JP3736991B2 - Active anti-vibration support device - Google Patents

Active anti-vibration support device Download PDF

Info

Publication number
JP3736991B2
JP3736991B2 JP17287199A JP17287199A JP3736991B2 JP 3736991 B2 JP3736991 B2 JP 3736991B2 JP 17287199 A JP17287199 A JP 17287199A JP 17287199 A JP17287199 A JP 17287199A JP 3736991 B2 JP3736991 B2 JP 3736991B2
Authority
JP
Japan
Prior art keywords
armature
liquid chamber
movable member
orifice
support device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17287199A
Other languages
Japanese (ja)
Other versions
JP2001001765A (en
Inventor
浩臣 根本
英樹 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP17287199A priority Critical patent/JP3736991B2/en
Priority to US09/594,709 priority patent/US6422546B1/en
Publication of JP2001001765A publication Critical patent/JP2001001765A/en
Application granted granted Critical
Publication of JP3736991B2 publication Critical patent/JP3736991B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、振動体の荷重を受ける弾性体と、弾性体が少なくとも壁面の一部を構成する液室と、液室の容積を変化させる可動部材と、可動部材の反液室側に接続されたアーマチュアをコイルが発生する電磁力で反液室側に吸引して駆動するアクチュエータとを備えた能動型防振支持装置に関する。
【0002】
【従来の技術】
かかる能動型防振支持装置は、特開平10−110771号公報により公知である。
【0003】
この能動型防振支持装置は、液室の容積を変化させる可動部材が、外周部をケースに固定された円板状の板ばねで構成されており、アクチュエータのコイルにより駆動されるアーマチュアは特別の軸受けを持たずに、可動部材の中央部下面に直接固定されて支持されている。そしてコイルの励磁によりアーマチュアを吸引して、このアーマチュアと一体に結合された前記可動部材を軸線に沿う方向に往復駆動するようになっている。
【0004】
【発明が解決しようとする課題】
ところで、上記従来の能動型防振支持装置は、液室の容積を変化させる可動部材が液室内の液体から受ける偏荷重によって前記軸線から偏倚すると、アーマチュアが軸受けで支持されていないために、可動部材と一体のアーマチュアも前記軸線に対して傾いてしまう。従って、アーマチュアが傾いてもヨークに接触しないようにエアギャップを大きく設定することが必要になり、結果として磁気回路の特性が悪化してしまう。この問題を解消するには、コイルを大型化して発生可能な磁力を増加させれば良いが、このようにするとコイルの消費電力が増加してしまう。
【0005】
そこで、アーマチュアが前記軸線に沿って移動するようにベアリングで支持し、アーマチュアの傾きによるヨークとの接触を回避することが考えられるが、このようにすると、可動部材から受ける偏荷重でアーマチュアとベアリングとの間にこじりが発生し、ベアリングが早期に摩耗してアクチュエータの耐久性が低下するという問題が発生する。
【0006】
本発明は前述の事情に鑑みてなされたもので、能動型防振支持装置において、可動部材を駆動するアクチュエータの耐久性を低下させることなく消費電力の低減を図ることを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、振動体の荷重を受ける弾性体と、弾性体が少なくとも壁面の一部を構成する液室と、液室の容積を変化させる可動部材と、可動部材の反液室側に接続されたアーマチュアをコイルが発生する電磁力で反液室側に吸引して駆動するアクチュエータとを備えた能動型防振支持装置において、アーマチュアをベアリングによって支持するとともに、可動部材と一体の連結ロッドの先端がアーマチュアを緩く貫通して該アーマチュアに係止され、アーマチュアに対して可動部材を液室側に付勢するばねの弾発力で前記係止が保持されることを特徴とする能動型防振支持装置が提案される。
【0008】
上記構成によれば、アクチュエータのアーマチュアをベアリングによって支持したので、アーマチュアの振れを防止してアクチュエータのエアギャップを最適の大きさに設定することが可能になり、コイルを小型化して消費電力を削減することができる。しかも可動部材と一体の連結ロッドが可動部材の反液室側に接続されたアーマチュアを緩く貫通した先端を、アーマチュアに対して可動部材を液室側に付勢するばねの弾発力でアーマチュアに係止したので、コイルがアマチュアを反液室側に吸引して駆動する際には、前記係止によってアマチュアと連結ロッドとを確実に一体化することができ、また液室から受ける荷重で可動部材に振れが発生しても、ばねが変形することで前記振れが直接アーマチュアに伝達されないようにしてベアリングの偏摩耗を防止し、アクチュエータの耐久性および信頼性を高めることができる。
【0009】
尚、実施例のエンジンEは本発明の振動体に対応し、実施例の第1弾性体14は本発明の弾性体に対応し、実施例の第1液室24は本発明の液室に対応し、実施例の皿ばね42は本発明のばねに対応する。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0011】
図1〜図4は本発明の一実施例を示すもので、図1は能動型防振支持装置の縦断面図、図2は図1の2−2線断面図、図3は図1の3−3線断面図、図4は図1の要部拡大図である。
【0012】
図1〜図4に示す能動型防振支持装置Mは、自動車のエンジンEを車体フレームFに弾性的に支持するためのもので、エンジン回転数を検出するエンジン回転数センサS1 と、該能動型防振支持装置Mに入力される荷重を検出する荷重センサS2 と、エンジンEに作用する加速度を検出する加速度センサS3 とが接続された電子制御ユニットUによって制御される。
【0013】
能動型防振支持装置Mは軸線Lに関して実質的に軸対称な構造を有するもので、エンジンEに結合される板状の取付ブラケット11に溶接した内筒12と、この内筒12の外周に同軸に配置された外筒13とを備えており、内筒12および外筒13には厚肉のゴムで形成した第1弾性体14の上端および下端がそれぞれが加硫接着により接合される。中央に開口152 を有する円板状の第1オリフィス形成部材15と、上面が開放した樋状の断面を有して環状に形成された第2オリフィス形成部材16と、同じく上面が開放した樋状の断面を有して環状に形成された第3オリフィス形成部材17とが溶接により一体化されており、第1オリフィス形成部材15および第2オリフィス形成部材16の外周部が重ね合わされて前記外筒13の下部に設けたカシメ固定部131 に固定される。
【0014】
膜状のゴムで形成された第2弾性体18の外周が第3オリフィス形成部材17の内周に加硫接着により固定されており、この第2弾性体18の内周に加硫接着により固定されたキャップ部材19が、軸線L上に上下動可能に配置された可動部材20に圧入により固定される。外筒13のカシメ固定部131 に固定されたリング部材21にダイヤフラム22の外周が加硫接着により固定されており、このダイヤフラム22の内周に加硫接着により固定されたキャップ部材23が前記可動部材20に圧入により固定される。
【0015】
而して、第1弾性体14および第2弾性体18間に液体が封入された第1液室24が区画され、第2弾性体18およびダイヤフラム22間に液体が封入された第2液室25が区画される。そして第1液室24および第2液室25は、第1〜第3オリフィス形成部材15,16,17により形成された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0016】
上部オリフィス26は第1オリフィス形成部材15および第2オリフィス形成部材16間に形成される環状の通路であって、その一部に設けられた隔壁261 の一側において第1オリフィス形成部材15に連通孔151 が形成され、前記隔壁261 の他側において第2オリフィス形成部材16に連通孔161 が形成される。従って、上部オリフィス26は、第1オリフィス形成部材15の連通孔151 から第2オリフィス形成部材16の連通孔161 までの略1周の範囲に亘って形成される(図2参照)。
【0017】
下部オリフィス27は第2オリフィス形成部材16および第3オリフィス形成部材17間に形成される環状の通路であって、その一部に設けられた隔壁271 の一側において第2オリフィス形成部材16に前記連通孔161 が形成され、前記隔壁271 の他側において第3オリフィス形成部材17に連通孔171 が形成される。従って、下部オリフィス27は、第2オリフィス形成部材16の連通孔161 から第3オリフィス形成部材17の連通孔171 までの略1周の範囲に亘って形成される(図3参照)。
【0018】
以上のことから、第1液室24および第2液室25は、直列に接続された上部オリフィス26および下部オリフィス27によって相互に連通する。
【0019】
外筒13のカシメ固定部131 には、能動型防振支持装置Mを車体フレームFに固定するための環状の取付ブラケット28が固定されており、この取付ブラケット28の下面に前記可動部材20を駆動するためのアクチュエータ29を支持するアクチュエータ支持部材30が溶接される。
【0020】
アクチュエータ支持部材30にはヨーク32が固定されており、ボビン33に巻き付けられたコイル34が前記ヨーク32の内部に形成された空間に収納されてスプリングワッシャ35で固定される。環状のコイル34の内周に嵌合するヨーク32の筒状部321 にベアリング36が下方から嵌合し、ネジ蓋37により固定される。コイル34の上面に対向する円板状のアーマチュア38の中心から下方に延びる筒状の軸部381 が、前記ベアリング36に上下摺動自在に支持される。
【0021】
アーマチュア38の軸部381 の上部に連結ロッド39が隙間αを存して緩く嵌合しており、この連結ロッド39を下方から上方に貫通するボルト40が前記可動部材20に締結される。ボルト40の頭部401 はベアリング36の底面との間に配置したコイルばね41で上向きに付勢され、軸部381 の内周面に形成した段部382 に当接する。そして連結ロッド39に形成した段部391 と軸部381 の上面との間に皿ばね42が配置される。従って、可動部材20と一体の連結ロッド39は、コイルばね41および皿ばね42の弾発力でアーマチュア29に連結され、図4に矢印で示す偏荷重が作用すると、軸線Lから外れるように首を振ることができる。
【0022】
アクチュエータ29のコイル34が消磁状態にあるときのアーマチュア38には、コイルばね41の弾発力がボルト40の頭部401 を介して上向きに作用するとともに、液体の圧力および第2弾性体18の弾発力が下向きに作用しており、それら上下方向の力が釣り合う中立位置に停止している。この状態で、ヨーク32の上面開口に形成された円錐状のストッパ面322 と、それに対向するようにアーマチュア38の外周に形成された円錐状のストッパ面383 との間にエアギャップβが形成される。
【0023】
而して、自動車の走行中に低周波数のエンジンシェイク振動が発生したとき、エンジンEから入力される荷重で第1弾性体14が変形して第1液室24の容積が変化すると、上部オリフィス26および下部オリフィス27を介して接続された第1液室24および第2液室25間で液体が行き来する。第1液室24の容積が拡大・縮小すると、それに応じて第2液室25の容積が縮小・拡大するが、この第2液室25の容積変化はダイヤフラム22の弾性変形により吸収される。このとき、上部オリフィス26および下部オリフィス27の形状および寸法、並びに第1弾性体14のばね定数は前記エンジンシェイク振動の周波数領域で高ばね定数および高減衰力を示すように設定されているため、エンジンEから車体フレームFに伝達される振動を効果的に低減することができる。
【0024】
尚、上記エンジンシェイク振動の周波数領域では、アクチュエータ29は非作動状態に保たれる。
【0025】
前記エンジンシェイク振動よりも周波数の高い振動、即ちエンジンEのクランクシャフトの回転に起因するアイドル振動やこもり音振動が発生した場合、第1液室24および第2液室25を接続する上部オリフィス26および下部オリフィス27内の液体はスティック状態になって防振機能を発揮できなくなるため、アクチュエータ29を駆動して防振機能を発揮させる。
【0026】
電子制御ユニットUはエンジン回転数センサS1 、荷重センサS2 および加速度センサS3 からの信号に基づいてアクチュエータ29のコイル34に対する通電を制御する。具体的には、振動によってエンジンEが下方に偏倚して第1液室24の容積が減少して液圧が増加するときには、コイル34を励磁してアーマチュア38を吸引する。その結果、アーマチュア38はコイルばね41を圧縮しながら可動部材20と共に下方に移動し、可動部材20に内周を接続された第2弾性体18を下方に変形させる。これにより、第1液室24の容積が増加して液圧の増加を抑制するため、能動型防振支持装置MはエンジンEから車体フレームFへの下向きの荷重伝達を防止する能動的な支持力を発生する。
【0027】
逆に振動によってエンジンEが上方に偏倚して第1液室24の容積が増加して液圧が減少するときには、コイル34を消磁してアーマチュア38を吸引を解除する。その結果、アーマチュア38はコイルばね41の弾発力で可動部材20と共に上方に移動し、可動部材20に内周を接続された第2弾性体18を上方に変形させる。これにより、第1液室24の容積が減少して液圧の減少を抑制するため、能動型防振支持装置MはエンジンEから車体フレームFへの上向きの荷重伝達を防止する能動的な支持力を発生する。
【0028】
さて、アクチュエータ29の作動中に上下方向に往復移動するアーマチュア38は、その軸部381 がヨーク32に固定したベアリング36によって摺動自在に支持されるため、左右方向に振れることなく軸線Lに沿う正しい姿勢に保持される。従ってアーマチュア38とヨーク2とのエアギャップβを小さく設定することが可能になり、コイル34を必要最小限に小型化して消費電力を節減することができる。
【0029】
また可動部材20が上下方向に往復移動する際に、第2弾性体18やダイヤフラム22が液体から横方向の偏荷重を受けても、第2弾性体18やダイヤフラム22を支持する可動部材20と一体の連結ロッド39と、アーマチュア38の軸部381 との間に隙間αが形成されているため、連結ロッド39はコイルばね41および皿ばね42を変形させながら図4の矢印方向に首を振ることが可能となる。これにより、可動部材20の振れがアーマチュア38に直接伝達されなくなり、アーマチュア38の軸部381 を支持するベアリング36の摩耗を防止してアクチュエータ29の耐久性および信頼性を高めることができる。
【0030】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0031】
例えば、実施例では自動車のエンジンEを支持する能動型防振支持装置Mを例示したが、本発明の能動型防振支持装置は工作機械等の他の振動体の支持に適用することができる。また能動型防振支持装置Mによってエンジンシェイク領域の振動を低減する必要がない場合には、第2液室25、上部オリフィス26、下部オリフィス27およびダイヤフラム22は省略可能である。
【0032】
【発明の効果】
以上のように請求項1に記載された発明によれば、アクチュエータのアーマチュアをベアリングによって支持したので、アーマチュアの振れを防止してアクチュエータのエアギャップを最適の大きさに設定することが可能になり、コイルを小型化して消費電力を削減することができる。しかも可動部材と一体の連結ロッドが可動部材の反液室側に接続されたアーマチュアを緩く貫通した先端を、アーマチュアに対して可動部材を液室側に付勢するばねの弾発力でアーマチュアに係止したので、コイルがアマチュアを反液室側に吸引して駆動する際には、前記係止によってアマチュアと連結ロッドとを確実に一体化することができ、また液室から受ける荷重で可動部材に振れが発生しても、ばねが変形することで前記振れが直接アーマチュアに伝達されないようにしてベアリングの偏摩耗を防止し、アクチュエータの耐久性および信頼性を高めることができる。
【図面の簡単な説明】
【図1】 能動型防振支持装置の縦断面図
【図2】 図1の2−2線断面図
【図3】 図1の3−3線断面図
【図4】 図1の要部拡大図
【符号の説明】
E エンジン(振動体)
14 第1弾性体(弾性体)
20 可動部材
24 第1液室(液室)
29 アクチュエータ
34 コイル
36 ベアリング
38 アーマチュア
42 皿ばね(ばね)
[0001]
BACKGROUND OF THE INVENTION
The present invention is connected to an elastic body that receives a load of a vibrating body, a liquid chamber in which the elastic body forms at least a part of a wall surface, a movable member that changes the volume of the liquid chamber, and a counter liquid chamber side of the movable member. The present invention relates to an active vibration isolating support device including an actuator that attracts and drives the armature to the counter liquid chamber side by electromagnetic force generated by a coil.
[0002]
[Prior art]
Such an active vibration isolating support device is known from JP-A-10-110771.
[0003]
In this active type anti-vibration support device, the movable member that changes the volume of the liquid chamber is composed of a disc-shaped plate spring whose outer peripheral portion is fixed to the case, and the armature driven by the coil of the actuator is special. Without having a bearing, it is directly fixed and supported on the lower surface of the central portion of the movable member. The armature is attracted by the excitation of the coil, and the movable member integrally coupled with the armature is reciprocated in the direction along the axis.
[0004]
[Problems to be solved by the invention]
By the way, the above-described conventional active vibration isolating support device is movable because the armature is not supported by the bearing when the movable member that changes the volume of the liquid chamber deviates from the axis due to the bias load received from the liquid in the liquid chamber. The armature integrated with the member is also inclined with respect to the axis. Therefore, it is necessary to set a large air gap so that the armature does not come into contact with the yoke even if the armature is tilted. As a result, the characteristics of the magnetic circuit are deteriorated. In order to solve this problem, it is only necessary to increase the magnetic force that can be generated by enlarging the coil, but if this is done, the power consumption of the coil will increase.
[0005]
Therefore, it is conceivable that the armature is supported by a bearing so as to move along the axis, and the contact with the yoke due to the inclination of the armature is avoided. A problem arises in that the bearings wear early and the durability of the actuator decreases.
[0006]
The present invention has been made in view of the above-described circumstances, and an object thereof is to reduce power consumption without reducing the durability of an actuator that drives a movable member in an active vibration-proof support device.
[0007]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, an elastic body that receives the load of the vibrating body, a liquid chamber in which the elastic body forms at least a part of the wall surface, and a volume of the liquid chamber An active vibration isolating support device comprising: a movable member to be changed; and an actuator that drives an armature connected to the anti-liquid chamber side of the movable member by attracting the armature to the anti-liquid chamber side by electromagnetic force generated by a coil. Is supported by the bearing, and the tip of the connecting rod integral with the movable member penetrates the armature loosely and is locked by the armature, and the spring is used to urge the movable member toward the liquid chamber with respect to the armature. An active vibration isolating support device is proposed in which the locking is held.
[0008]
According to the above configuration, since the armature of the actuator is supported by the bearing, the armature can be prevented from swinging and the actuator air gap can be set to an optimum size, and the coil can be reduced in size to reduce power consumption. can do. In addition, the connecting rod integral with the movable member loosely penetrates the armature connected to the anti-fluid chamber side of the movable member, and the armature is applied to the armature by the elastic force of the spring urging the movable member toward the liquid chamber side with respect to the armature Since the coil is driven by sucking the armature to the anti-liquid chamber side, the armature and the connecting rod can be reliably integrated by the above-mentioned locking, and can be moved by the load received from the liquid chamber. Even if a vibration occurs in the member, the deformation of the spring prevents the vibration from being directly transmitted to the armature, thereby preventing uneven wear of the bearing and improving the durability and reliability of the actuator.
[0009]
The engine E of the embodiment corresponds to the vibrating body of the present invention, the first elastic body 14 of the embodiment corresponds to the elastic body of the present invention, and the first liquid chamber 24 of the embodiment corresponds to the liquid chamber of the present invention. Correspondingly, the disc spring 42 of the embodiment corresponds to the spring of the present invention.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0011]
1 to 4 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of an active vibration isolating support device, FIG. 2 is a sectional view taken along line 2-2 in FIG. 1, and FIG. FIG. 4 is a sectional view taken along line 3-3, and FIG.
[0012]
The active vibration isolating support device M shown in FIGS. 1 to 4 is for elastically supporting the engine E of the automobile on the vehicle body frame F, and includes an engine speed sensor S 1 for detecting the engine speed, It is controlled by an electronic control unit U to which a load sensor S 2 for detecting a load input to the active vibration isolating support device M and an acceleration sensor S 3 for detecting an acceleration acting on the engine E are connected.
[0013]
The active vibration isolating support device M has a substantially axisymmetric structure with respect to the axis L, and has an inner cylinder 12 welded to a plate-like mounting bracket 11 coupled to the engine E, and an outer periphery of the inner cylinder 12. The outer cylinder 13 is coaxially arranged, and the upper and lower ends of the first elastic body 14 made of thick rubber are joined to the inner cylinder 12 and the outer cylinder 13 by vulcanization adhesion. A first orifice forming member 15 disc-shaped having an opening 15 2 in the center, a second orifice-forming member 16 which is formed in an annular shape having a top surface and a gutter-shaped cross section opening, also has an upper surface opened gutter A third orifice forming member 17 having a circular cross section and formed in an annular shape is integrated by welding, and the outer circumferences of the first orifice forming member 15 and the second orifice forming member 16 are overlapped to overlap the outer surface. It is fixed to the caulking portion 13 1 which is provided in the lower portion of the tube 13.
[0014]
The outer periphery of the second elastic body 18 formed of film-like rubber is fixed to the inner periphery of the third orifice forming member 17 by vulcanization adhesion, and is fixed to the inner periphery of the second elastic body 18 by vulcanization adhesion. The cap member 19 is fixed by press-fitting to the movable member 20 arranged on the axis L so as to be movable up and down. The outer periphery of the diaphragm 22 to the caulking portion 13 the ring member 21 fixed to one of the outer cylinder 13 is fixed by vulcanization adhesion, a cap member 23 which is fixed by the inner periphery vulcanization bonding of the diaphragm 22 is the It is fixed to the movable member 20 by press fitting.
[0015]
Thus, a first liquid chamber 24 in which a liquid is sealed is defined between the first elastic body 14 and the second elastic body 18, and a second liquid chamber in which a liquid is sealed between the second elastic body 18 and the diaphragm 22. 25 is defined. The first liquid chamber 24 and the second liquid chamber 25 communicate with each other through the upper orifice 26 and the lower orifice 27 formed by the first to third orifice forming members 15, 16, and 17.
[0016]
The upper orifice 26 a passage annular formed between the first orifice-forming member 15 and the second orifice-forming member 16, the first orifice-forming member 15 on one side of the partition wall 26 1 provided in a part thereof communication hole 15 1 is formed, the communication hole 16 1 is formed in the second orifice-forming member 16 at the other side of the partition wall 26 1. Therefore, the upper orifice 26 is formed over substantially one round in the range of the communicating hole 15 1 of the first orifice-forming member 15 to the communicating hole 16 1 of the second orifice-forming member 16 (see FIG. 2).
[0017]
The lower orifice 27 a passage annular formed between the second orifice-forming member 16 and the third orifice-forming member 17, the second orifice-forming member 16 on one side of the partition wall 27 1 provided in a part thereof the communication hole 16 1 is formed, the communication hole 17 1 is formed in the third orifice-forming member 17 at the other side of the partition wall 27 1. Accordingly, the lower orifice 27 is formed over substantially one round in the range of the communication hole 16 1 of the second orifice-forming member 16 to the communicating hole 17 1 of the third orifice-forming member 17 (see FIG. 3).
[0018]
From the above, the first liquid chamber 24 and the second liquid chamber 25 communicate with each other by the upper orifice 26 and the lower orifice 27 connected in series.
[0019]
The caulked portion 13 1 of the outer cylinder 13, an annular mounting bracket 28 for fixing the active vibration isolation support system M to the vehicle body frame F is fixed, the movable member 20 to the lower surface of the mounting bracket 28 The actuator support member 30 that supports the actuator 29 for driving the motor is welded.
[0020]
A yoke 32 is fixed to the actuator support member 30, and a coil 34 wound around the bobbin 33 is housed in a space formed inside the yoke 32 and fixed by a spring washer 35. A bearing 36 is fitted from below to a cylindrical portion 32 1 of the yoke 32 fitted to the inner periphery of the annular coil 34 and fixed by a screw lid 37. Shaft portion 38 1 from central tubular extending below the disc-shaped armature 38 facing the upper surface of the coil 34 is vertically slidably supported by the bearing 36.
[0021]
A connecting rod 39 is loosely fitted to the upper portion of the shaft portion 38 1 of the armature 38 with a gap α, and a bolt 40 penetrating the connecting rod 39 upward from below is fastened to the movable member 20. The head portion 40 1 of the bolt 40 is urged upward by a coil spring 41 disposed between the bottom surface of the bearing 36 and abuts against a step portion 38 2 formed on the inner peripheral surface of the shaft portion 38 1 . A disc spring 42 is disposed between the step 39 1 formed on the connecting rod 39 and the upper surface of the shaft 38 1 . Therefore, the connecting rod 39 integrated with the movable member 20 is connected to the armature 29 by the elastic force of the coil spring 41 and the disc spring 42, and when the eccentric load shown by the arrow in FIG. Can be shaken.
[0022]
In the armature 38 when the coil 34 of the actuator 29 is in a demagnetized state, the elastic force of the coil spring 41 acts upward via the head 40 1 of the bolt 40, and the pressure of the liquid and the second elastic body 18. The elastic force is acting downward, and it stops at the neutral position where the forces in the vertical direction are balanced. In this state, there is an air gap β between the conical stopper surface 32 2 formed in the upper surface opening of the yoke 32 and the conical stopper surface 38 3 formed on the outer periphery of the armature 38 so as to oppose it. It is formed.
[0023]
Thus, when low-frequency engine shake vibration is generated while the automobile is running, the first orifice 14 is deformed by the load input from the engine E and the volume of the first liquid chamber 24 is changed. The liquid flows back and forth between the first liquid chamber 24 and the second liquid chamber 25 connected via the H. 26 and the lower orifice 27. When the volume of the first liquid chamber 24 is enlarged / reduced, the volume of the second liquid chamber 25 is reduced / expanded accordingly, but the volume change of the second liquid chamber 25 is absorbed by the elastic deformation of the diaphragm 22. At this time, the shape and size of the upper orifice 26 and the lower orifice 27 and the spring constant of the first elastic body 14 are set so as to exhibit a high spring constant and a high damping force in the frequency region of the engine shake vibration. Vibration transmitted from the engine E to the vehicle body frame F can be effectively reduced.
[0024]
In the frequency region of the engine shake vibration, the actuator 29 is kept in an inoperative state.
[0025]
When vibration having a frequency higher than the engine shake vibration, that is, idle vibration or booming sound vibration caused by rotation of the crankshaft of the engine E occurs, the upper orifice 26 connecting the first liquid chamber 24 and the second liquid chamber 25. Since the liquid in the lower orifice 27 is in a stick state and cannot exhibit the anti-vibration function, the actuator 29 is driven to exhibit the anti-vibration function.
[0026]
The electronic control unit U controls energization to the coil 34 of the actuator 29 based on signals from the engine speed sensor S 1 , the load sensor S 2 and the acceleration sensor S 3 . Specifically, when the engine E is biased downward due to vibration and the volume of the first fluid chamber 24 decreases and the fluid pressure increases, the coil 34 is excited to attract the armature 38. As a result, the armature 38 moves downward together with the movable member 20 while compressing the coil spring 41, and deforms the second elastic body 18 connected to the inner periphery of the movable member 20 downward. As a result, since the volume of the first fluid chamber 24 is increased and the increase in fluid pressure is suppressed, the active vibration isolating support device M is an active support that prevents downward load transmission from the engine E to the vehicle body frame F. Generate power.
[0027]
On the contrary, when the engine E is biased upward due to vibration and the volume of the first liquid chamber 24 increases and the hydraulic pressure decreases, the coil 34 is demagnetized to release the suction of the armature 38. As a result, the armature 38 moves upward together with the movable member 20 by the elastic force of the coil spring 41, and deforms the second elastic body 18 connected to the inner periphery of the movable member 20 upward. As a result, since the volume of the first fluid chamber 24 is reduced and the decrease in fluid pressure is suppressed, the active vibration isolating support device M is an active support that prevents upward load transmission from the engine E to the vehicle body frame F. Generate power.
[0028]
Now, the armature 38 to reciprocate in the vertical direction during operation of the actuator 29, since the shaft portion 38 1 is slidably supported by a bearing 36 fixed to the yoke 32, the axis L without swinging in the lateral direction It is held in the correct posture. Therefore, the air gap β between the armature 38 and the yoke 2 can be set small, and the coil 34 can be miniaturized to the minimum necessary to reduce power consumption.
[0029]
Further, when the movable member 20 reciprocates in the vertical direction, even if the second elastic body 18 and the diaphragm 22 receive a lateral load from the liquid, the movable member 20 that supports the second elastic body 18 and the diaphragm 22 Since the gap α is formed between the integral connecting rod 39 and the shaft portion 38 1 of the armature 38, the connecting rod 39 deforms the coil spring 41 and the disc spring 42 and has its neck in the direction of the arrow in FIG. It can be shaken. As a result, the vibration of the movable member 20 is not directly transmitted to the armature 38, and wear of the bearing 36 that supports the shaft portion 38 1 of the armature 38 can be prevented to improve the durability and reliability of the actuator 29.
[0030]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0031]
For example, in the embodiment, the active vibration isolation support device M that supports the engine E of the automobile is illustrated, but the active vibration isolation support device of the present invention can be applied to support other vibration bodies such as machine tools. . Further, when it is not necessary to reduce the vibration in the engine shake region by the active vibration isolating support device M, the second liquid chamber 25, the upper orifice 26, the lower orifice 27, and the diaphragm 22 can be omitted.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, since the armature of the actuator is supported by the bearing, it is possible to prevent the armature from swinging and set the air gap of the actuator to an optimum size. The coil can be miniaturized to reduce power consumption. In addition, the connecting rod integrated with the movable member loosely penetrates the armature connected to the anti-fluid chamber side of the movable member, and the armature is urged by the elastic force of the spring that urges the movable member toward the liquid chamber with respect to the armature. Since the coil is driven by sucking the armature to the anti-liquid chamber side, the armature and the connecting rod can be reliably integrated by the above-mentioned locking, and can be moved by the load received from the liquid chamber. Even if a vibration occurs in the member, the deformation of the spring prevents the vibration from being directly transmitted to the armature, thereby preventing uneven wear of the bearing and improving the durability and reliability of the actuator.
[Brief description of the drawings]
1 is a longitudinal sectional view of an active vibration isolating support device. FIG. 2 is a sectional view taken along line 2-2 in FIG. 1. FIG. 3 is a sectional view taken along line 3-3 in FIG. Figure [Explanation of symbols]
E Engine (vibrating body)
14 First elastic body (elastic body)
20 movable member 24 first liquid chamber (liquid chamber)
29 Actuator 34 Coil 36 Bearing 38 Armature 42 Belleville Spring (Spring)

Claims (1)

振動体(E)の荷重を受ける弾性体(14)と、
弾性体(14)が少なくとも壁面の一部を構成する液室(24)と、
液室(24)の容積を変化させる可動部材(20)と、
可動部材(20)の反液室(24)側に接続されたアーマチュア(38)をコイル(34)が発生する電磁力で反液室(24)側に吸引して駆動するアクチュエータ(29)と、
を備えた能動型防振支持装置において、
アーマチュア(38)をベアリング(36)によって支持するとともに、可動部材(20)と一体の連結ロッド(39)の先端がアーマチュア(38)を緩く貫通して該アーマチュア(38)に係止され、アーマチュア(38)に対して可動部材(20)を液室(24)側に付勢するばね(42)の弾発力で前記係止が保持されることを特徴とする能動型防振支持装置。
An elastic body (14) that receives a load of the vibrating body (E);
A liquid chamber (24) in which the elastic body (14) constitutes at least a part of the wall surface;
A movable member (20) for changing the volume of the liquid chamber (24);
An actuator (29) for driving the armature (38) connected to the counter liquid chamber (24) side of the movable member (20) by attracting the armature (38) to the counter liquid chamber (24) side by electromagnetic force generated by the coil (34); ,
In an active vibration isolating support device comprising:
The armature (38) is supported by the bearing (36), and the tip of the connecting rod (39) integral with the movable member (20) passes through the armature (38) loosely and is locked to the armature (38). An active vibration isolating support device, wherein the locking is held by the elastic force of a spring (42) that urges the movable member (20) toward the liquid chamber (24 ) with respect to (38).
JP17287199A 1999-06-18 1999-06-18 Active anti-vibration support device Expired - Lifetime JP3736991B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17287199A JP3736991B2 (en) 1999-06-18 1999-06-18 Active anti-vibration support device
US09/594,709 US6422546B1 (en) 1999-06-18 2000-06-16 Active vibration isolating support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17287199A JP3736991B2 (en) 1999-06-18 1999-06-18 Active anti-vibration support device

Publications (2)

Publication Number Publication Date
JP2001001765A JP2001001765A (en) 2001-01-09
JP3736991B2 true JP3736991B2 (en) 2006-01-18

Family

ID=15949859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17287199A Expired - Lifetime JP3736991B2 (en) 1999-06-18 1999-06-18 Active anti-vibration support device

Country Status (1)

Country Link
JP (1) JP3736991B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174990A (en) * 2009-01-29 2010-08-12 Tokai Rubber Ind Ltd Fluid-sealed active vibration control device
CN111911581A (en) * 2020-07-29 2020-11-10 同济大学 Compact low-friction moving-magnetic active suspension structure

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040052040A (en) * 2002-12-13 2004-06-19 현대자동차주식회사 ProPeller Shaft Assembly of Automobile
US6994332B2 (en) 2003-03-26 2006-02-07 Tokai Rubber Industries, Ltd. Active vibration damping actuator and active damping apparatus using the same
US7066454B2 (en) 2003-03-26 2006-06-27 Keihin Corporation Active type vibration isolating support system
JP4058685B2 (en) 2003-03-26 2008-03-12 東海ゴム工業株式会社 Fluid filled vibration isolator
US6972500B2 (en) 2003-03-26 2005-12-06 Keihin Corporation Electromagnetic actuator
US7128311B2 (en) 2003-03-26 2006-10-31 Tokai Rubber Industries, Ltd. Active vibration damping actuator and active damping apparatus using the same
JP3845421B2 (en) 2004-03-23 2006-11-15 株式会社ケーヒン Electromagnetic actuator
JP3972210B2 (en) 2004-06-15 2007-09-05 東海ゴム工業株式会社 Fluid filled active vibration isolator
JP4120828B2 (en) 2004-06-30 2008-07-16 東海ゴム工業株式会社 Fluid filled active vibration isolator
JP4648131B2 (en) * 2005-08-26 2011-03-09 本田技研工業株式会社 Active anti-vibration support device
JP5899297B1 (en) * 2014-11-26 2016-04-06 住友理工株式会社 Vibration-proof electromagnetic actuator and manufacturing method thereof, active fluid-filled vibration-proof device and vibration-proof device using vibration-proof electromagnetic actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174990A (en) * 2009-01-29 2010-08-12 Tokai Rubber Ind Ltd Fluid-sealed active vibration control device
CN111911581A (en) * 2020-07-29 2020-11-10 同济大学 Compact low-friction moving-magnetic active suspension structure

Also Published As

Publication number Publication date
JP2001001765A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
US6422546B1 (en) Active vibration isolating support device
JP3736991B2 (en) Active anti-vibration support device
JP4284399B2 (en) Anti-vibration support device for engine
JP3803603B2 (en) Actuator drive control method for active vibration isolation support device
JP3706769B2 (en) Active anti-vibration support device
JP3819876B2 (en) Actuator drive controller for active anti-vibration support device
JP5028390B2 (en) Active anti-vibration support device
JPH10331907A (en) Vibration isolator
JP2001003981A (en) Active vibration isolating support device
JP3660163B2 (en) Active anti-vibration support device
JP4078321B2 (en) Active anti-vibration support device
JP2007057074A (en) Active vibration control supporting device
JP4110015B2 (en) Actuator drive controller for active anti-vibration support device
JP3715213B2 (en) Active anti-vibration support device
JP2001001766A5 (en)
JP2005249013A (en) Active vibration-control support device
JP2006207633A (en) Active vibration control supporting device
JP4110048B2 (en) Actuator drive controller for active anti-vibration support device
JP2001001766A (en) Active vibration isolating support system
JP2004036435A (en) Control method for preventing vibration of cylinder rest engine
JP4065152B2 (en) Engine vibration prevention control device
JP2005280687A (en) Vibrationproofing control device of engine and vibrationproofing control device of vehicle
JP4929092B2 (en) Anti-vibration support device for engine
JPH116540A (en) Vibration isolation device
JP2005256931A (en) Active vibration isolation support device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Ref document number: 3736991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

EXPY Cancellation because of completion of term