均一となるので、2段圧縮式コンプレッサ10のトルク変動による振動なども効果的に減少できて効率の向上を図ることができる。
【0026】
また、前記上部支持部材54、下部支持部材56には吐出消音室62(凹陥部121)、吐出消音室64(凹陥部131)と軸受け54A、56Aとのコーナー部にそれぞれR面54B、56Bを設けている(図12、図13、図14、図15)。これによって、上部支持部材54、下部支持部材56の軸受け54A、56Aの倒れ強度を補強している。即ち、上部支持部材54、下部支持部材56には吐出消音室62(凹陥部121)、吐出消音室64(凹陥部131)と軸受け54A、56Aとのコーナー部は応力が集中し容易に変形してしまうので上部支持部材54、下部支持部材56の軸受け54A、56Aとのコーナー部にそれぞれR面54B、56Bを設け、これによって軸受け54A、56Aの倒れを防止している。
【0027】
一方、シリンダ38にはスプリング76を収納する縦長略矩形状の収納部70Aが彫り込まれており、この収納部70Aは案内溝70に直交して形成されると共に、案内溝70側を開放している(図16、図17)。そして、シリンダ38に彫り込まれた収納部70Aは案内溝70に連通すると共に、回転軸16の軸方向に開放している。該収納部70Aの開放部70Bは中間仕切板36側に位置して、中間仕切板36にて閉塞される。尚、シリンダ38の中間仕切板36側と反対面を彫り込んで収納部70Aを設けた場合、収納部70Aの開放部70Aは支持部材54にて閉塞される。
【0028】
また、スプリング76はバネ部材として縦長略矩形状の板バネにて構成されている(図18)。このスプリング76の一端部にはベーンとしてのベーン50に外周が接する湾曲形状の押し圧部76Aが形成され、他端部は収納部70A内に固定される。そして、ベーン50はシリンダ38内に外径方向に形成された案内溝70に往復動可能に配置収納され、スプリング76の他端部が収納部70A内に固定された状態で、押し圧部76Aはベーン50をローラ46側に付勢している(図20)。これにより、ベーン50はスプリング76の付勢力で常時ローラ46に当接される。
【0029】
また、ベーン50の案内溝70の表面粗さは高精度に仕上げられており、ベーン50と案内溝70との密着性を向上している。これにより、ベーン50と案内溝70の間から高圧の冷媒ガスがリークしてしまうのを低減し、2段圧縮式コンプレッサ10の体積効率を向上している。更に、案内溝70に当接するベーン50の表面粗さを高精度に仕上げることにより、ベーン50と案内溝70との間からリークする冷媒ガスの低減効果を大きくでき、更に冷媒ガスのリークを低減でき、コンプレッサ10の体積効率を向上できる。
【0030】
更に、図19にベーンとしてのベーン52を示している。ベーン52はシリンダ40内に外径方向に彫り込まれた案内溝72に往復動可能に配置収納される。そして、シリンダ40の半径方向にスプリング穴72Aを設け、このスプリング穴72Aにシリンダ40の外側からバネ部材としてコイルバネからなるスプリング77が挿入され、スプリング77の後側に蓋77Aを挿入固定している。これにより、ベーン52はスプリング77の付勢力で常時ローラ48に当接している。尚、ベーン52もベーン50同様収納部70Aを設け、この収納部70A内に固定した板バネからなるスプリング76の付勢力で常時ローラ48に当接するようにしても差し支えない。
【0031】
他方、前記回転圧縮機構部18を構成するエレメントのうち、上部支持部材54、シリンダ38、中間仕切板36、シリンダ40および下部支持部材56をこの順番に配置し、上部カバー66および下部カバー68と共に複数本の取付ボルト78を用いて一体的に連結固定される。このとき上部カバー66に段差部67を設けているので、取付ボルト78は肉厚部66Aより突出せず、その分回転圧縮機構部18を電動要素14側に移動することができ、2段圧縮式コンプレッサ10の小型化を図ることが可能となる。また、両ベーン50、52近傍に取付ボルト78Aを複数本追加(この場合2本)して上部カバー66から下部カバー68を一体に連結固定している。これにより、第2の回転圧縮要素34を構成する部品の変形を抑えられ、部品変形により発生する冷媒ガスリークによる効率低下を抑制できる。
【0032】
また、回転軸16の下部には、図21に示す如く軸中心に鉛直方向のオイル穴80と、このオイル穴80に横方向の給油孔82、84を形成している。
【0033】
ところで、回転軸16と一体に180度の位相差を持って形成される上下偏心部42、44の相互間を連結する連結部90は、その断面形状を回転軸16の円形断面より断面積を大きくして剛性を持たせるために非円形状の例えばラグビーボールのように上下、左右が略対称となっている(図22)。係る、回転軸16に設けた上下偏心部42、44を連結する連結部90は回転軸16と同軸であるが、その断面形状は上下偏心部42、44の偏心方向の肉厚よりも偏心方向に直交する方向の肉厚を大きくしている。
【0034】
これにより、回転軸16に一体に設けられた上下偏心部42、44を連結する連結部90の断面積が大きくなり断面2次モーメントが増加して強度(剛性)が増し、耐久性と信頼性を向上させている。具体的には、以下に説明する特に使用圧力の高い冷媒を2段圧縮する場合、高低圧の圧力差が大きいために回転軸16にかかる荷重も大きくなるが、連結部90の断面積を大きくしてその強度(剛性)を増し、回転軸16が弾性変形してしまうのを防止している。
【0035】
そして、この実施例では、冷媒として地球環境にやさしく、可燃性および毒性等を考慮して自然冷媒である炭酸ガスの一例としての二酸化炭素(CO2)を使用し、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油等既存のオイルが使用される。
【0036】
一方、材質が鉄よりカーボンの軸受けの方が高い信頼性が得られるのは周知の通りであり、二酸化炭素(CO2)は水分と結合し易いのも周知の通りである。そこで、前記上部支持部材54、下部支持部材56の回転軸16との軸受け54A、56Aをカーボンの材質にて構成している。そして、CO2冷媒に100ppm以上(通常100ppm)の水を加えている。即ち、カーボン軸受(上部支持部材54、下部支持部材56の軸受け54A、56A)は通常水分を含んでいるのでCO2に所定量の水分を含ませることにより軸受け性能を大幅に向上させられる。
【0037】
また、上部支持部材54と下部支持部材56には吸込通路58、60および吐出消音室62、64を経由して上下シリンダ38、40に冷媒ガスを導入する冷媒導入管92、94と圧縮された冷媒ガスを吐出する冷媒吐出管96、98がそれぞれ接続されている。
【0038】
冷媒導入管92、94及び冷媒吐出管96、98は図23に示す如きカラー143に固定され、カラー143はチューブ142を介して上部支持部材54、下部支持部材56に固定され、チューブ142は密閉容器12に固定されたスリーブ140に挿入され固定される。スリーブ140の本体140Aは鉄などの金属で所定の長さの円筒形に形成されると共に、一側には他側より小径の小径部141が所定の長さ形成され(図24、図25)、密閉容器12にはこの小径部141が溶接などで固定される。
【0039】
また、チューブ142も鉄などの金属で所定の長さの円筒形で、図26に示す如き所定の径の本体142Aと、この本体142Aより小径の小径部142Bにて構成されている。チューブ142の本体142Aはスリーブ140の本体140Aより少許小径に形成され、このチューブ142の本体142Aがスリーブ140の本体140A内に挿入される。この場合、チューブ142の一側が絞られて所定の長さ寸法の小径部142Bが形成されるが、この小径部142Bは図示しない上部支持部材54、下部支持部材56に設けられた挿入穴に圧入固定される。
【0040】
また、カラー143も鉄などの金属で所定の長さの円筒形に形成され、本体144は一側から小径部144A、中径部144B、大径部144Cと他側に順に形成されている(図27)。そして、小径部144Aはチューブ142の小径部142B内に圧入可能な外径と長さ寸法に形成され、チューブ142の本体142A側から小径部142Bに圧入固定される。中径部144Bは小径部144Aより大径で、チューブ142本体142Aより小径に形成されると共に、スリーブ140と略同等の長さ寸法を呈している。また、カラー143の大径部Cは中径部144Bより大径でチューブ142本体142A内に圧入可能な形状を呈している。
【0041】
そして、中径部144Bには細孔として極小径の貫通孔145が設けられ、この貫通孔145はカラー143の本体144内側と、外側とを貫通している。これによってカラー143の本体144内と外とが連通されている。カラー143の小径部142B側からチューブ142本体142A内に挿入されると、チューブ142の小径部141内にカラー143の小径部142Bが圧入固定され、チューブ142の本体142A内にカラー143の大径部Cが圧入固定される。これによって、カラー143の中径部144B周囲とチューブ142の本体142A間には間隔としての所定の空間部146が形成される。
【0042】
そして、スリーブ140の開放端(密閉容器12の離間側)からチューブ142の他端(小径部142Bの離間側の本体142A)を経てカラー143の大径部144C周囲壁面に至る範囲を溶接した溶接部147によって、カラー143とチューブ142間の空間部146が閉塞される。即ち、スリーブ140本体140A内部にチューブ142、カラー143が順に挿入され溶接固定されることにより、スリーブ140内においてチューブ142とカラー143間に所定の間隔の空間部146が設けられ、この空間部146は貫通孔145によってカラー143の本体144内と連通している。
【0043】
係るスリーブ140の開放端からチューブ142の他端を経てカラー143の大径部144C周囲壁面に至る範囲を溶接しているが、溶接時の熱によって、空間部146内の空気が膨張して溶接部147から吹き出し穴が開いてしまう。これによって空間部146と外部とが連通してしまいカラー143内部から冷媒ガスが漏れてしまう問題があるが、中径部144Bにはカラー143本体144内部に連通する貫通孔145を設けているので、空間部146内の膨張した空気は貫通孔145を経てカラー143の本体144内に逃がされる。
【0044】
これによって、空間部146内の膨張した空気が溶接部147から吹き出して穴が開いてしまう不完全な溶接も解消されるので、空間部146内とカラー143外部とが連通してしまうことなく確実に溶接部147を密閉できる。即ち、カラー143の中径部144Bに設けた貫通孔145によって空間部146の膨張した空気をカラー143の本体144内に逃がしているので、密閉容器12に固定されたそれぞれのカラー143に冷媒導入管92、94及び冷媒吐出管96、98の溶接部147に空気の吹き出しによる穴が開いてしまうことなく確実に溶接できる。なお、密閉容器12の外底面には取付用台座110が設けられている。
【0045】
次に、上述の実施例の動作概要について説明する。尚、2段圧縮式コンプレッサ10は例えば給湯装置150として用いられる。即ち、給湯装置150は熱源ユニット151と、温水タンクユニット156とから構成され、熱源ユニット151は2段圧縮式コンプレッサ10の出口側の冷媒吐出管96から水加熱用熱交換機152の入り口側の冷媒配管106に接続され、水加熱用熱交換機152の出口側の配管153は膨張弁154、蒸発器155が接続され、蒸発器155の出口側の冷媒配管100は2段圧縮式コンプレッサ10の冷媒導入管92に接続されている(図28)。
【0046】
また、温水タンクユニット156は一般家庭に配設されてくる水道管157が、温水を一時溜める貯湯タンク158の一方に接続され、この水道管157は貯湯タンク158に接続される手前で分岐してポンプ159、電磁弁160、配管161に順次接続されている。配管161は温水タンクユニット156を出て熱源ユニット151内の水加熱用熱交換機152内を通って出口配管162に接続されている。出口配管162は熱源ユニット151を出て再び度温水タンクユニット156内に入り、貯湯タンク158に配管接続されている。また、度温水タンクユニット156内に入った出口配管162は温水タンクユニット156を出てそこには図示しないが台所や洗面所の蛇口、或いは、シャワーなどが接続される。
【0047】
2段圧縮式コンプレッサ10の動作は先ず、ターミナル端子20および図示されない配線を介して電動要素14のコイル28に通電すると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0048】
これにより、冷媒導入管94および下部支持部材56に形成された吸込通路60を経由して、図20に示すように吸込ポート116からシリンダ40の低圧室側40Aに吸入された低圧の冷媒ガスは、ローラ48とベーン52の動作により圧縮されて中間圧となりシリンダ40の高圧室側40Bより吐出ポート41、下部支持部材56に形成された吐出消音室64から冷媒吐出管98に至り密閉容器12外に配置された冷媒配管102に送出される。尚、吐出消音室64に吐出された冷媒ガスの一部は連通路63を通って密閉容器12内の上部カバー66の電動要素14側に流入し、密閉容器12内の電動要素14側と吐出消音室64とを同じ中間圧にしている。
【0049】
そして、冷媒配管102から冷媒導入管92および上部支持部材54に形成された吸込通路58を経由して吸込ポート112からシリンダ38の低圧室側38Aに吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行なわれて高温高圧の冷媒ガスとなり、高圧室側38Bから吐出ポート39を通り上部支持部材54に形成された吐出消音室62、冷媒吐出管98および冷媒配管106を経由して水加熱用熱交換機152内に流入する。そこで、高温高圧の冷媒ガスは放熱し、配管161内を流通する水と熱交換作用を発揮した後、膨張弁154で絞られて蒸発器155で更に冷却(放熱)され冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0050】
また、水加熱用熱交換機152内で熱交換作用により暖められた配管161内の水は、電磁弁160が開きポンプ159、2段圧縮式コンプレッサ10の動作により貯湯タンク158内を循環し貯湯タンク158内の水は所定の温度に温められる。貯湯タンク158内の水が所定の温度に温められると電磁弁160が閉じポンプ159、2段圧縮式コンプレッサ10は停止する。そして、台所や洗面所或いはシャワーなどで貯湯タンク158内の温水が使用されると、使用された水量分の水が水道管より貯湯タンク158内に自動補給される。このとき、電磁弁160は閉じているので、水道配管から流入する水によって貯湯タンク158内の温水が押し出される。尚、貯湯タンク158内が所定の温度以下になると電磁弁160が開いてポンプ159、2段圧縮式コンプレッサ10が作動し水加熱用熱交換機152の熱交換作用により貯湯タンク158内の水が所定の温度に温められる。
【0051】
そして、回転軸16の回転により、密閉容器12の底部に貯溜されている潤滑オイルは、回転軸16の軸中心に形成された鉛直方向のオイル穴80を上昇し、途中に設けた横方向の給油孔82、84より流出して回転軸16の軸受け54A、56Aおよび上下偏心部42、44に供給される。その結果、回転軸16および上下偏心部42、44は円滑な回転を行なうことができる。
【0052】
このように、シリンダ38開口面に対応する部分のカバー66の厚みを、他の部分よりも厚く設定しているので、カバー38の厚い箇所の変形強度を大幅に増強することが可能となる。これにより、第2の回転圧縮要素34のシリンダ38内部と連通する吐出消音室62が高圧になった場合でもカバー66が変形してしまうのを防止することが可能となる。従って、カバー66の剛性を大幅に高められるので、吐出消音室62からの冷媒ガスのリークを再圧縮して入力上昇を引き起こしてしまうなどの不都合を未然に防止することができるようになる。
【0053】
また、カバー66はシリンダ38開口面に対応する部分の厚みだけを、他の部分よりも厚く設定しているので、カバー66全体を厚くすることにより増大してしまう重量を低減させている。これによりカバー66の重量を最小限に抑えつつカバー66の剛性を高められるので、第2の回転圧縮要素34から吐出消音室62内に吐出された冷媒ガスの高圧力によってカバー66が変形してしまうのを容易に抑えることができるようになる。
【0054】
なお、実施例はいずれも回転軸16を縦置型とした2シリンダ型2段圧縮式コンプレッサ10について説明したが、この発明は回転軸を横置型とした2シリンダ型2段圧縮式コンプレッサにも適用できることは言うまでもない。
【0055】
また、内部中間圧型多段圧縮式ロータリコンプレッサを第1及び第2の圧縮要素を備えた2段圧縮式コンプレッサで説明したがこれに限らず圧縮要素を3段、4段或いはそれ以上の圧縮要素を備えた多段圧縮式コンプレッサに適用しても差し支えない。
【0056】
また、2段圧縮式コンプレッサ10を給湯装置150として用いたがこれに限らず、室内の暖房用などに用いても本発明は有効である。
【0057】
また、上記実施形態では、ベーン50をシリンダ38に進退可能に支持すると共に背圧を作用させて、ベーン50の先端をローラの外周面に接触させこのベーンとローラ46とを相対移動させる場合について説明したが、本発明はこれに限らず、図29に示すような2段圧縮式ロータリコンプレッサの圧縮要素170に適用しても有効である。尚、圧縮要素170は一方だけ図示している。この圧縮要素170はベーン171をローラ172の外周一部に、ローラ172の外径方向に向けて突出するように一体的に設けると共に、シリンダ173における吸込ポート174を吐出ポート175との中間内方部に円筒形や球形などの円形保持孔176を設けて、この保持孔176に、一端がシリンダ室177側に開口された受入溝178Aを持つ支持体178を回動可能に保持して、支持体178の受入溝178A内にベーン171の突出側先端部を摺動可能に挿入させている。そして、ローラ172を駆動軸であるクランク軸に共回りしない非自転式に構成すると共に、回転軸179の駆動によりローラ172をシリンダ173内で公転させている。尚、ロータの外周一部にベーン171を設けるに際しては、ローラ172側にベーン171の基端一部を挿入可能とした取り付け溝を形成し、この取り付け溝内にベーン171の基端一部を挿入させて接着剤で接着一体化させるか或いはロウ付けにより一体化させている。
【0058】
【発明の効果】
以上詳述した如く本発明によれば、各回転圧縮要素をそれぞれ構成するシリンダ及び電動要素の回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、各シリンダの開口面をそれぞれ閉塞し、回転軸の軸受けを兼用する支持部材と、各支持部材に形成され、各シリンダ内部とそれぞれ連通する吐出消音室と、各支持部材にそれぞれ取り付けられ、各吐出消音室の開口部をそれぞれ閉塞するカバーとを備えており、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーは肉厚部と肉薄部とから構成されており、肉厚部を吐出消音室に対応させたので、吐出消音室に対応するカバーの肉厚部の変形強度を大幅に増強することが可能となる。これにより、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室が高圧になった場合でもカバーの変形を阻止することが可能となる。従って、カバーの剛性を大幅に高められるので、吐出消音室からの冷媒ガスのリークを再圧縮して入力上昇を引き起こしてしまうなどの不都合を未然に防止することができ、内部中間圧型多段圧縮式ロータリコンプレッサの性能を大幅に向上することができるようになるものである。
【0059】
特に、第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーの、シリンダ開口面に対応する部分を肉厚部とし、他の部分は肉薄部としているので、カバー全体を厚くすることにより増大してしまう重量を低減させている。従って、カバーの重量を最小限に抑えつつカバーの剛性を高め変形を抑えることができるようになるものである。
【図面の簡単な説明】
【図1】 本発明の内部中間圧型多段圧縮式ロータリコンプレッサの実施例として第1及び第2の圧縮要素を備えた2段圧縮式コンプレッサの縦断側面図である。
【図2】 同図1の2段圧縮式コンプレッサの平面図である。
【図3】 上部カバーの平面図である。
【図4】 同図3の上部カバーのA−A線矢視図である。
【図5】 上部支持部材の平面図である。
【図6】 同図5の上部支持部材の吐出ポート近傍を示す拡大図である。
【図7】 同図5の上部支持部材の吐出ポート近傍を示す縦断側面図である。
【図8】 下部支持部材の平面図である。
【図9】 同図8の下部支持部材の吐出ポート近傍を示す拡大図である。
【図10】 同図8の下部支持部材の吐出ポート近傍を示す縦断側面図である。
【図11】 弁体を取り付け状態を示す上下部支持部材の拡大図である。
【図12】 上部支持部材の縦断側面図である。
【図13】 同図12の上部支持部材の裏面図である。
【図14】 下部支持部材の縦断側面図である。
【図15】 同図14の下部支持部材の裏面図である。
【図16】 高圧側のシリンダの裏面図である。
【図17】 同図16の高圧側のシリンダのB−B線矢視図である。
【図18】 同図16の高圧側のシリンダに設けた収納部にスプリングを取り付けた状態を示す図である。
【図19】 低圧側のシリンダに設けたスプリング穴にスプリングを取り付けた状態を示す図である。
【図20】 図1における各圧縮部の構成を説明する図解図である。
【図21】 図1における上下偏心部を含む回転軸の実施態様を示す平面図である。
【図22】 同図21のC−C線矢視図である。
【図23】 容器本体に取り付けた各冷媒導入管のカラー部分の拡大縦断側面図である。
【図24】 スリーブの正面図である。
【図25】 同図24のスリーブの正面図である。
【図26】 チューブの正面図である。
【図27】 カラーの正面図である。
【図28】 本発明の多段圧縮式コンプレッサを適用した給湯装置の回路図である。
【図29】 本発明の他の実施例である内部中間圧型2段圧縮式ロータリコンプレッサの圧縮要素の洋舞構成を示す概略平面図である。
【符号の説明】
10 2段圧縮式コンプレッサ
12 密閉容器
14 電動要素
16 回転軸
18 回転圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38 シリンダ
38A 低圧室側
38B 高圧室側
39 吐出ポート
40 シリンダ
40A 低圧室側
40B 高圧室側
41 吐出ポート
54 上部支持部材
56 下部支持部材
62 吐出消音室
64 吐出消音室
66 上部カバー
66A 肉厚部
66B 肉薄部
67 段差部
68 下部カバー
150 給湯装置
151 熱源ユニット
152 水加熱用熱交換機
156 温水タンクユニット
157 水道管
158 貯湯タンク
159 ポンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to CO compressed with a first rotary compression element. 2 The present invention relates to an internal intermediate pressure type multistage compression rotary compressor that discharges refrigerant gas into a sealed container of intermediate pressure and compresses the refrigerant gas of intermediate pressure by a second rotary compression element.
[0002]
[Prior art]
Conventionally, in this kind of internal intermediate pressure type multistage compression rotary compressor, a refrigerant having a large high-low pressure difference, for example, carbon dioxide (CO 2 ) Is used as the refrigerant, the refrigerant pressure reaches about 100 kg / Cm2G in the second rotary compression element having a high pressure, and about 30 kg / Cm2G in the first rotary compression element on the lower stage side. When the second rotary compression element provided in the hermetic container has a high pressure, the cover that partitions between the discharge silencer chamber of the second rotary compression element and the electric element is deformed to the electric element side. In contrast, the CO compressed by the first rotary compression element 2 Refrigerant gas was discharged into a sealed container of intermediate pressure to make the intermediate pressure, preventing deformation of the cover.
[0003]
[Problems to be solved by the invention]
However, CO 2 In an internal intermediate pressure type multistage compression rotary compressor in which refrigerant gas is discharged into a sealed container of intermediate pressure and this intermediate pressure refrigerant gas is compressed by the second rotary compression element, the second rotary compression element has an extremely high pressure. Become. For this reason, even if the inside of the sealed container on the electric element side is set to an intermediate pressure, there is still a problem that the cover of the discharge silencer chamber of the second rotary compression element is deformed.
[0004]
Further, if the cover made of steel is weak, when the discharge silencer chamber communicating with the inside of the cylinder of the second rotary compression element becomes high in pressure, the refrigerant gas leaked from the discharge silencer chamber is recompressed to increase the input. There was also inconvenience.
[0005]
The present invention has been made to solve the problems of the related art, and an internal intermediate pressure type multistage compression rotary compressor capable of suppressing the deformation by increasing the rigidity of the cover while minimizing the weight of the cover. The purpose is to provide.
[0006]
[Means for Solving the Problems]
That is, the internal intermediate pressure type multi-stage compression rotary compressor of the present invention includes an electric element and a first and a second rotary compression element driven by the electric element in a hermetic container. Compressed CO 2 A refrigerant gas is discharged into a sealed container, and the discharged intermediate-pressure refrigerant gas is compressed by a second rotary compression element. A roller that is eccentrically rotated in the cylinder by being fitted to an eccentric portion formed on the cylinder, a support member that closes the opening surface of each cylinder, and also serves as a bearing for the rotating shaft, and each cylinder is formed on each support member. A discharge silencer chamber that communicates with the interior of each of the discharge silencer chambers, and a cover that is attached to each of the support members and closes the opening of each of the discharge silencer chambers. Close the opening The cover consists of a thick part and a thin part, and the thick part corresponds to the discharge silencer chamber. Is.
[0007]
According to the present invention, a roller that is fitted to an eccentric portion formed on a rotating shaft of each cylinder and electric element that constitutes each rotary compression element and rotates eccentrically in the cylinder, and an opening surface of each cylinder is closed. , A support member that also serves as a bearing for the rotary shaft, a discharge silencer chamber that is formed on each support member and communicates with the inside of each cylinder, and is attached to each support member, and closes the opening of each discharge silencer chamber. And a cover for closing the opening of the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element. The cover is composed of a thick part and a thin part, and the thick part is made to correspond to the discharge silencer chamber, so the thick part of the cover corresponding to the discharge silencer chamber The deformation strength of can be greatly increased. Thereby, even when the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element becomes high pressure, it is possible to prevent the cover from being deformed. Accordingly, since the rigidity of the cover can be greatly increased, it is possible to prevent inconveniences such as recompressing the leakage of refrigerant gas from the discharge silencer chamber and causing an increase in input, and an internal intermediate pressure type multistage compression type The performance of the rotary compressor can be greatly improved.
[0008]
In particular, the cover for closing the opening of the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element, Since the part corresponding to the cylinder opening surface is the thick part and the other part is the thin part, The weight that increases by increasing the thickness of the entire cover is reduced. Therefore, it is possible to increase the rigidity of the cover and suppress deformation while minimizing the weight of the cover.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal side view of a two-stage compression compressor 10 having first and second compression elements 32 and 34 as an embodiment of the internal intermediate pressure type multi-stage compression rotary compressor of the present invention. FIG. The top view of the two-stage compression compressor 10 is shown, respectively. In the figure, reference numeral 10 denotes a two-stage compression compressor as an internal intermediate pressure type multi-stage compression rotary compressor. The two-stage compression compressor 10 is arranged and accommodated in a cylindrical sealed container 12 made of a steel plate and an internal space of the sealed container 12. And the rotary compression mechanism portion 18 including a first rotary compression element 32 and a second rotary compression element 34 driven by the rotary shaft 16 of the electric element 14.
[0010]
The airtight container 12 has two parts, which are an oil reservoir at the bottom, a container body 12A that houses the electric element 14 and the rotary compression mechanism 18 and a bowl-shaped lid body 12B that closes the upper opening of the container body 12A. In addition, a terminal terminal (wiring is omitted) 20 for supplying electric power to the electric element 14 is provided on the lid body 12B.
[0011]
The electric element 14 includes a stator 22 attached in an annular shape along the inner peripheral surface of the upper space of the hermetic container 12, and a rotor 24 inserted and arranged with a slight gap inside the stator 22. The rotor 24 is fixed to a rotating shaft 16 that passes through the center and extends in the vertical direction.
[0012]
The stator 22 has a laminated body 26 in which ring-shaped electromagnetic steel plates are laminated, and a stator coil 28 wound around the laminated body 26. Similarly to the stator 22, the rotor 24 is formed of a laminated body 30 of electromagnetic steel plates, and both constitute an AC motor. A DC motor in which a permanent magnet is embedded in the rotor can be used instead of the AC motor.
[0013]
An intermediate partition plate 36 is sandwiched between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, a cylinder 38 and a cylinder 40 disposed above and below the intermediate partition plate 36, and the inside of the upper and lower cylinders 38 and 40. The upper and lower rollers 46 and 48 are fitted to the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees and rotate eccentrically, and the upper and lower cylinders 38 are in contact with the upper and lower rollers 46 and 48. , 40 is divided into a low pressure chamber side 38A, 40A and a high pressure chamber side 38B, 40B, respectively, and upper and lower vanes 50, 52, which will be described later, and the opening surfaces of the upper and lower cylinders 38, 40 are closed to serve as bearings for the rotary shaft 16. Support members (upper support member 54 and lower support member 56).
[0014]
The upper support member 54 and the lower support member 56 are formed with suction passages 58 and 60 and discharge silencing chambers 62 and 64 that communicate with the inside of the upper and lower cylinders 38 and 40, as well as the discharge silencing chambers 62 and 64. Each opening is closed by a cover. That is, the discharge silence chamber 62 is closed by an upper cover 66 as a cover, and the discharge silence chamber 64 is closed by a lower cover 68 as a cover. Note that the electric element 14 side of the upper cover 66 is communicated with the discharge silencer chamber 64 and the sealed container 12 through a communication path 63.
[0015]
The upper cover 66 closes the opening of the discharge silencing chamber 62 that communicates with the inside of the cylinder 38 of the second rotary compression element 34, and partitions the inside of the sealed container 12 from the discharge silencing chamber 62 and the electric element 14 side. The upper cover 66 includes a thick portion 66A and a thin portion 66B other than the thick portion 66A (FIGS. 3 and 4). The thick portion 66A is protruded to the electric element 14 side from the thin portion 66B, so that the deformation strength of the thick portion 66A is enhanced than that of the thin portion 66B.
[0016]
That is, in the upper cover 66, the thickness of the portion (thick portion 66A) corresponding to the discharge silencer chamber 62 on the high pressure side (second rotary compression element 34) is made thicker than other portions (thin portion 66B), When the discharge silencing chamber 62 becomes high pressure, the upper cover 66 is prevented from being deformed to the electric element 14 side, and the weight of the two-stage compression compressor 10 is reduced by increasing the necessary minimum thickness. . By providing the thick portion 66A on the upper cover 66, the rigidity of the upper cover 66 is greatly increased, and even when the pressure difference between the discharge silencer chamber 62 and the electric element 14 is large, the area of the upper cover 66 is large. The thick portion 66A is prevented from being deformed. Further, by significantly increasing the rigidity of the upper cover 66, inconveniences such as recompressing the leakage of the refrigerant gas from the discharge silencing chamber 62 and causing an increase in input are prevented in advance.
[0017]
The upper cover 66 is provided with a plurality of screw holes 67A for fixing the upper cover 66. The screw hole 67 </ b> A is formed in a stepped portion 67 having a step for recessing the upper cover 66 toward the discharge silencer chamber 62. In other words, the upper cover 66 is provided with a stepped portion 67 that is recessed from the thick portion 66A toward the discharge silencer chamber 62, and the stepped portion 67 is provided with a screw hole 67A. The stepped portion 67 is substantially the same as the head of a mounting bolt 78 described later. By providing the step portion 67 in the upper cover 66, the mounting bolt 78 is prevented from protruding from the thick portion 66A. Note that the stepped portion 67 is formed thinner on the discharge silencer chamber 62 side than the thick portion 66A, and the thin portion 66B and the stepped portion 67 may have the same thickness. Further, if the head of the mounting bolt 78 is slightly smaller than the thick portion 66A, the mounting bolt 78 may protrude. As a result, the insulation distance from the electric element 14 can be designed in the same manner as in the prior art, and the overall size of the two-stage compression compressor 10 does not have to be increased.
[0018]
The upper support member 54 and the lower support member 56 are provided with discharge ports 39 and 41 for communicating the inside of the cylinders 38 and 40 with the discharge silencing chambers 62 and 64 (recessed portions 121 and 131) (FIGS. 5 and 5). 6, FIG. 7 and FIG. 8). The discharge silencer chambers 62 and 64 side of the discharge ports 39 and 41 are formed with recessed portions 121 and 131 that are recessed into a predetermined shape, and the discharge ports 39 and 41 are opened in the recessed portions 121 and 131. The discharge ports 39 and 41 are provided substantially in contact with a vane described later, and valve seats 39A and 41A having a larger diameter than the discharge ports 39 and 41 are provided around the discharge ports 39 and 41.
[0019]
The valve seats 39A and 41A are provided so as to protrude slightly toward the recessed portions 121 and 131 (discharge silencing chambers 62 and 64), and the valve seats 39A and 41A are made of an elastic member made of a vertically long substantially rectangular metal plate. One side of the configured valve bodies 122 and 132 come into contact with each other (FIGS. 6, 8, and 11). The valve bodies 122 and 132 are provided with stoppers 123 and 133 having substantially the same shape as the valve bodies 122 and 132, and the other sides of the valve bodies 122 and 132 and the stoppers 123 and 133 are in the recessed portions 121 and 131. Are fixed to the screw holes 125 and 135 provided at predetermined intervals with the discharge ports 39 and 41 by screws 124 and 134.
[0020]
The stoppers 123 and 133 are thicker and stronger than the valve bodies 122 and 132. The stoppers 123 and 133 are curved away from the valve bodies 122 and 132 toward the one side (the valve seats 39A and 41A side) from the other side. ing. That is, the stoppers 123 and 133 prevent the valve bodies 122 and 132 from deforming beyond the elastic limit when one side of the valve bodies 122 and 132 is elastically separated from the valve seats 39A and 41A. Further, the valve bodies 122 and 132 abut against the valve seats 39A and 41A formed around the discharge ports 39 and 41 with a constant urging force to close and open and close the discharge ports 39 and 41 with an elastic force.
[0021]
The discharge ports 39 and 41 are provided in valve seats 39A and 41A as shown in FIGS. 5, 6, 7 and 8. The discharge ports 39 and 41 are provided at positions deviated from the centers of the valve seats 39A and 41A, and one side of the discharge ports 39 and 41 is provided in contact with a vane described later (FIGS. 9 and 10). solid line). That is, the discharge ports 39 and 41 are deviated in the circumferential direction around the centers of the cylinders 38 and 40. In this case, if it is larger than the discharge ports 39, 41, the lead lines are displaced to the positions of the discharge ports 39, 41 indicated by dotted lines.
[0022]
As a result, the inside of the cylinder 38 and the cylinder 40 is partitioned by the vanes 50 and 52 into the low pressure chamber side 38A and 40A and the high pressure chamber side 38B and 40B, thereby preventing the pressure loss of the refrigerant gas compressed in the high pressure chamber side 38B and 40B. Yes. When the discharge ports 39 and 41 are separated from the vanes, even if the refrigerant gas compressed in the cylinders 38 and 40 is discharged from the discharge ports 39 and 41, the refrigerant gas remains between the discharge ports 39 and 41 and the vanes. Since the efficiency decreases, the discharge ports 39 and 41 are made as close to the vane as possible to improve the compression efficiency.
[0023]
The discharge ports 39 and 41 can be enlarged and reduced in diameter within the valve seats 39A and 41A, and can be changed in position. Thereby, the enlargement / reduction of the discharge ports 39 and 41 and the position can be changed without changing the positions of the valve seats 39A and 41A. Accordingly, the first and second rotary compression elements can be obtained by simply changing the diameter of the discharge ports 39 and 41 and changing the position without significantly changing the molding die of the upper support member 54 and the lower support member 56. The excluded volumes 32 and 34 can be freely changed, and the two-stage compression compressor 10 can be freely designed.
[0024]
Further, the discharge port 39 provided in the second rotary compression element 34 is formed to have a smaller diameter than the discharge port 41 provided in the first rotary compression element 32. This corresponds to the situation where the volume flow rate of the refrigerant gas discharged from the discharge port 41 of the first rotary compression element 32 is larger than the volume flow rate of the refrigerant gas discharged from the discharge port 39 of the second rotary compression element 34. It is. Further, the excluded volume of the second rotary compression element 34 is set to 55% or more and 85% or less of the excluded volume of the first rotary compression element 32.
[0025]
That is, since the discharge port 39 diameter of the high-pressure second rotary compression element 34 is made smaller than the discharge port 41 diameter of the low-pressure first rotary compression element 32, the pressure loss of the first rotary compression element 32 is reduced. Thus, the capacity of the two-stage compression compressor 10 can be maximized. Further, by reducing the pressure loss, the compression balance of the first rotary compression element 32 and the second rotary compression element 34 becomes uniform, so vibrations due to torque fluctuations of the two-stage compression compressor 10 are effectively reduced. It is possible to improve the efficiency.
[0026]
The upper support member 54 and the lower support member 56 are provided with R surfaces 54B and 56B at the corners of the discharge silencer chamber 62 (recessed portion 121), the discharge silencer chamber 64 (recessed portion 131) and the bearings 54A and 56A, respectively. (FIGS. 12, 13, 14, and 15). Thus, the falling strength of the bearings 54A and 56A of the upper support member 54 and the lower support member 56 is reinforced. That is, the upper support member 54 and the lower support member 56 are easily deformed due to stress concentration at the corners of the discharge silencer chamber 62 (recessed portion 121), the discharge silencer chamber 64 (recessed portion 131) and the bearings 54A and 56A. Therefore, the R surfaces 54B and 56B are provided at the corner portions of the upper support member 54 and the lower support member 56 with the bearings 54A and 56A, respectively, thereby preventing the bearings 54A and 56A from falling.
[0027]
On the other hand, the cylinder 38 is engraved with a vertically long and substantially rectangular storage portion 70A for storing the spring 76. The storage portion 70A is formed orthogonal to the guide groove 70 and opens the guide groove 70 side. (FIGS. 16 and 17). The storage portion 70 </ b> A carved in the cylinder 38 communicates with the guide groove 70 and is open in the axial direction of the rotary shaft 16. The opening 70B of the storage portion 70A is located on the intermediate partition plate 36 side and is closed by the intermediate partition plate 36. When the storage portion 70A is provided by carving the surface opposite to the intermediate partition plate 36 side of the cylinder 38, the open portion 70A of the storage portion 70A is closed by the support member 54.
[0028]
Further, the spring 76 is constituted by a vertically long plate spring as a spring member (FIG. 18). A curved pressing force portion 76A whose outer periphery is in contact with the vane 50 as a vane is formed at one end portion of the spring 76, and the other end portion is fixed in the storage portion 70A. The vane 50 is disposed and accommodated in a guide groove 70 formed in the outer diameter direction in the cylinder 38 so as to be reciprocally movable, and the other end portion of the spring 76 is fixed in the accommodation portion 70A. Urges the vane 50 toward the roller 46 (FIG. 20). As a result, the vane 50 is always in contact with the roller 46 by the biasing force of the spring 76.
[0029]
Further, the surface roughness of the guide groove 70 of the vane 50 is finished with high accuracy, and the adhesion between the vane 50 and the guide groove 70 is improved. Thereby, the leakage of high-pressure refrigerant gas from between the vane 50 and the guide groove 70 is reduced, and the volume efficiency of the two-stage compression compressor 10 is improved. Further, by finishing the surface roughness of the vane 50 in contact with the guide groove 70 with high accuracy, the effect of reducing the refrigerant gas leaking from between the vane 50 and the guide groove 70 can be increased, and further the leakage of the refrigerant gas can be reduced. This can improve the volumetric efficiency of the compressor 10.
[0030]
Further, FIG. 19 shows a vane 52 as a vane. The vane 52 is disposed and accommodated in a guide groove 72 carved in the outer diameter direction in the cylinder 40 so as to be able to reciprocate. A spring hole 72A is provided in the radial direction of the cylinder 40, and a spring 77 made of a coil spring is inserted into the spring hole 72A as a spring member from the outside of the cylinder 40, and a lid 77A is inserted and fixed to the rear side of the spring 77. . Thereby, the vane 52 is always in contact with the roller 48 by the biasing force of the spring 77. The vane 52 may also be provided with a storage portion 70A like the vane 50, and may always abut against the roller 48 by the urging force of a spring 76 made of a leaf spring fixed in the storage portion 70A.
[0031]
On the other hand, among the elements constituting the rotary compression mechanism 18, the upper support member 54, the cylinder 38, the intermediate partition plate 36, the cylinder 40 and the lower support member 56 are arranged in this order, and together with the upper cover 66 and the lower cover 68. A plurality of mounting bolts 78 are used to be integrally connected and fixed. At this time, since the step portion 67 is provided in the upper cover 66, the mounting bolt 78 does not protrude from the thick portion 66A, and the rotation compression mechanism portion 18 can be moved to the electric element 14 side accordingly, and two-stage compression is performed. It is possible to reduce the size of the compressor 10. Further, a plurality of mounting bolts 78A are added in the vicinity of both vanes 50 and 52 (two in this case), and the lower cover 68 is integrally connected and fixed from the upper cover 66. Thereby, the deformation | transformation of the components which comprise the 2nd rotation compression element 34 can be suppressed, and the efficiency fall by the refrigerant gas leak generated by component deformation can be suppressed.
[0032]
Further, as shown in FIG. 21, a vertical oil hole 80 is formed at the center of the shaft at the lower portion of the rotary shaft 16, and lateral oil supply holes 82 and 84 are formed in the oil hole 80.
[0033]
By the way, the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 formed integrally with the rotating shaft 16 with a phase difference of 180 degrees has a cross-sectional shape that is larger than the circular cross section of the rotating shaft 16. In order to enlarge and give rigidity, the upper and lower sides and the right and left sides are almost symmetrical like a non-circular shape such as a rugby ball (FIG. 22). The connecting portion 90 connecting the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 is coaxial with the rotating shaft 16, but the cross-sectional shape thereof is an eccentric direction rather than the thickness of the upper and lower eccentric portions 42 and 44 in the eccentric direction. The wall thickness in the direction perpendicular to is increased.
[0034]
As a result, the cross-sectional area of the connecting portion 90 that connects the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 is increased, the second moment is increased, the strength (rigidity) is increased, and durability and reliability are increased. Has improved. Specifically, when a refrigerant having a high working pressure, which will be described below, is compressed in two stages, the load applied to the rotary shaft 16 increases because the pressure difference between the high and low pressures is large, but the cross-sectional area of the connecting portion 90 is increased. Thus, the strength (rigidity) is increased, and the rotation shaft 16 is prevented from being elastically deformed.
[0035]
In this embodiment, carbon dioxide (CO 2) as an example of carbon dioxide, which is a natural refrigerant in consideration of flammability and toxicity, is friendly to the global environment as a refrigerant. 2 As the lubricating oil, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil and ester oil are used.
[0036]
On the other hand, it is well known that carbon bearings are more reliable than iron, because carbon dioxide (CO 2 As is well known, it is easy to bind to moisture. Therefore, the bearings 54A and 56A with the rotating shaft 16 of the upper support member 54 and the lower support member 56 are made of a carbon material. And CO 2 100 ppm or more (usually 100 ppm) of water is added to the refrigerant. That is, the carbon bearing (bearings 54A and 56A of the upper support member 54 and the lower support member 56) normally contains moisture, so 2 The bearing performance can be greatly improved by containing a predetermined amount of water in.
[0037]
The upper support member 54 and the lower support member 56 are compressed with refrigerant introduction pipes 92 and 94 for introducing refrigerant gas into the upper and lower cylinders 38 and 40 via the suction passages 58 and 60 and the discharge silencer chambers 62 and 64, respectively. Refrigerant discharge pipes 96 and 98 for discharging the refrigerant gas are connected to each other.
[0038]
The refrigerant introduction pipes 92 and 94 and the refrigerant discharge pipes 96 and 98 are fixed to a collar 143 as shown in FIG. 23. The collar 143 is fixed to the upper support member 54 and the lower support member 56 via the tube 142, and the tube 142 is sealed. It is inserted into a sleeve 140 fixed to the container 12 and fixed. The main body 140A of the sleeve 140 is formed of a metal such as iron into a cylindrical shape having a predetermined length, and a small-diameter portion 141 having a smaller diameter than the other side is formed on one side with a predetermined length (FIGS. 24 and 25). The small diameter portion 141 is fixed to the sealed container 12 by welding or the like.
[0039]
Further, the tube 142 is also made of a metal such as iron and has a cylindrical shape having a predetermined length, and includes a main body 142A having a predetermined diameter as shown in FIG. 26 and a small-diameter portion 142B having a smaller diameter than the main body 142A. The main body 142A of the tube 142 is formed with a smaller diameter than the main body 140A of the sleeve 140, and the main body 142A of the tube 142 is inserted into the main body 140A of the sleeve 140. In this case, one side of the tube 142 is squeezed to form a small diameter portion 142B having a predetermined length. This small diameter portion 142B is press-fitted into insertion holes provided in the upper support member 54 and the lower support member 56 (not shown). Fixed.
[0040]
Further, the collar 143 is also formed in a cylindrical shape of a predetermined length with a metal such as iron, and the main body 144 is formed in order from one side to the small diameter part 144A, the medium diameter part 144B, the large diameter part 144C and the other side ( FIG. 27). The small-diameter portion 144A is formed to have an outer diameter and a length that can be press-fitted into the small-diameter portion 142B of the tube 142, and is press-fitted and fixed to the small-diameter portion 142B from the main body 142A side of the tube 142. The medium diameter portion 144B is larger in diameter than the small diameter portion 144A, smaller in diameter than the tube 142 main body 142A, and has substantially the same length as the sleeve 140. The large-diameter portion C of the collar 143 has a larger diameter than the medium-diameter portion 144B and has a shape that can be press-fitted into the tube 142 main body 142A.
[0041]
The medium diameter portion 144 </ b> B is provided with a through hole 145 having a very small diameter as a fine hole. The through hole 145 passes through the inside and outside of the main body 144 of the collar 143. As a result, the inside and the outside of the main body 144 of the collar 143 communicate with each other. When inserted into the tube 142 main body 142A from the small diameter portion 142B side of the collar 143, the small diameter portion 142B of the collar 143 is press-fitted into the small diameter portion 141 of the tube 142, and the large diameter of the collar 143 is inserted into the main body 142A of the tube 142. Part C is press-fitted and fixed. As a result, a predetermined space 146 is formed as an interval between the periphery of the middle diameter portion 144B of the collar 143 and the main body 142A of the tube 142.
[0042]
And welding which welded the range from the open end (spaced side of the sealed container 12) of the sleeve 140 to the wall surface around the large diameter portion 144C of the collar 143 through the other end of the tube 142 (the body 142A on the separated side of the small diameter portion 142B). The space 146 between the collar 143 and the tube 142 is closed by the portion 147. That is, the tube 142 and the collar 143 are sequentially inserted into the sleeve 140 main body 140A and fixed by welding, whereby a space portion 146 having a predetermined interval is provided between the tube 142 and the collar 143 in the sleeve 140. Is communicated with the inside of the main body 144 of the collar 143 through the through hole 145.
[0043]
The range from the open end of the sleeve 140 to the wall surface around the large-diameter portion 144C of the collar 143 through the other end of the tube 142 is welded. However, the air in the space portion 146 expands due to the heat during welding. A blowing hole is opened from the portion 147. This causes a problem that the space portion 146 communicates with the outside and the refrigerant gas leaks from the inside of the collar 143. However, since the through hole 145 that communicates with the inside of the collar 143 main body 144 is provided in the middle diameter portion 144B. The expanded air in the space 146 is released into the main body 144 of the collar 143 through the through hole 145.
[0044]
This eliminates incomplete welding in which the expanded air in the space portion 146 blows out from the welded portion 147 and opens a hole, so that the space portion 146 and the outside of the collar 143 do not communicate with each other. The welded portion 147 can be sealed. That is, the air expanded in the space portion 146 is released into the main body 144 of the collar 143 by the through-hole 145 provided in the middle diameter portion 144B of the collar 143, so that the refrigerant is introduced into each collar 143 fixed to the sealed container 12. The welds 147 of the pipes 92 and 94 and the refrigerant discharge pipes 96 and 98 can be reliably welded without opening holes due to air blowing. A mounting base 110 is provided on the outer bottom surface of the sealed container 12.
[0045]
Next, an outline of the operation of the above embodiment will be described. The two-stage compression compressor 10 is used as a hot water supply device 150, for example. That is, the hot water supply apparatus 150 includes a heat source unit 151 and a hot water tank unit 156, and the heat source unit 151 is connected to the refrigerant on the inlet side of the water heating heat exchanger 152 from the refrigerant discharge pipe 96 on the outlet side of the two-stage compression compressor 10. An expansion valve 154 and an evaporator 155 are connected to the pipe 153 on the outlet side of the water heating heat exchanger 152, and the refrigerant pipe 100 on the outlet side of the evaporator 155 is introduced to the refrigerant of the two-stage compression compressor 10. It is connected to the tube 92 (FIG. 28).
[0046]
The hot water tank unit 156 has a water pipe 157 provided in a general household connected to one of the hot water storage tanks 158 for temporarily storing hot water, and the water pipe 157 branches off before being connected to the hot water storage tank 158. The pump 159, the solenoid valve 160, and the piping 161 are sequentially connected. The piping 161 exits the hot water tank unit 156 and passes through the water heating heat exchanger 152 in the heat source unit 151 and is connected to the outlet piping 162. The outlet pipe 162 exits the heat source unit 151 and enters the hot water tank unit 156 again, and is connected to the hot water storage tank 158 by piping. The outlet pipe 162 that has entered the hot water tank unit 156 exits the hot water tank unit 156, and is connected to a kitchen or washroom faucet, shower, or the like (not shown).
[0047]
In the operation of the two-stage compression compressor 10, first, when the coil 28 of the electric element 14 is energized through the terminal terminal 20 and a wiring (not shown), the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotary shaft 16 rotate eccentrically in the upper and lower cylinders 38 and 40.
[0048]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side 40A of the cylinder 40 from the suction port 116 through the suction passage 60 formed in the refrigerant introduction pipe 94 and the lower support member 56 is shown in FIG. The intermediate pressure is compressed by the operation of the roller 48 and the vane 52 to reach the refrigerant discharge pipe 98 from the discharge port 41 and the discharge silencer chamber 64 formed in the lower support member 56 from the high pressure chamber side 40B of the cylinder 40 to the outside of the sealed container 12. To the refrigerant pipe 102 arranged in A part of the refrigerant gas discharged into the discharge silencer chamber 64 flows into the electric element 14 side of the upper cover 66 in the sealed container 12 through the communication path 63 and is discharged from the electric element 14 side in the sealed container 12. The muffler chamber 64 has the same intermediate pressure.
[0049]
The intermediate pressure refrigerant gas sucked from the suction port 112 to the low pressure chamber side 38A of the cylinder 38 through the refrigerant introduction pipe 92 and the suction passage 58 formed in the upper support member 54 from the refrigerant pipe 102 is supplied to the roller 46. The second stage of compression is performed by the operation of the vane 50 to form a high-temperature and high-pressure refrigerant gas, which is discharged from the high-pressure chamber side 38B through the discharge port 39 and formed in the upper support member 54, the refrigerant discharge pipe 98, It flows into the heat exchanger 152 for water heating via the refrigerant pipe 106. Therefore, the high-temperature and high-pressure refrigerant gas dissipates heat and exhibits heat exchange action with the water flowing in the pipe 161, and is then throttled by the expansion valve 154 and further cooled (heat dissipated) by the evaporator 155, and is discharged from the refrigerant introduction pipe 94. The cycle of being sucked into one rotary compression element 32 is repeated.
[0050]
The water in the pipe 161 heated by the heat exchange action in the water heating heat exchanger 152 is circulated in the hot water storage tank 158 by the operation of the pump 159 and the two-stage compression compressor 10 by opening the solenoid valve 160. The water in 158 is warmed to a predetermined temperature. When the water in the hot water storage tank 158 is heated to a predetermined temperature, the electromagnetic valve 160 is closed and the pump 159 and the two-stage compression compressor 10 are stopped. When the hot water in the hot water storage tank 158 is used in a kitchen, a washroom, a shower, or the like, the used amount of water is automatically supplied into the hot water storage tank 158 from the water pipe. At this time, since the electromagnetic valve 160 is closed, the hot water in the hot water storage tank 158 is pushed out by the water flowing in from the water pipe. When the temperature in the hot water storage tank 158 falls below a predetermined temperature, the solenoid valve 160 is opened, the pump 159 and the two-stage compression compressor 10 are operated, and the water in the hot water storage tank 158 is predetermined by the heat exchange action of the water heating heat exchanger 152. Warmed to the temperature of
[0051]
Then, the rotation of the rotating shaft 16 causes the lubricating oil stored in the bottom of the sealed container 12 to rise in the vertical oil hole 80 formed at the shaft center of the rotating shaft 16, and in the lateral direction provided in the middle. The oil flows out from the oil supply holes 82 and 84 and is supplied to the bearings 54A and 56A and the upper and lower eccentric portions 42 and 44 of the rotating shaft 16. As a result, the rotating shaft 16 and the upper and lower eccentric portions 42 and 44 can smoothly rotate.
[0052]
As described above, the thickness of the cover 66 at the portion corresponding to the opening surface of the cylinder 38 is set to be thicker than the other portions, so that the deformation strength at the thick portion of the cover 38 can be greatly increased. Accordingly, it is possible to prevent the cover 66 from being deformed even when the discharge silencing chamber 62 communicating with the inside of the cylinder 38 of the second rotary compression element 34 becomes high pressure. Therefore, since the rigidity of the cover 66 can be greatly increased, it is possible to prevent inconveniences such as recompressing the refrigerant gas leak from the discharge silencing chamber 62 and causing an increase in input.
[0053]
Further, since the cover 66 is set so that only the thickness of the portion corresponding to the opening surface of the cylinder 38 is thicker than the other portions, the weight that increases by increasing the thickness of the entire cover 66 is reduced. As a result, the rigidity of the cover 66 can be increased while minimizing the weight of the cover 66, so that the cover 66 is deformed by the high pressure of the refrigerant gas discharged from the second rotary compression element 34 into the discharge silencer chamber 62. It will be possible to easily suppress this.
[0054]
In each of the embodiments, the two-cylinder two-stage compression compressor 10 with the rotary shaft 16 as a vertical type has been described. However, the present invention is also applicable to a two-cylinder two-stage compression compressor with the rotary shaft as a horizontal type. Needless to say, you can.
[0055]
In addition, although the internal intermediate pressure type multistage compression rotary compressor has been described as a two-stage compression compressor having the first and second compression elements, the compression element is not limited to this, and the compression elements include three, four, or more compression elements. It may be applied to the multistage compression compressor provided.
[0056]
Although the two-stage compression compressor 10 is used as the hot water supply device 150, the present invention is not limited to this, and the present invention is also effective when used for indoor heating.
[0057]
In the above embodiment, the vane 50 is supported by the cylinder 38 so as to be able to advance and retreat, and a back pressure is applied so that the tip of the vane 50 is brought into contact with the outer peripheral surface of the roller and the vane and the roller 46 are moved relative to each other. Although described, the present invention is not limited to this, and is effective when applied to the compression element 170 of a two-stage compression rotary compressor as shown in FIG. Only one compression element 170 is shown. This compression element 170 is integrally provided with a vane 171 on a part of the outer periphery of the roller 172 so as to protrude toward the outer diameter direction of the roller 172, and the suction port 174 in the cylinder 173 is provided in the middle of the discharge port 175. A circular holding hole 176 such as a cylindrical shape or a spherical shape is provided in the portion, and a support body 178 having a receiving groove 178A having one end opened on the cylinder chamber 177 side is rotatably held in the holding hole 176 to support it. The protruding end portion of the vane 171 is slidably inserted into the receiving groove 178A of the body 178. The roller 172 is configured to be non-rotating so as not to rotate together with the crankshaft which is a drive shaft, and the roller 172 is revolved in the cylinder 173 by driving the rotary shaft 179. When the vane 171 is provided on a part of the outer periphery of the rotor, a mounting groove is formed on the roller 172 side so that the base end part of the vane 171 can be inserted, and the base end part of the vane 171 is formed in the mounting groove. It is inserted and integrated with an adhesive or integrated by brazing.
[0058]
【The invention's effect】
As described in detail above, according to the present invention, the cylinders constituting the rotary compression elements and the rollers that are fitted to the eccentric portions formed on the rotary shafts of the electric elements and eccentrically rotate in the cylinders, and the openings of the cylinders A support member that closes the surface and also serves as a bearing for the rotating shaft, a discharge silencer chamber that is formed on each support member and communicates with the inside of each cylinder, and is attached to each support member, and an opening in each discharge silencer chamber And a cover that closes each part, and closes the opening of the discharge silencing chamber that communicates with the inside of the cylinder of the second rotary compression element. The cover is composed of a thick part and a thin part, and the thick part is made to correspond to the discharge silencer chamber, so the thick part of the cover corresponding to the discharge silencer chamber The deformation strength of can be greatly increased. Thereby, even when the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element becomes high pressure, it is possible to prevent the cover from being deformed. Accordingly, since the rigidity of the cover can be greatly increased, it is possible to prevent inconveniences such as recompressing the leakage of refrigerant gas from the discharge silencer chamber and causing an increase in input, and an internal intermediate pressure type multistage compression type The performance of the rotary compressor can be greatly improved.
[0059]
In particular, the cover for closing the opening of the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element, Since the part corresponding to the cylinder opening surface is the thick part and the other part is the thin part, The weight that increases by increasing the thickness of the entire cover is reduced. Therefore, it is possible to increase the rigidity of the cover and suppress deformation while minimizing the weight of the cover.
[Brief description of the drawings]
FIG. 1 is a longitudinal side view of a two-stage compression compressor having first and second compression elements as an embodiment of an internal intermediate pressure multi-stage compression rotary compressor according to the present invention.
2 is a plan view of the two-stage compression compressor of FIG. 1. FIG.
FIG. 3 is a plan view of an upper cover.
4 is a view taken along the line AA of the upper cover of FIG. 3;
FIG. 5 is a plan view of an upper support member.
6 is an enlarged view showing the vicinity of the discharge port of the upper support member of FIG.
7 is a longitudinal side view showing the vicinity of the discharge port of the upper support member of FIG.
FIG. 8 is a plan view of a lower support member.
9 is an enlarged view showing the vicinity of the discharge port of the lower support member of FIG.
10 is a longitudinal side view showing the vicinity of the discharge port of the lower support member of FIG. 8;
FIG. 11 is an enlarged view of the upper and lower portion support members showing a state in which the valve body is attached.
FIG. 12 is a vertical side view of the upper support member.
13 is a rear view of the upper support member of FIG. 12. FIG.
FIG. 14 is a vertical side view of a lower support member.
15 is a rear view of the lower support member of FIG.
FIG. 16 is a back view of the high pressure side cylinder.
17 is a BB line arrow view of the high pressure side cylinder of FIG. 16;
18 is a view showing a state in which a spring is attached to a storage portion provided in the high-pressure side cylinder of FIG. 16;
FIG. 19 is a view showing a state in which a spring is attached to a spring hole provided in a low-pressure side cylinder.
20 is an illustrative view illustrating a configuration of each compression unit in FIG. 1. FIG.
21 is a plan view showing an embodiment of a rotating shaft including a vertical eccentric part in FIG. 1. FIG.
22 is a view taken along the line CC of FIG. 21. FIG.
FIG. 23 is an enlarged vertical side view of a collar portion of each refrigerant introduction pipe attached to the container body.
FIG. 24 is a front view of a sleeve.
25 is a front view of the sleeve of FIG. 24. FIG.
FIG. 26 is a front view of the tube.
FIG. 27 is a front view of a color.
FIG. 28 is a circuit diagram of a hot water supply apparatus to which the multistage compression compressor of the present invention is applied.
FIG. 29 is a schematic plan view showing a Western dance configuration of a compression element of an internal intermediate pressure two-stage compression rotary compressor according to another embodiment of the present invention.
[Explanation of symbols]
10 Two-stage compression compressor
12 Sealed container
14 Electric elements
16 Rotating shaft
18 Rotary compression mechanism
32 First rotary compression element
34 Second rotational compression element
36 Intermediate divider
38 cylinders
38A low pressure chamber side
38B High pressure chamber side
39 Discharge port
40 cylinders
40A low pressure chamber side
40B High pressure chamber side
41 Discharge port
54 Upper support member
56 Lower support member
62 Discharge silencer
64 Discharge silencer
66 Top cover
66A thick part
66B Thin section
67 steps
68 Bottom cover
150 Water heater
151 Heat source unit
152 Heat exchanger for water heating
156 Hot water tank unit
157 water pipe
158 Hot water storage tank
159 pump

Claims (1)

密閉容器内に電動要素と、該電動要素にて駆動される第1及び第2の回転圧縮要素を備え、前記第1の回転圧縮要素で圧縮されたCO2冷媒ガスを前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒ガスを前記第2の回転圧縮要素で圧縮する内部中間圧型多段圧縮式ロータリコンプレッサにおいて、
前記各回転圧縮要素をそれぞれ構成するシリンダ及び前記電動要素の回転軸に形成された偏心部に嵌合されて前記シリンダ内で偏心回転するローラと、
前記各シリンダの開口面をそれぞれ閉塞し、前記回転軸の軸受けを兼用する支持部材と、
各支持部材に形成され、前記各シリンダ内部とそれぞれ連通する吐出消音室と、
前記各支持部材にそれぞれ取り付けられ、前記各吐出消音室の開口部をそれぞれ閉塞するカバーとを備え、
前記第2の回転圧縮要素のシリンダ内部と連通する吐出消音室の開口部を閉塞するカバーは肉厚部と肉薄部とから構成されており、前記肉厚部が前記吐出消音室に対応していることを特徴とする内部中間圧型多段圧縮式ロータリコンプレッサ。
An electric element and first and second rotary compression elements driven by the electric element are provided in the sealed container, and CO 2 refrigerant gas compressed by the first rotary compression element is discharged into the sealed container. Further, in the internal intermediate pressure type multistage compression rotary compressor that compresses the discharged intermediate pressure refrigerant gas by the second rotary compression element,
A roller that is eccentrically rotated in the cylinder by being fitted to an eccentric portion formed on a rotating shaft of the cylinder and the electric element, each of which constitutes each rotary compression element;
A support member that closes the opening surface of each cylinder and also serves as a bearing for the rotating shaft;
A discharge silencer chamber formed on each support member and communicating with the interior of each cylinder;
A cover that is attached to each of the support members and closes the opening of each of the discharge silencer chambers;
The cover for closing the opening of the discharge silencing chamber communicating with the inside of the cylinder of the second rotary compression element is composed of a thick portion and a thin portion, and the thick portion corresponds to the discharge silencing chamber. internal intermediate pressure type multistage compression rotary compressor, characterized in that there.
JP2000294763A 2000-09-27 2000-09-27 Internal intermediate pressure type multi-stage compression rotary compressor Expired - Fee Related JP3738179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000294763A JP3738179B2 (en) 2000-09-27 2000-09-27 Internal intermediate pressure type multi-stage compression rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000294763A JP3738179B2 (en) 2000-09-27 2000-09-27 Internal intermediate pressure type multi-stage compression rotary compressor

Publications (2)

Publication Number Publication Date
JP2002098083A JP2002098083A (en) 2002-04-05
JP3738179B2 true JP3738179B2 (en) 2006-01-25

Family

ID=18777300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000294763A Expired - Fee Related JP3738179B2 (en) 2000-09-27 2000-09-27 Internal intermediate pressure type multi-stage compression rotary compressor

Country Status (1)

Country Link
JP (1) JP3738179B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI263762B (en) * 2002-08-27 2006-10-11 Sanyo Electric Co Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
CN100414111C (en) * 2003-05-22 2008-08-27 乐金电子(天津)电器有限公司 Noise reduction structure for closed compressor
CN102953997B (en) * 2012-10-26 2015-04-22 珠海格力电器股份有限公司 Rotary compressor with compression pump separated from motor
CN104251210A (en) * 2013-06-28 2014-12-31 珠海格力节能环保制冷技术研究中心有限公司 Compressor and pump body component thereof

Also Published As

Publication number Publication date
JP2002098083A (en) 2002-04-05

Similar Documents

Publication Publication Date Title
US7585163B2 (en) Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same
WO2001016490A1 (en) Internal intermediate pressure 2-stage compression type rotary compressor
US7985054B2 (en) Multicylindrical rotary compressor, compression system, and freezing device using the compression system
JP6605140B2 (en) Rotary compressor and refrigeration cycle apparatus
JP3738179B2 (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP3963740B2 (en) Rotary compressor
JP2006022723A (en) Compression system and refrigerating apparatus using the same
JP2003166472A (en) Compressor
JP2001153076A (en) Two-stage compression rotary compressor
JP4766872B2 (en) Multi-cylinder rotary compressor
JP2003161280A (en) Rotary compressor
JP2002098079A (en) Internal intermediate pressure type multistage compression rotary compressor
JP2002098076A (en) Rotary compressor
JP2002098081A (en) Multistage compression type compressor
JP4726444B2 (en) Multi-cylinder rotary compressor
JP2002098082A (en) Multistage compression type compressor
JP4404708B2 (en) Compression system and refrigeration system using the same
JP2006022766A (en) Multi-cylinder rotary compressor
JP2003097473A (en) Rotary compressor
JP2003184771A (en) Rotary compressor
JP2006169979A (en) Compression system and refrigerating unit using this compression system
JP2003129977A (en) Rotary compressor
JP2006052693A (en) Multi-cylinder rotary compressor and compression system in which the compressor is used
JP2003106276A (en) Two-stage compression type rotary compressor
JP2006009756A (en) Compression system and refrigerating device using the same

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050331

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051031

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees