JP3736205B2 - Battery power storage device - Google Patents

Battery power storage device Download PDF

Info

Publication number
JP3736205B2
JP3736205B2 JP15779799A JP15779799A JP3736205B2 JP 3736205 B2 JP3736205 B2 JP 3736205B2 JP 15779799 A JP15779799 A JP 15779799A JP 15779799 A JP15779799 A JP 15779799A JP 3736205 B2 JP3736205 B2 JP 3736205B2
Authority
JP
Japan
Prior art keywords
battery
voltage
charging
cell
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15779799A
Other languages
Japanese (ja)
Other versions
JP2000350378A (en
JP2000350378A5 (en
Inventor
正芳 後藤
敏夫 郷内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP15779799A priority Critical patent/JP3736205B2/en
Publication of JP2000350378A5 publication Critical patent/JP2000350378A5/ja
Publication of JP2000350378A publication Critical patent/JP2000350378A/en
Application granted granted Critical
Publication of JP3736205B2 publication Critical patent/JP3736205B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion electric or electronic aspects
    • Y02E10/566Power conversion electric or electronic aspects concerning power management inside the plant, e.g. battery charging/discharging, economical operation, hybridisation with other energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7038Energy storage management
    • Y02T10/7055Controlling vehicles with more than one battery or more than one capacitor

Description

【0001】 [0001]
【発明の属する技術分野】 BACKGROUND OF THE INVENTION
この発明は、例えば低高度衛星用電源装置及び電気自動車用電源装置等に使用されるバッテリ蓄電装置に関するものである。 The present invention relates to a battery power storage device to be used, for example, lower altitude satellite power supply and electric vehicle power supply device and the like.
なおここでは説明の便宜上、低高度衛星用電源装置について説明する。 Note the sake of convenience, it will be described the power supply device for a low-altitude satellites.
【0002】 [0002]
図6は、従来のNiCd(ニッケルカドミウム)バッテリ等の蓄電池を使用した低高度衛星用電源装置の構成図であり、図6において、1は太陽電池、2は太陽電池1で発生した余剰電力を消費するシャント装置、3は太陽電池1の電流をシャント装置2を介して入力し、充電制御器4aと負荷6へ電流を供給するとともに太陽電池1の発生電力が低下した場合には、蓄電池5の放電により負荷6へ電流を供給するように充電制御器4aを制御する電力制御器である。 Figure 6 is a block diagram of a conventional NiCd (nickel cadmium) battery low altitude satellite power supply device using a storage battery, such as, 6, 1 denotes a solar cell, 2 the surplus power generated by the solar cell 1 shunt consuming devices, if 3 is the current of the solar cell 1 inputted via the shunt device 2, the power generated in the solar cell 1 supplies current to the charging controller 4a and the load 6 decreases, the storage battery 5 discharged by the load 6 for a power controller for controlling the charging controller 4a to supply the current. 充電制御器4aは、電力制御器3の出力を受けて、蓄電池5へ電流を供給して充電させ、また太陽電池1の発生電力が低下した場合の信号で蓄電池5を放電させるための充電制御器である。 The charge control unit 4a receives the output of the power controller 3, it is charged by supplying a current to the storage battery 5 and the charge control for discharging the storage battery 5 with a signal when the power generated in the solar cell 1 is lowered it is a vessel. 7は逆流防止ダイオードである。 7 is a backflow prevention diode.
【0003】 [0003]
従来の低高度衛星用電源装置の動作を以下に説明する。 Illustrating an operation of the conventional low altitude satellite power supply device below.
太陽電池1からの電流は逆流防止ダイオード7、シャント装置2を介して電力制御器3に入力される。 The current from the solar cell 1 blocking diode 7, is input to the power controller 3 via the shunt device 2. 電力制御器3は日照時において得られる太陽電池1からの電流を負荷6と充電制御器4aに供給する。 Power controller 3 supplies a current to the charging control unit 4a and the load 6 from the solar cell 1 obtained in sunshine time. 充電制御器4aでは電力制御器3からの電力により図7(c)に示す一定の電流I0を生成し、この電流I0を蓄電池5に供給して、蓄電池5を充電する。 The power from the charging controller 4a in the power controller 3 generates a constant current I0 shown in FIG. 7 (c), and supplies the current I0 to the battery 5 to charge the battery 5. 蓄電池5の電圧は充電の進行に伴い図7(b)に示すように上昇する。 Voltage of the battery 5 rises as shown in Figure 7 with the progress of charge (b). 蓄電池5の電圧が図7(a)に示すように予め設定してある温度補償された電圧値(これをV−Tカーブと呼び、要求により1本からn本設定する)に達したことを充電制御器4aで検出すると充電制御器4はそれまでの定電流充電から定電圧充電へ移行する。 That the voltage of the storage battery 5 is a temperature compensated voltage value set in advance as shown in FIG. 7 (a) (This is referred to as V-T curve, n the set from one by request) reached charge controller 4 and detects the charging controller 4a shifts from the constant current charging until then to constant-voltage charge. これにより充電電流は図7(c)に示すようにテーパ状に減少し、蓄電池5への過充電を防止する。 Thus the charging current is reduced in a tapered shape as shown in FIG. 7 (c), to prevent overcharging of the storage battery 5.
一方、日陰時において太陽電池1の発生電力が低下した場合、上記充電制御器4aは電力制御器3の出力により蓄電池5を放電し、負荷6へ電力を供給する。 On the other hand, if the power generated in the solar cell 1 is lowered at the time of the shade, the charging controller 4a discharges the battery 5 by the output of the power controller 3, and supplies electric power to the load 6.
【0004】 [0004]
【発明が解決しょうとする課題】 [Problems that the Invention is to you'll solve]
従来の低高度衛星用電源装置における蓄電池の充電は、上記のように行われているが、上記のような定電圧/定電流充電はn個の蓄電池セルを直列に縦続接続した蓄電池全体に対して行われるため、蓄電池を構成する各セルの充電特性のアンバランスにより蓄電池内の特定のセルが過充電されるという問題点があった。 Charging of batteries in conventional low altitude satellite power supply device, it has been performed as described above, constant voltage / constant-current charging as described above for the entire storage battery connected in cascade of n battery cells in series to be done Te, there problem that a particular cell in the battery is overcharged by imbalance of charge characteristic of each cell constituting the battery. 特にLi(リチウム)系電極で構成されるLi-Ion(リチウム・イオン)セルは、エネルギー密度、充電電圧、放電電圧等がNiCdセルに比べて高く、蓄電池への使用が期待されているが、 Li-Ionセルの場合、規定電圧を越えて過充電状態になると電極劣化が促進され、寿命が短くなってしまう問題点がある。 In particular, Li-Ion (Lithium-Ion) cell composed of Li (lithium) based electrode, energy density, charge voltage, discharge voltage, and the like is high compared to NiCd cells, the use of the storage battery has been expected, for li-Ion cell, electrode degradation when overcharged state is accelerated beyond the specified voltage, life there is a problem that becomes shorter. 例えば、温度To°Cの時のV−Tカーブにおける定電圧動作電圧は、n個のセル電圧の和を蓄電池電圧として検出し、設定電圧と比較動作するが、m個目のセル電圧が他のセル電圧よりもセルの内部抵抗の関係で高くなっている場合、セルの上限電圧を超えてしまい、その結果当該セルを劣化させてしまうことがあった。 For example, the constant voltage operation voltage in the V-T curve at the temperature the To ° C detects the sum of n cell voltage as a battery voltage, although comparison operation with the set voltage, the cell voltage of the m th other If it is higher in relation to the internal resistance of the cell than the cell voltage, exceeds the upper limit voltage of the cell, was sometimes deteriorates the result that cell.
【0005】 [0005]
この発明は、かかる課題を解決するためになされたものであり、蓄電池を構成する個々のセルが過充電とならず適切な充電量が確保できるバッテリ蓄電装置を得ることを目的とするものである。 The present invention has been made to solve the above problems, it is an object to obtain a battery power storage device appropriate charging amount not individual cells overcharge can be secured to configure the storage battery .
【0006】 [0006]
【課題を解決するための手段】 In order to solve the problems]
第1の発明によるバッテリ蓄電装置は、蓄電池セルが縦続接続された蓄電池と、電源出力から上記蓄電池を充電するための異なる複数の充電電流を生成し、 異なる規定電圧値になるまで上記蓄電池に異なる複数の充電電流を供給する手段を有する充電電流生成手段とを備えたものである。 First invention battery charge apparatus according generates a storage battery storage battery cells connected in cascade, a plurality of different charging current for charging the battery from the power output, different to the battery until a different specified voltage is obtained by a charge current generating means having a means for supplying a plurality of charge current.
【0007】 [0007]
第2の発明によるバッテリ蓄電装置は、第1の発明において充電電流生成手段に、異なる複数の充電電流を生成し、かつ上記充電電流は、最初高いレベルで供給した後、低いレベルで供給するように充電電流を変化させる手段を設けたものである。 Battery power storage device according to the second invention, the charging current generating means in the first invention, to produce a plurality of different charging current and the charging current after the supply of the first high level, to supply a low-level it is provided with a means for varying the charging current to.
【0008】 [0008]
第3の発明によるバッテリ蓄電装置は、第1、第2の発明において充電電流生成手段に、各蓄電池セルの電圧のいずれかが規定の電圧に達したとき充電電流を高いレベルから低いレベルに変化させる手段を設けたものである。 Battery power storage device according to the third invention, first, the change in the charging current generating means in the second invention, the low level charge current from a high level when either has reached the specified voltage of the voltage of each battery cell it is provided with a means for.
【0009】 [0009]
第4の発明によるバッテリ蓄電装置は、第1〜第3の発明において 各蓄電池セルにそれぞれシャント回路を接続し、蓄電池への最低レベルの充電電流供給状態でいずれかの蓄電池セルの電圧が規定の電圧に達した場合、当該蓄電池セルに流れる充電電流を当該蓄電池セルに接続されたシャント回路へバイパスするようにしたものである。 Fourth invention battery charge apparatus according to the shunt circuit to each battery cell in the first to third invention is connected, the voltage of any battery cell charging current supply state of the lowest level of the storage battery is defined when reaching the voltage, in which the charging current flowing through the battery cells was to bypass the shunt circuit connected to the battery cell.
【0010】 [0010]
第5の発明によるバッテリ蓄電装置は、第1〜第4の発明において 電源と蓄電池との間に設けられ、通常はONし、かつ上記蓄電池セルの電圧のいずれかが規定電圧に達したとき、上記充電電流生成手段によりOFFされ、放電によりONに復帰するスイッチを設けたものである。 When the fifth battery power storage device according to the invention of is provided between the power supply and the storage battery in the first to fourth invention, usually a turned ON, and any of the voltage of the battery cell reaches a predetermined voltage, it is turned OFF by the charging-current generation means is provided with a switch to return to oN by the discharge.
【0011】 [0011]
第6の発明によるバッテリ蓄電装置は、第1〜第5の発明において上記充電電流生成手段に、上記蓄電池セル全体の電圧を検出し、その検出した電圧が規定電圧に達したときに定電圧充電制御に移行する手段を設けたものである。 Sixth aspect battery power storage device according to of, in the charging-current generation means in the first to fifth invention, to detect the voltage across the storage battery cell, constant voltage charging when the detected voltage reaches a specified voltage it is provided with a means for transition to the control.
【0012】 [0012]
第7の発明によるバッテリ蓄電装置は、第1〜第6の発明において上記充電電流生成手段に、上記複数の蓄電池セル電圧がアンバランスになったとき定電圧充電制御を解除し、低レベルの充電電流で規定電圧に達するまで充電する手段を設けたものである。 Battery power storage device according to a seventh aspect of the present invention is the above-mentioned charging current generating means in the invention of the first to sixth, releases the constant voltage charging control when the plurality of battery cell voltage becomes unbalanced, low level charge is provided with a means for charging up a current reaches the predetermined voltage.
【0013】 [0013]
第8の発明によるバッテリ蓄電装置は、第1〜第7の発明において上記蓄電池セルとしてLi(リチウム)系電極で構成されるLi-Ion(リチウムイオン)蓄電池セルを用いたものである。 Battery power storage device according to the eighth invention is obtained by using Li-Ion (lithium-ion) battery cell comprised of first to 7 Li (lithium) based electrode as the accumulator cells in the invention.
【0014】 [0014]
【発明の実施の形態】 DETAILED DESCRIPTION OF THE INVENTION
実施の形態1. The first embodiment.
図1は、この発明の実施の形態1を示す低高度衛星用電源装置の構成図である。 Figure 1 is a configuration diagram of a low altitude satellite power supply apparatus showing a first embodiment of the present invention. 図1において、1、2、3、5、6、7は図6と同様である。 In Figure 1, 1,2,3,5,6,7 is the same as FIG. 4bは充電用太陽電池9の出力に基づき複数の充電電流を生成し、蓄電池セルが縦続接続された蓄電池5へ異なる複数の充電電流を供給する充電制御器、8は充電用太陽電池9と蓄電池5との間に接続され逆流防止ダイオード、10は蓄電池5と逆流防止ダイオード8との間に接続されたスイッチで、充電開始時はONの状態であり、充電用太陽電池9から直接蓄電池5へ充電が行われる。 4b generates a plurality of charging current based on the output of the charging solar battery 9, the charging control unit for supplying a plurality of different charging current to the battery 5 which battery cells are connected in cascade, 8 and charging solar battery 9 battery connected blocking diode between 5, 10 is a switch connected between the reverse current preventing diode 8 and the storage battery 5, at the charge start time is in a state to oN, the direct storage battery 5 from charging solar battery 9 charging is performed. 11は制御用ダイオードである。 11 is a control diode.
なお、充電制御器4bは、充電用太陽電池9の出力に基づく充電電流I1よりレベルの低い充電電流I2、I3(I2>I3)を生成する電流制御部を有している。 The charging controller 4b has a current control unit that generates a lower charge current than the charging current I1 based on the output of the charging solar battery 9-level I2, I3 (I2> I3).
12は各蓄電池セルにそれぞれ対応して設けられ、各蓄電池セルの電圧を検出し、かつ当該検出した蓄電池セルの電圧が規定電圧に達した場合、所定の信号を出力する複数のセル電圧検出器、13は上記複数のセル電圧検出器12の出力端に接続され、セル電圧検出器12からの所定信号を上記充電制御器4bへ出力するOR回路である。 12 provided corresponding to each battery cell, to detect the voltage of each battery cell, and if the voltage of the detected battery cell reaches a predetermined voltage, a plurality of cell voltage detector for outputting a predetermined signal , 13 is connected to the output terminal of the plurality of cell voltage detector 12, a predetermined signal from the cell voltage detector 12 is an OR circuit which outputs to the charger controller 4b.
【0015】 [0015]
次にこの発明の動作を以下に説明する。 Next will be described the operation of the invention are described below.
充電用太陽電池9からの充電電流I1(例えば30A)が図2(a)のI1に示すようにスイッチ10を介して蓄電池5に供給されると、蓄電池5の各蓄電池セルが充電されて各蓄電池セルの電圧が図2(b)のアに示すように上昇する。 When the charging current I1 from the charging solar battery 9 (for example, 30A) is supplied to the battery 5 through the switch 10 as shown in I1 of FIG. 2 (a), each being charged the battery cells of the storage battery 5 voltage of battery cell is raised as shown in a of FIG. 2 (b). セル電圧検出器12は蓄電池セルの電圧をそれぞれ検出するが、複数の蓄電池セルのいずれかのセル電圧が規定電圧(例えば3.98V)に達したとき当該セル電圧を検出しているセル電圧検出器12から例えばHighレベルの信号をOR回路13へ出力する。 Cell voltage detector 12 will detect a voltage of the battery cells, respectively, one of the cell voltage is the predetermined voltage of the plurality of battery cells (e.g., 3.98V) the cell voltage when reaching detects it and the cell voltage detection output from the vessel 12, for example a High-level signal to the OR circuit 13. 充電制御器4bは上記セル電圧検出器12から出力されたHighレベルの信号をOR回路13を介して入力したときON状態のスイッチ10をOFFに切替える信号を制御用ダイオード11を介してスイッチ10へ出力し、スイッチ10をOFFとする。 Charger controller 4b is to switch 10 via the control diode 11 a signal for switching the switch 10 in the ON state to the OFF when entering the High-level signal outputted from the cell voltage detector 12 via the OR circuit 13 and outputs, to the switch 10 and OFF. また充電制御器4bは、全体の蓄電池セル電圧が規定電圧(例えば3.95V×蓄電池セル数)に達したときスイッチ10をOFFにして定電圧充電に移行させるようになっている。 The charging control unit 4b is adapted to shift the switch 10 when the entire battery cell voltage reaches the predetermined voltage (e.g. 3.95V × number battery cells) in the OFF to the constant voltage charging.
さらに充電制御器4bは、上記充電用太陽電池9からの出力に基づき充電電流I1より低いレベルの充電電流I2、I3( I2>I3)を生成する機能(充電電流I1を充電電流I2、I3に切替える機能)を有し、スイッチ10のOFFと同時に例えば5Aの充電電流I2(図2(a)のI2参照)を蓄電池5に供給し、各蓄電池セルを充電する。 Further charger controller 4b is the charging current I2, I3 functions (charging current I1 for generating a lower charging current I1 level of the charging current I2, I3 (I2> I3), based on the output from the charging solar battery 9 switching function) has a charging current I2 of the OFF simultaneously example 5A of the switch 10 the reference I2 in (FIG. 2 (a)) supplied to the battery 5 to charge the respective battery cells. この時、各蓄電池セルの充電電圧は、図2(b)のイに示すように初めは減少するが、やがて上昇する。 At this time, the charge voltage of each battery cell, but decreases initially, as shown in b of FIG. 2 (b), eventually rises. I2の充電電流により各蓄電池セルが充電され、複数の蓄電池セルのうちいずれかのセル電圧が規定電圧(例えば3.98V)に達した場合、これをセル電圧検出器12により検出され、その信号がOR回路13を介して充電制御器4bに入力される。 Each battery cell is charged by the charging current I2, if any of the cell voltages of the plurality of battery cells has reached a specified voltage (e.g. 3.98V), which is detected by the cell voltage detector 12, the signal is input to the charge control unit 4b through the OR circuit 13. 充電制御器4bはセル電圧検出器12からの信号を受けて上記I2をI3の充電電流に切替えて蓄電池5へ図2(a)に示すI3の充電電流(例えば1A)を供給し、各蓄電池セルを充電する(図2(b)のウ参照)。 The charge control unit 4b supplies the charging current I3 shown receives a signal from the cell voltage detector 12 to the storage battery 5 by switching the I2 to the charging current of I3 in FIG. 2 (a) (eg 1A), each battery charging the cell (see c in Figure 2 (b)).
なお、充電制御器4bは、蓄電池5の放電時にスイッチ10をONに復帰させる信号を制御用ダイオード11を介してスイッチ10へ出力するようになっている。 The charging controller 4b is adapted to output to the switch 10 a signal to return the switch 10 to ON during discharge of the storage battery 5 through the controlled diode 11.
【0016】 [0016]
以上のように この発明は、蓄電池に異なる複数の充電電流を供給し、当該充電電流は、最初高いレベルで供給した後、次に低いレベルで供給するようにした多段充電機能を設けたので、充電制御器は充電用太陽電池の電力より低いレベルの充電電流を制御すればよく充電効率が向上するとともに、小型、軽量化できるという効果がある。 Above this invention, by supplying a plurality of different charging current to the battery, the charging current after the supply of the first high level, since there is provided the following multi-stage charging functions to supply a low level, charge controller is improved and good charging efficiency by controlling the low level of the charging current than the power of the charging solar cell, small, there is an effect that it lighter.
また、さらに低レベルの充電電流を設定することにより木目細かく充電制御できる。 Further, finely charging control by further setting the low level of the charging current.
【0017】 [0017]
実施の形態2. The second embodiment.
図3はこの発明の実施の形態2を示す低高度衛星用電源装置の構成図である。 Figure 3 is a block diagram of a low-altitude satellite power supply device according to a second embodiment of the present invention. この実施の形態2は、上記実施の形態2の構成のものにシャント回路14を各蓄電池セルに並列に接続し、蓄電池セルの電圧が規定電圧に達した場合、充電電流を規定電圧に達した蓄電池セルに並列接続したシャント回路14にバイパスさせて当該蓄電池セルの電圧上昇を抑えるように構成したところに特徴を有する。 The second embodiment, the shunt circuit 14 to that of the configuration of the second embodiment are connected in parallel to each battery cell, when the voltage of the battery cell reaches a predetermined voltage, reaches the charging current to a specified voltage characterized in by-pass to the shunt circuit 14 connected in parallel to the battery cells was constructed so as to suppress a voltage rise of the battery cells.
充電電流I3により充電されている場合においてセル電圧検出器12は蓄電池セルの電圧が規定電圧に達していない場合Lowレベルの信号を出力する。 Cell voltage detector 12 when being charged by the charging current I3 outputs a Low-level signal when the voltage of the battery cell does not reach the specified voltage. シャント回路14はこのLowレベルの信号が出力されている場合はOFF状態となっていて蓄電池セルに充電電流I3が流れる。 Shunt circuit 14 the charging current I3 flowing through the battery cells has become an OFF state when the signal of the Low level is outputted. 一方セル電圧検出器12は蓄電池セルの電圧が規定電圧に達した場合Highレベルの信号を出力する。 On the other hand the cell voltage detector 12 outputs a High-level signal when the voltage of the battery cell reaches a predetermined voltage. シャント回路14はこのHighレベルの信号によりONとなる。 Shunt circuit 14 becomes ON by the signal of the High level. これにより充電電流は規定電圧に達した蓄電池セルに並列接続されたシャント回路14にバイパスされて消費するため、当該蓄電池セルに充電電流I3が流れなくなり電圧上昇を抑制することができる。 Thus the charging current to consume is bypassed to the shunt circuit 14 connected in parallel to the battery cell reaches a predetermined voltage, can be suppressed becomes voltage increase stops flowing charging current I3 to the battery cell.
【0018】 [0018]
以上のように この発明は、各蓄電池セル毎に上限電圧制御ができるので、蓄電池セルのサイクル寿命劣化を最小に抑えることができる。 Above this invention, since it is an upper limit voltage control for each battery cell, it is possible to minimize the cycle life deterioration of the battery cells.
【0019】 [0019]
実施の形態3. Embodiment 3.
図4はこの発明の実施の形態3を示す低高度衛星用電源装置の構成図である。 Figure 4 is a block diagram of a low altitude satellite power supply apparatus showing a third embodiment of the present invention. この実施の形態3では、基本的には実施の形態2と同じであるが、実施の形態2と異なるところはOR回路19の出力に基づきスイッチ10をオフする信号を出力する信号ダイオード19と、充電電流I3により充電されている場合において蓄電池全体の電圧をモニターし、当該電圧が規定電圧(充電電流を切替えるための規定電圧より低く設定する)に達した場合は、定電流充電から定電圧充電に移行(切替え)させる機能を有する充電制御器4cを設けたものである。 In the embodiment 3, a signal diode 19 is basically the same as the second embodiment, and it differs from the second embodiment for outputting a signal for turning off the switch 10 based on the output of the OR circuit 19, monitoring the voltage across the battery when being charged by the charging current I3, if the voltage reaches a specified voltage (set lower than the specified voltage for switching the charging current), constant voltage charging from the constant current charging it is provided with a charger controller 4c having the function of shifting (switching) to.
なお定電圧充電は各蓄電池セル電圧がバランスしているときに生じ、バッテリ動作として理想的な状態である。 Note the constant voltage charging occurs when the battery cell voltage is balanced, an ideal state as a battery operation.
【0020】 [0020]
以上のように この発明は、充電電流I1により充電されている場合の蓄電池全体の電圧をモニターし、当該電圧が規定の電圧(例えば3.95V×蓄電池数)に達したとき、定電流充電から定電圧充電へ切替える機能を充電制御器に持たせ、この機能を多段充電と併用することにより蓄電池セルの電圧特性がバランスしているときにできるだけシャント回路を動作させないで充電制御するようにしたので規定電圧を低く抑えることができ、蓄電池セルのサイクル寿命劣化を低く抑えることができる。 The present invention as described above, monitors the battery voltage across when being charged by a charging current I1, when the voltage reaches a specified voltage (e.g., 3.95V × number storage battery), the constant current charging imparted to the charge controller of the function of switching to the constant voltage charge, since this function was as much as possible charging control not operate a shunt circuit when the voltage characteristics of the battery cells by combination with multi-stage charge is balanced specified voltage can be kept low, it is possible to suppress the cycle life degradation of the storage battery cells. .
【0021】 [0021]
実施の形態4. Embodiment 4.
図5はこの発明の実施の形態4を示す低高度衛星用電源装置の構成図である。 Figure 5 is a block diagram of a low-altitude satellite power supply apparatus according to the fourth embodiment of the present invention. この実施の形態4では、基本的には実施の形態3と同じであるが、実施の形態3と異なるところは定電流充電から定電圧充電に移行した後、各蓄電池セル電圧にアンバランスが生じた場合、定電圧充電制御を解除し、各蓄電池セル電圧を強制的にシャント回路12が動作するまで(シャント電圧まで)充電電流I3で充電させて各蓄電池セル電圧のバランスをとる機能を有する充電制御器4dを設けたものである。 In this fourth embodiment is basically the same as the third embodiment, and it differs from the third embodiment after the transition to the constant voltage charging from the constant current charging, unbalance occurs in the battery cell voltage and when charging has a function of releasing the constant-voltage charging control, balancing forced to shunt circuit 12 operates (to shunt voltage) is charged at the charging current I3 in each battery cell voltage of each battery cell voltage it is provided with a controller 4d.
なお上記各蓄電池セルの電圧はセル電圧検出器12により検出され、OR回路13を介して充電制御器4dに入力され、充電制御器4dにおいて各蓄電池セル電圧にアンバランス(規定電圧に対する各蓄電池セル相互間の電圧のばらつき)の有無を検出するようになっているが、各蓄電池セルの電圧を地上局側でモニターし、上記アンバランスが生じた場合に上記充電制御器4dに対し定電圧充電制御を解除し、各蓄電池セル電圧を強制的にシャント回路12が動作するまで充電電流I3で充電させるためのコマンドを発生するようにしても良い。 Note the voltage of each battery cell is detected by the cell voltage detector 12 is input to the charge control unit 4d via the OR circuit 13, the battery cell for unbalance (specified voltage to each storage battery cell voltage in the charge controller 4d Although adapted to detect the presence or absence of variation) of the voltage between each other, the voltage of each battery cell is monitored by the ground station side, the constant voltage charging to the charging controller 4d when the unbalance has occurred releasing the control, it may be generated commands for charging at a charging current I3 to forcibly shunt circuit 12 each battery cell voltage operated.
【0022】 [0022]
以上のように、この発明は、定電流充電から定電圧充電に移行した後、各蓄電池セル電圧にアンバランスが生じた場合、定電圧充電制御を解除し、各蓄電池セルを充電電流I3によりシャント動作電圧まで充電することにより、充電のサイクルの進行に伴って生じる各蓄電池セル電圧のアンバランスを是正することができる。 As described above, the present invention is, after the transition from the constant current charging to constant voltage charging, if the imbalance in each battery cell voltage occurs, releases the constant voltage charging control, shunt the charging current I3 each battery cell by charging to the operating voltage, it is possible to correct the unbalance of the battery cell voltage caused with the progress of charging cycles.
【0023】 [0023]
なお上記各実施の形態は、低高度衛星用電源装置を例に上げて説明したが、この発明は、他の衛星、電気自動車、地上用太陽発電などにも適用できるものである。 Note each of the above embodiments, although the power supply for low altitude satellites has been described as an example, the present invention is one in which other satellites, electric vehicles, and the like terrestrial solar power can be applied.
【0024】 [0024]
【発明の効果】 【Effect of the invention】
この発明によれば、異なる充電電流により縦続接続された複数の蓄電池セルを充電(多段充電)することにより蓄電池セルの過充電を抑制することができる。 According to the present invention, it is possible to suppress the overcharge of the battery cell by charging the plurality of battery cells connected in cascade by different charging current (multistage charge).
【0025】 [0025]
またこの発明は、蓄電池への最低レベルの充電電流供給状態でいずれかの蓄電池セルの電圧が規定の電圧に達した場合、当該蓄電池セルに流れる充電電流を当該蓄電池セルに接続されたシャント回路へバイパスするようにしたので、蓄電池セルの過充電を抑制することができる。 The present invention, when the voltage of any battery cell charging current supply state of the lowest level of the storage battery reaches the specified voltage, the charging current flowing to the battery cell to the shunt circuit connected to the battery cells since so as to bypass, it is possible to suppress the overcharge of the battery cell.
【0026】 [0026]
この発明は、各蓄電池セルの電圧がバランスしている状態における蓄電池全体の電圧をモニターし、当該電圧が規定電圧に達した場合は、定電流充電から定電圧充電に切替えるようにしたので、サイクル寿命劣化を抑える上でバッテリ動作を理想的な状態にすることができる。 The present invention monitors the voltage across the battery in the state where the voltage of each battery cell is balanced, if the voltage reaches a predetermined voltage, since the switched from the constant current charging to constant voltage charging, cycle it can be an ideal state battery operation in suppressing the deterioration of life.
【0027】 [0027]
またこの発明は、定電流充電から定電圧充電に移行した後、各蓄電池セル電圧にアンバランスが生じた場合、定電圧充電制御を解除し、各蓄電池セルをシャント動作電圧まで充電することにより、各蓄電池セル電圧のアンバランスを是正することができる。 Further, according to the present invention, after the transition from the constant current charging to constant voltage charging, by if unbalance occurs in the battery cell voltage, which releases the constant voltage charging control to charge the respective battery cells to shunt the operating voltage, it is possible to correct the imbalance of each battery cell voltage.
【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS
【図1】 この発明の実施の形態1を示す低高度衛星用電源装置の構成図である。 1 is a configuration diagram of a low-altitude satellite power supply device according to a first embodiment of the present invention.
【図2】 この発明の実施の形態1を示す低高度衛星用電源装置の電流、電圧特性を説明するための図である。 [2] Current low altitude satellite power supply device according to a first embodiment of the present invention, is a diagram for explaining voltage characteristics.
【図3】 この発明の実施の形態2を示す低高度衛星用電源装置の構成図である。 3 is a configuration diagram of a low altitude satellite power supply apparatus according to the second embodiment of the present invention.
【図4】 この発明の実施の形態3を示す低高度衛星用電源装置の構成図である。 4 is a configuration diagram of a low altitude satellite power supply apparatus according to the third embodiment of the present invention.
【図5】 この発明の実施の形態4を示す低高度衛星用電源装置の構成図である。 5 is a configuration diagram of a low altitude satellite power supply apparatus showing a fourth embodiment of the present invention.
【図6】 従来の低高度衛星用電源装置の構成図である。 6 is a configuration diagram of a conventional low altitude satellite power supply system.
【図7】 従来の低高度衛星用電源装置の電流、電圧特性を説明するための図である。 [7] Current conventional low altitude satellite power supply device, is a diagram for explaining voltage characteristics.
【符号の説明】 DESCRIPTION OF SYMBOLS
4 充電制御器 5 蓄電池 9 充電用太陽電池 10 スイッチ 11 制御用ダイオード 12 セル電圧検出器 13 OR回路 14シャント回路 16 信号用ダイオード。 4 charger controller 5 battery 9 charging solar battery 10 switch 11 control diode 12 cell voltage detector 13 OR circuit 14 the shunt circuits 16 signal diode.

Claims (6)

  1. 複数の蓄電池セルが縦続接続された蓄電池と、 And a battery in which a plurality of battery cells are connected in cascade,
    電源の出力電流に基づいて上記蓄電池を充電するための充電電流を生成する充電制御手段と、 A charging control means for generating a charging current for charging the storage battery based on power of the output current,
    上記電源と蓄電池の間に接続されたスイッチと、を備え、 And a switch connected between the power supply and the storage battery,
    上記充電制御手段は、 The charging control means,
    上記スイッチの接続がON状態にて、上記各蓄電池セルの電圧のいずれかが規定電圧に達したときに上記スイッチの接続をOFF状態とした後、 At connection ON state of the switch, after the OFF state to connect the switch when either has reached the predetermined voltage of the voltage of each battery cell,
    上記いずれかの蓄電池セルの電圧が規定電圧に達した場合、生成する充電電流を高いレベルから低いレベルに変化させて上記蓄電池に供給し、 If the voltage of any of the above battery cell reaches a predetermined voltage, to change the charging current generated from the high level to the low level is supplied to the storage battery,
    上記蓄電池全体の電圧が規定電圧に達したときに上記蓄電池を定電圧充電制御する、 Controlling the constant voltage charging the battery when the voltage across the battery reaches a prescribed voltage,
    ことを特徴とするバッテリ蓄電装置。 Battery charge and wherein the.
  2. 各電池セルにそれぞれ接続され、上記蓄電池への充電電流供給状態でいずれかの蓄電池セルの電圧がシャント電圧に達した場合、当該蓄電池セルに流れる充電電流をそれぞれバイパスするシャント回路を備えたことを特徴とする請求項1記載のバッテリ蓄電装置。 Are connected to the battery cells, if the voltage of any battery cell charging current supply state to said storage battery has reached the shunt voltage, further comprising a shunt circuit for bypassing the charging current flowing through the battery cells, respectively battery power storage device according to claim 1, wherein.
  3. 上記充電制御手段は、上記各蓄電池セルの電圧のモニタ結果に基づいて当該各蓄電池セルのセル電圧がアンバランスになったときに上記定電圧充電制御を解除し、上記低いレベルの充電電流で全ての蓄電池セルがシャント電圧に達するまで充電電流を供給することを特徴とする請求項2に記載のバッテリ蓄電装置。 Said charging control means, the cell voltage of each of battery cells are releasing the constant-voltage charge control when it is unbalanced on the basis of a result of monitoring the voltage of each battery cell, all the above low levels of the charging current battery power storage device according to claim 2 in which the storage battery cell is characterized by supplying a charging current to reach the shunt voltage.
  4. 上記電源を構成する主電源で発生した電力を上記蓄電池に供給するとともに、当該主電源の発生電力が低下した場合には上記蓄電池を放電させるように上記充電制御手段を制御する電力制御手段を更に備え、 The power generated by the main power source constituting the power supplies to the battery, when the generation power of the main power supply is lowered further power control means for controlling said charging control means so as to discharge the battery provided,
    上記充電制御手段は、上記電源を構成する充電用電源の出力に基づいて当該充電用電源の電力より低いレベルの充電電流を生成することを特徴とする請求項1から請求項3のいずれかに記載のバッテリ蓄電装置。 Said charging control means, to any of claims 1 to 3, characterized in that to produce a low level of the charging current than the power of the charging power supply based on an output of the charging power source constituting the power battery power storage device described.
  5. 複数の蓄電池セルが縦続接続された蓄電池と、 And a battery in which a plurality of battery cells are connected in cascade,
    電源出力から上記蓄電池を充電するための充電電流を生成する充電制御手段と、 A charging control means for generating a charging current for charging the battery from the power supply output,
    上記各蓄電池セルにそれぞれ接続され、いずれかの蓄電池セルの電圧がシャント電圧に達した場合、当該蓄電池セルに流れる充電電流をそれぞれバイパスするシャント回路と、を備え、 Are connected to each battery cell, if the voltage of any battery cell reaches a shunt voltage, and a shunt circuit for bypassing the charging current flowing through the battery cells, respectively,
    上記充電制御手段は、 The charging control means,
    上記いずれかの蓄電池セルの電圧が規定電圧に達した場合、充電電流を高いレベルから低いレベルに変化させるとともに、 If the voltage of any of the above battery cell reaches a predetermined voltage, it causes changes to a low level charge current from a high level,
    当該低いレベルの充電電流にて充電されている場合に、上記蓄電池全体の電圧が規定電圧に達したときに上記蓄電池を定電圧充電制御し、 If it is charged at the lower level of the charging current, the battery was constant-voltage charging control when the voltage across the battery reaches a prescribed voltage,
    上記各蓄電池セルの電圧のモニタ結果に基づいて当該各蓄電池セルのセル電圧がアンバランスになったときに上記定電圧充電制御を解除し、上記低いレベルの充電電流で全ての蓄電池セル電圧がシャント電圧に達するまで充電電流を供給する、 Cell voltage of each of battery cells are releasing the constant-voltage charge control when it is unbalanced on the basis of a result of monitoring the voltage of each battery cell, all the battery cell voltage in the above low level of the charging current shunt supplying a charging current until a voltage,
    ことを特徴とするバッテリ蓄電装置。 Battery charge and wherein the.
  6. 上記蓄電池セルはLi(リチウム)系電極で構成されるLi-Ion The battery cell is composed of Li (lithium) based electrode Li-Ion
    (リチウムイオン)蓄電池セルを用いたことを特徴とする請求項1〜5のいずれか記載のバッテリ蓄電装置。 Battery power storage device according to any one of claims 1 to 5, characterized by using the (lithium-ion) battery cell.
JP15779799A 1999-06-04 1999-06-04 Battery power storage device Expired - Fee Related JP3736205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15779799A JP3736205B2 (en) 1999-06-04 1999-06-04 Battery power storage device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP15779799A JP3736205B2 (en) 1999-06-04 1999-06-04 Battery power storage device
US09/443,286 US6373224B1 (en) 1999-06-04 1999-11-19 Battery accumulating apparatus
FR9915100A FR2794578B1 (en) 1999-06-04 1999-11-30 An accumulation battery
EP20000108803 EP1058367B1 (en) 1999-06-04 2000-04-26 Battery accumulating apparatus
CA 2310357 CA2310357C (en) 1999-06-04 2000-05-31 Battery accumulating apparatus

Publications (3)

Publication Number Publication Date
JP2000350378A5 JP2000350378A5 (en) 2000-12-15
JP2000350378A JP2000350378A (en) 2000-12-15
JP3736205B2 true JP3736205B2 (en) 2006-01-18

Family

ID=15657506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15779799A Expired - Fee Related JP3736205B2 (en) 1999-06-04 1999-06-04 Battery power storage device

Country Status (5)

Country Link
US (1) US6373224B1 (en)
EP (1) EP1058367B1 (en)
JP (1) JP3736205B2 (en)
CA (1) CA2310357C (en)
FR (1) FR2794578B1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186192A (en) 2000-12-18 2002-06-28 Mitsubishi Electric Corp Battery charger
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
TWI253195B (en) * 2003-12-26 2006-04-11 Ind Tech Res Inst Charging method and system for serially connected batteries
CN101931097B (en) 2004-12-08 2012-11-21 希莫菲克斯公司 Deposition of LiCoO2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
JP2007014163A (en) * 2005-07-01 2007-01-18 Fujitsu Ltd Charging ic, charger and electronic apparatus
JP2007097330A (en) 2005-09-29 2007-04-12 Kyocera Corp Charger and terminal apparatus
US7509688B2 (en) * 2005-10-20 2009-03-31 Steven Ross Gregg Facial hair trimmings catcher
KR20090069323A (en) 2006-09-29 2009-06-30 인피니트 파워 솔루션스, 인크. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20080218127A1 (en) * 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
US8122981B2 (en) 2007-04-16 2012-02-28 Halla Climate Control Corporation Solar cell system for vehicles and control method thereof
JP2009032668A (en) * 2007-06-22 2009-02-12 Panasonic Corp Nonaqueous secondary battery, battery pack, power source system, and electrically powered equipment
WO2009001502A1 (en) * 2007-06-22 2008-12-31 Panasonic Corporation Nonaqueous secondary battery, battery pack, power supply system, and electrical device
KR100998302B1 (en) * 2007-12-07 2010-12-06 삼성에스디아이 주식회사 Method for charging of secondary battery and charging device
WO2009086038A1 (en) 2007-12-21 2009-07-09 Infinite Power Solutions, Inc. Method for sputter targets for electrolyte films
US8268488B2 (en) * 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
EP2229706B1 (en) 2008-01-11 2014-12-24 Infinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
KR101672254B1 (en) * 2008-04-02 2016-11-08 사푸라스트 리써치 엘엘씨 Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US20100026240A1 (en) * 2008-07-30 2010-02-04 3M Innovative Properties Company Lithium ion battery pack charging system and device including the same
WO2010019577A1 (en) 2008-08-11 2010-02-18 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
JP2010068571A (en) * 2008-09-09 2010-03-25 Hitachi Koki Co Ltd Charging apparatus
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
WO2010079563A1 (en) * 2009-01-07 2010-07-15 パナソニック株式会社 Battery set charging method and battery charging system
US20100231162A1 (en) * 2009-03-16 2010-09-16 Gm Global Technology Operations, Inc. Solar powered battery charging methods and devices for lithium-ion battery systems
KR101792287B1 (en) 2009-09-01 2017-10-31 사푸라스트 리써치 엘엘씨 Printed circuit board with integrated thin film battery
JP5489779B2 (en) * 2010-02-26 2014-05-14 株式会社Nttファシリティーズ Lithium-ion battery charging system and charging method
JP5525862B2 (en) * 2010-02-26 2014-06-18 三洋電機株式会社 Charger, program
US9722334B2 (en) 2010-04-07 2017-08-01 Black & Decker Inc. Power tool with light unit
JP5541982B2 (en) * 2010-06-28 2014-07-09 シャープ株式会社 DC power distribution system
TWM402554U (en) * 2010-11-10 2011-04-21 Richtek Technology Corp Charger circuit
JP2012222837A (en) * 2011-04-04 2012-11-12 Toshiba Mitsubishi-Electric Industrial System Corp Secondary battery charge control system
DE102011017599A1 (en) * 2011-04-27 2012-10-31 Robert Bosch Gmbh A method of operating a memory device for storing electrical energy and storage means for storing electric energy
EP2724445A4 (en) * 2011-06-21 2015-09-30 Husqvarna Ab System and method for charging of a rechargeable battery
DE102011121940A1 (en) * 2011-12-22 2013-06-27 Andreas Stihl Ag & Co. Kg Debalancing protection circuit for a battery pack
US8981709B1 (en) * 2012-08-22 2015-03-17 Edee, LLC Supplemental electrical generation apparatus and method
US9156359B2 (en) 2012-09-28 2015-10-13 GM Global Technology Operations LLC Methods and vehicle systems for selectively using energy obtained from a solar subsystem
CN103023112B (en) * 2012-12-18 2015-09-09 北车风电有限公司 Backup power charging apparatus and a charging method of wind turbine pitch system
FR3033674B1 (en) * 2015-03-10 2018-04-06 Sunna Design Electronic control board of energy control of autonomous and communicable electrical equipment

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4079303A (en) 1976-07-28 1978-03-14 The United States Of America As Represented By The United States Department Of Energy Charging system and method for multicell storage batteries
US4270080A (en) 1978-12-14 1981-05-26 Sun Electric Corporation Automatic battery charge apparatus and method
JPS5972941A (en) 1982-10-20 1984-04-25 Nippon Electric Co Storage battery charging controller
JP3231801B2 (en) * 1991-02-08 2001-11-26 本田技研工業株式会社 The battery of the charging device
JPH06133465A (en) 1992-08-27 1994-05-13 Sanyo Electric Co Ltd Method and apparatus for charging secondary battery
JPH06165399A (en) 1992-11-24 1994-06-10 Nippon Moriseru Kk Charger for lithium ion secondary cell
US5367244A (en) * 1993-01-19 1994-11-22 Premier Engineered Products, Inc. Battery charging method with stepped current profile and associated charger
US5530335A (en) * 1993-05-11 1996-06-25 Trw Inc. Battery regulated bus spacecraft power control system
JP3577751B2 (en) 1993-12-24 2004-10-13 ソニー株式会社 Battery charger, battery pack and battery charging method
US5550453A (en) 1994-01-24 1996-08-27 Motorola, Inc. Battery charging method and apparatus
FR2725849B1 (en) * 1994-10-18 1996-12-20 Accumulateurs Fixes the load control method of a set electric accumulator and arrangement implementing such process
CA2169706A1 (en) * 1995-03-03 1996-09-04 Troy Lynn Stockstad Circuit and method for battery charge control
JPH0997629A (en) 1995-09-29 1997-04-08 Sanyo Electric Co Ltd Plural lithium ion secondary battery charging method
JP3620118B2 (en) 1995-10-24 2005-02-16 松下電器産業株式会社 Constant current and constant voltage charging device
JP3629791B2 (en) * 1996-01-17 2005-03-16 日産自動車株式会社 Charge control device of the battery pack
GB9605830D0 (en) 1996-03-20 1996-05-22 Atomic Energy Authority Uk Cell overcharge prevention
JPH09308126A (en) 1996-05-17 1997-11-28 Nissan Motor Co Ltd Charger
JP3884802B2 (en) 1996-11-07 2007-02-21 日産自動車株式会社 A method of charging a lithium-ion battery
US5729116A (en) * 1996-12-20 1998-03-17 Total Battery Management, Inc. Shunt recognition in lithium batteries
JPH10191574A (en) * 1996-12-26 1998-07-21 Integuran Kk Charging equipment
JPH10248177A (en) 1997-03-03 1998-09-14 Sanyo Electric Co Ltd Charging circuit
US5804944A (en) 1997-04-07 1998-09-08 Motorola, Inc. Battery protection system and process for charging a battery
US5952815A (en) * 1997-07-25 1999-09-14 Minnesota Mining & Manufacturing Co. Equalizer system and method for series connected energy storing devices
JPH1189106A (en) 1997-09-08 1999-03-30 Central Res Inst Of Electric Power Ind Multi-stage charging method/device for secondary battery
US6034506A (en) * 1998-01-16 2000-03-07 Space Systems/Loral, Inc. Lithium ion satellite battery charge control circuit
JP2000236631A (en) 1999-02-17 2000-08-29 Nec Corp Battery charge control circuit

Also Published As

Publication number Publication date
EP1058367A2 (en) 2000-12-06
FR2794578A1 (en) 2000-12-08
CA2310357A1 (en) 2000-12-04
JP2000350378A (en) 2000-12-15
EP1058367B1 (en) 2011-06-15
US6373224B1 (en) 2002-04-16
EP1058367A3 (en) 2002-11-20
CA2310357C (en) 2004-02-17
FR2794578B1 (en) 2003-10-17

Similar Documents

Publication Publication Date Title
JP5313245B2 (en) Battery cell charge amount balancing apparatus and method
US6025696A (en) Battery cell bypass module
US5621300A (en) Charging control method and apparatus for power generation system
EP1947752B1 (en) Charge storing device using capacitors and its control method
JP5528435B2 (en) Multipurpose portable storage and supply system
EP1265336B1 (en) Equalisation method for an electric battery in a discontinuous recharging mode and battery management system for carrying out the same
US20050127873A1 (en) Battery charging method
US5637981A (en) Method for charging a secondary battery and charger used therefor using constant current and constant voltage
US6377024B1 (en) Method and system for charge equalization of lithium-ion batteries
JP3364836B2 (en) Voltage equalizer apparatus and method
JP5230563B2 (en) Battery management system with controllable adapter output
EP0932239A2 (en) Battery cell bypass topology
US7880444B2 (en) Process for balanced charging of a lithium ion or lithium polymer battery
EP1396063B1 (en) Circuit for monitoring cells of a multi-cell battery during charge
US5880575A (en) Charge-discharge control circuit, over-charge prevention circuit, and over-discharge prevention circuit
KR101081255B1 (en) Charge Equalization Apparatus
US9197081B2 (en) High-efficiency battery equalization for charging and discharging
JP3216133B2 (en) A method of charging a non-aqueous electrolyte secondary battery
US7719231B2 (en) Equilibrated charging method for a lithium-ion or lithium-polymer battery
RU2526854C2 (en) Improved system of accumulator batteries
US5498951A (en) Method and apparatus for charging electric double layer capacitor
US3987352A (en) Method of charging storage battery in power supply system having another battery of larger capacity
US6781343B1 (en) Hybrid power supply device
JP3136677B2 (en) Overcharge and overdischarge preventing circuit of a secondary battery
EP0440756B1 (en) Battery assembly and charging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees