JP3735941B2 - Adsorbent desorption device - Google Patents

Adsorbent desorption device Download PDF

Info

Publication number
JP3735941B2
JP3735941B2 JP12801796A JP12801796A JP3735941B2 JP 3735941 B2 JP3735941 B2 JP 3735941B2 JP 12801796 A JP12801796 A JP 12801796A JP 12801796 A JP12801796 A JP 12801796A JP 3735941 B2 JP3735941 B2 JP 3735941B2
Authority
JP
Japan
Prior art keywords
adsorbent
air
desorption
circulation
air passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12801796A
Other languages
Japanese (ja)
Other versions
JPH09310886A (en
Inventor
真 大山
好文 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP12801796A priority Critical patent/JP3735941B2/en
Publication of JPH09310886A publication Critical patent/JPH09310886A/en
Application granted granted Critical
Publication of JP3735941B2 publication Critical patent/JP3735941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • F24F2203/106Electrical reheater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Air Humidification (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸着材の脱着装置に関するものである。
【0002】
【従来の技術】
従来この種の脱着装置は、特開平7−16417号公報に記載されるようなものが一般的であった。この装置は図14に示すように、通風路を有する吸着材1があり、吸着材1に電気ヒーター2で加熱した脱着用空気を送風機3により流入させる構成になっており、電気ヒーター2と昇温した脱着用空気により加熱された吸着材1は水蒸気を放出すなわち脱着する。脱着され水蒸気は脱着用空気とともに図中の白抜矢印のように下流側へ排出され、吸着材1は脱着・再生するようになっていた。
【0003】
また、特開昭60−50328号公報に記載されるように、外部へ排出する脱着用空気の熱の一部を回収し、脱着用空気の予熱に利用する構成のものもある。この装置は、図15に示すように、吸着材1を通過した空気と電気ヒーター2で加熱される直前の空気との間に熱交換器4を設けており、排出される脱着用空気の熱の一部を吸着材に流入する前の脱着用空気の予熱に利用するようになっていた。
【0004】
【発明が解決しようとする課題】
しかしながら、前記する従来の脱着装置では、吸着材を通過する際に空気の温度は低下するものの、なお高温状態の脱着用空気をそのまま外部へ排出するため、エネルギー効率が悪いという問題があった。また、外部へ排出する熱の一部を回収する構成のものでは、熱交換器を必要とし、従って構成が複雑となり、風路の圧力損失を高めるという問題があった。
【0005】
本発明は上記の問題点を解決することを課題とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するために、吸着材と、前記吸着材を加熱する加熱装置と、前記吸着材へ脱着用の空気を送る送風機と、前記吸着材の下流側の流れの一部を前記吸着材の上流側に導く循環風路と、前記吸着材を通過する風量に対する前記循環風路を流れる循環流の割合を変化させる循環流可変手段とを有する吸着材の脱着装置とする。
【0007】
上記発明によれば、吸着材を通過した高温の脱着用空気の一部が循環風路を通って吸着材の上流へ循環するため、装置外部へ排出する熱の一部が容易に回収・再利用でき、エネルギー効率が向上させることができる。また、熱交換器を用いないため構成が簡単で、圧力損失もほとんど増加させないようにすることができる。また、循環風路を流れる循環流の割合を変化させることにより、吸着材の温度調節および脱着用空気の温湿度の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、吸着材の温度が、結晶が破壊される等の温度以上に過熱しないように調節することができ、吸着材の耐久性が増す。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防き、装置からの水蒸気の排出量を増加させることができる。
【0008】
【発明の実施の形態】
本発明は、請求項1に記載のように吸着材と、前記吸着材を加熱する加熱装置と、前記吸着材へ脱着用の空気を送る送風機と、前記吸着材の下流側の流れの一部を前記吸着材の上流側に導く循環風路と、前記吸着材を通過する風量に対する前記循環風路を流れる循環流の割合を変化させる循環流可変手段とを有するものであり、吸着材を通過した後に外部へ排出される高温の脱着用空気の一部を吸着材の上流側に循環することにより、エネルギー効率が高まり、吸着材の温度がさらに上昇することにより、吸着材からの脱着速度を向上させることができる。これは、温度が高いほど、吸着材は吸着している水蒸気を多くそして速く脱着する特性があるからである。なお、脱着速度とは脱着開始後ある一定時間当たりの脱着量を指す。また、循環風路を流れる循環流の割合を変化させることにより、吸着材の温度調節および脱着用空気の温湿度の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、吸着材の温度が、結晶が破壊される等の温度以上に過熱しないように調節することができ、吸着材の耐久性が増す。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防き、装置からの水蒸気の排出量を増加させることができる。
【0009】
また、請求項2に記載のように循環風路は吸着材を囲むような二重筒型の風路とすることができる。
【0010】
この発明によれば高温の空気が流れる循環風路が、より高温である吸着材の部分を囲み込むことにより、吸着材部分からの放熱が減少し、吸着材の温度がさらに上昇するとともに、吸着材と加熱装置部分からの放熱は循環風路の循環流を加熱するため循環流の温度が上昇することから、さらに吸着材の温度を高めるように作用する。これによって、エネルギー効率がより高まり、吸着材からの脱着速度をさらに向上させることができる。
【0011】
また、請求項に記載のように、脱着開始から時間が経つにつれて循環流の割合を同じかあるいは大きくする循環流可変手段を設けることができる。
【0012】
脱着開始後しばらくは吸着材および吸着材から流出する空気の温度が比較的低いことから、空気中の相対湿度が高くなり、循環風路等で冷却されて風路壁面に結露を発生する場合があり、装置の外部へ排出される水蒸気量が減少することがある。そこで、吸着開始直後は循環量を少なくして結露を防ぎ、その後は循環量を多くすることにより、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0013】
また、請求項に記載のように、装置内の空気の相対湿度を測定する湿度センサーを設け、循環流可変手段は前記湿度センサーの出力に基づいて吸着材を通過する風量に対する循環流の割合を変化させることができる。
【0014】
この発明によれば、湿度センサーの出力に基づいて循環流の割合を変化させることにより、脱着した水蒸気が風路壁面に結露し、装置外部への水蒸気の放出が減少することを防止し、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0015】
また、請求項に記載のように、送風機の風量を変化させる風量調整手段を設けることができる。
【0016】
この発明によれば吸着材を通過する風量とともに循環風路を流れる循環量も変化し、吸着材の温度調節および脱着用空気の温湿度の調節と風量の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、吸着材の温度が、結晶が破壊される等の温度以上に過熱しないように調節することができ、吸着材の耐久性が増す。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防き、装置からの水蒸気の排出量を増加させることができる。
【0017】
また、請求項に記載のように、脱着開始から時間が経つにつれて送風機の風量を同じかあるいは小さくする風量調整手段を設けることができる。
【0018】
脱着開始後しばらくは吸着材および吸着材から流出する空気の温度が比較的低いことから、空気中の相対湿度が高くなり、循環風路等で冷却されて風路壁面に結露を発生する場合があり、装置の外部へ排出される水蒸気量が減少することがある。そこで、この発明によれば吸着開始直後は送風機の風量を大きくして結露を防ぎ、その後は風量を小さくすることにより、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0019】
また、請求項に記載のように、風路内の空気の相対湿度を測定する湿度センサーを設け、風量調整手段は前記湿度センサーの出力に基づいて送風機の風量を変化させることができる。
【0020】
この発明によれば、湿度センサーの出力に基づいて送風機の風量を変化させることにより、脱着した水蒸気が風路壁面に結露し、装置外部への水蒸気の放出が減少することを防止し、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0021】
さらに、請求項に記載のように、循環風路内に補助加熱装置を設けることができる。
【0022】
この発明によれば、補助加熱装置は循環風路内を通過する循環流を加熱するため、脱着用空気および吸着材の温度がさらに上昇し、脱着速度が増加する。また、循環風路内で水蒸気が結露することを防止し、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0023】
また、請求項に記載のように、吸着時に、吸着用空気は循環風路を流れないようにすることができる。
【0024】
この発明によれば、循環切換手段によって、吸着時には加熱空気が循環風路を循環しないため、装置外部のからの処理空気のみを吸着材に通過させ、被処理空気の吸着を効率よく行う。一方、脱着時には吸着材を通過した後に外部へ排出される高温の脱着用空気の一部を吸着材の上流側に循環することにより、エネルギー効率が高まり、吸着材の温度がさらに上昇することにより、吸着材からの脱着速度を向上させることができる。従って、送風機の風量を吸着時と脱着時とで切り換える手段を用いることなく、効率的な吸脱着を繰り返し行うことができる。
【0025】
以下、本発明の実施例について図面を用いて説明する。
【0026】
(実施例1)
図1は本発明の実施例1の脱着装置を示す。
【0027】
図に示すように、吸着材1と加熱源である電気ヒーター2があり、吸着材1へ脱着用空気を流す送風機3が設置されている。吸着材1はゼオライトなどの吸着剤を基板に担持させ、通風路を有するように成形したものである。また、流入風路5と流出風路6が接続され、吸着材の下流側から送風機の上流側へ循環風路7が設置されている。なお、吸着材1は上記したものに限らず、ペレット状吸着剤を充填したものや、バインダーで吸着剤を練り固めたものを押し出し成形したものであってもかまわない。
【0028】
次に、動作、作用について説明すると、電気ヒーター2により加熱され昇温した脱着用空気と電気ヒーター2からの直接のふく射熱によって水蒸気を吸着している吸着材1は加熱され、水蒸気を脱着する。脱着した水蒸気は吸着材1を通過する脱着用空気とともに流出風路6から排出されるが、吸着材1を通過した空気の一部は循環風路7を通って送風機3の上流へ循環する。吸着材1を通過する際に温度は低下するものの、脱着用空気は約150℃程度の高温であり、この脱着用空気の一部を循環し、流入風路5から流入する空気と混合することにより排出されていた熱の一部を容易に回収・利用することができ、エネルギー効率が向上する。そして、脱着用空気の温度がより上昇し、吸着材1の温度をさらに上昇させることから、吸着材の脱着速度が増加する。実験で得られた脱着速度に関する結果を図2に示す。横軸には循環量を切り替える仕切板の開度(mm)をとっているが、開度が小さいと循環量が多いことを示す。縦軸には脱着速度として、2分間あたりの脱着量(g/2min)をとっており、破線は循環なしの場合の脱着速度である。グラフ中に脱着開始2分後の吸着材の平均温度も併記したが、循環することにより吸着材の温度は上昇しており、脱着速度も最大約25%増加していることがわかる。また、吸着材1および通過する脱着用空気の温度がより上昇していることから、真菌や一般細菌を殺菌する能力も向上する。さらに、従来と同能力の装置とすれば、吸着材を流れる流速が大きいため、吸着材の温度を低くでき、吸脱着を繰り返す際の温度振幅が小さくなり、耐久性が向上する。
【0029】
なお、循環風路7は送風機3の上流に設置したが、吸着材1の下流側から上流側へ循環する方向に循環流が流れれば、循環風路7は送風機の下流側に設置してもかまわない。また、装置において明確な流入風路や流出風路がなくても、脱着用空気が装置外から流入し、装置外へ流出すれば同様の効果が得られる。
【0030】
(実施例2)
図3は本発明の実施例2の脱着装置である。
【0031】
ここで、図1に示した本発明の実施例1と同じ構成要素には同一番号を付与している。図3において、循環風路7は吸着材1と電気ヒーター2の部分を囲むような二重筒型の風路となっている。
【0032】
動作、作用については実施例1の場合と同様であるが、高温の空気が流れる循環風路7が、より高温である吸着材1と電気ヒーター2の部分を囲み込むことにより、吸着材部分からの放熱が減少し、吸着材1の温度がさらに上昇するとともに、吸着材1と加熱装置部分からの放熱は循環風路7の循環流を加熱するため循環流の温度が上昇することから、さらに吸着材1の温度を高めるように作用する。これによって、エネルギー効率がより高まり、吸着材1からの脱着速度をさらに向上させることができる。
【0033】
なお、図3では循環風路7が全周を囲み込む構成としたが、完全に全周でなくても効果はある。
【0034】
(実施例3)
図4、図5は本発明の実施例3の脱着装置を示す。
【0035】
ここで、図3に示した本発明の実施例2と同じ構成要素には同一番号を付与している。図4、5において、循環風路7の出口と入口には循環流可変手段8が設置されている。なお、循環流可変手段8は、出口と入口の両方に設置せず、どちらか一方でもよく、また別の場所に設置してもかまわない。
【0036】
動作、作用については実施例2と同様であるが、循環流可変手段8は吸着材1を通過する風量に対し循環風路7を流れる循環流の割合を変化させる。図4、図5中の黒矢印で示すように循環流可変手段8の一部分が変位して循環風路7を流れる循環流の割合を変化させることにより、吸着材1の温度および脱着用空気の温湿度の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、吸着材1の温度が、結晶が破壊される等の温度以上に過熱しないように調節することができ、吸着材1の耐久性が増す。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防き、装置からの水蒸気の排出速度を増加させることができる。なお、循環量はあらかじめ設定した時間で制御される場合もあれば、風路内の空気の温湿度や吸着材1の温度などをセンサーで測定し、その出力に基づいて制御させる場合もある。
【0037】
(実施例4)
図6は本発明の実施例4の脱着装置を示す。
【0038】
ここで、図4に示した本発明の実施例3と同じ構成要素には同一番号を付与している。図6において、脱着開始から時間が経つにつれて循環流の割合を同じかあるいは大きくする循環流可変手段8が設置されている。
【0039】
動作、作用については実施例3と同様であるが、循環流可変手段8は脱着開始から時間が経つにつれ、吸着材1を通過する風量に対する循環風路7を流れる循環流の割合を同じかあるいは大きくするように動作する。脱着開始後しばらくは吸着材1および吸着材1から流出する空気の温度が比較的低いことから、空気中の相対湿度が高くなり、循環風路7で冷却されて風路壁面に結露を発生する場合があり、装置の外部へ排出される水蒸気量が減少することがある。そこで、吸着開始直後は循環量を少なくして結露を防ぎ、その後は循環量を多くすることにより、より効率よく吸着材1からの脱着および水蒸気の装置外への排出を行うことができる。
【0040】
(実施例5)
図7は本発明の実施例5の脱着装置を示す。
【0041】
ここで、図4に示した本発明の実施例3と同じ構成要素には同一番号を付与している。図7において、吸着材1の出口付近に湿度センサー9を設置し、湿度センサー9の出力に基づいて循環流の割合を変化させる循環流可変手段8を設けている。
【0042】
動作、作用については実施例3と同様であるが、循環流可変手段8は湿度センサー9の出力に基づいて図中黒矢印で示すように変位して循環流の割合を変化させる。これにより、最適な循環条件で脱着を行うとともに、脱着した水蒸気が風路壁面に結露し、装置外部への水蒸気の放出量が減少することを防止し、より効率よく吸着材からの脱着および水蒸気の装置外への排出を行うことができる。
【0043】
なお、湿度センサー9は、図に示した以外の位置に設置してもかまわない。
【0044】
(実施例6)
図8、図9は本発明の実施例6の脱着装置を示す。
【0045】
ここで、図3に示した本発明の実施例2と同じ構成要素には同一番号を付与している。図8、9において、送風機3の風量を変化させる風量調整手段10を備えており、図8では電気回路により送風機3の電圧を変化させるものであり、図9では送風機3の吸い込み側の面積を変化させることにより風量を変化させるものである。
【0046】
動作、作用については実施例2と同様であるが、送風機3の風量を変化させることにより、吸着材1を通過する風量とともに循環風路7を流れる循環量も変化し、吸着材1の温度調節および脱着用空気の温湿度の調節と風量の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、吸着材の温度が、結晶が破壊される等の温度以上に過熱しないように調節することができ、吸着材の耐久性が増す。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防き、装置からの水蒸気の排出速度を増加させることができる。
【0047】
(実施例7)
図10は本発明の実施例7の脱着装置を示す。
【0048】
ここで、図3に示した本発明の実施例2と同じ構成要素には同一番号を付与している。図10において、脱着開始から時間が経つにつれて送風機3の風量を同じかあるいは小さくする風量調整手段10が設置されている。
【0049】
動作、作用については実施例2と同様であるが、脱着開始後しばらくは吸着材1および吸着材1から流出する空気の温度が比較的低いことから、空気中の相対湿度が高くなり、循環風路7で冷却されて風路壁面に結露を発生する場合があり、装置の外部へ排出される水蒸気量が減少することがある。そこで、風量調整手段10は、吸着開始直後は送風機3の風量を大きくして結露を防ぎ、その後は風量を同じかあるいは小さくするように制御することにより、より効率よく吸着材1からの脱着および水蒸気の装置外への排出を行うことができる。
【0050】
(実施例8)
図11は本発明の実施例8の脱着装置を示す。
【0051】
ここで、図8に示した本発明の実施例6と同じ構成要素には同一番号を付与している。吸着材1の出口付近に湿度センサー9を設置し、前記湿度センサー9の出力に対応して送風機3の風量を変化させる風量調整手段10を設けている。
【0052】
動作、作用については実施例6と同様であるが、風量調整手段10は湿度センサー9の出力に基づいて循環流の割合を変化させる。これにより、最適な循環条件で脱着を行うとともに、脱着した水蒸気が風路壁面に結露し、装置外部への水蒸気の放出量が減少することを防止し、より効率よく吸着材1からの脱着および水蒸気の装置外への排出を行うことができる。
【0053】
(実施例9)
図12は本発明の実施例9の脱着装置を示す。
【0054】
ここで、図1に示した本発明の実施例1と同じ構成要素には同一番号を付与している。図12において、循環風路7に加熱源である補助電気ヒーター11が設置してある。
【0055】
動作、作用については実施例1と同様であるが、補助電気ヒーター11は循環風路7を通過する循環流を加熱するため、脱着用空気および吸着材1の温度がさらに上昇し、脱着速度が増加する。また、循環風路7内で水蒸気が結露することを防止し、より効率よく吸着材1からの脱着および水蒸気の装置外への排出を行うことができる。
【0056】
(実施例10)
図13は本発明の実施例10の吸脱着装置を示す。
【0057】
ここで、図1に示した本発明の実施例1と同じ構成要素には同一番号を付与している。図13において、循環切換手段12が循環風路7の入口と出口に設置されている。
【0058】
次に、動作、作用について説明すると、吸着行程では図の破線の位置に循環切換手段12を切り換える。電気ヒーター2には通電せず、送風機3を運転し、被処理空気を流入風路5からから吸着材1へ導く。吸着材1を通過した空気は循環風路7を通ることなく流出風路6から排出される。一方、脱着時には、電気ヒーター2により加熱され昇温した脱着用空気と電気ヒーター2からの直接のふく射熱によって水蒸気を吸着している吸着材1は加熱され、水蒸気を脱着する。脱着した水蒸気は吸着材1を通過する脱着用空気とともに流出風路6から排出されるが、循環切換手段12を図の実線の位置に切り換え、吸着材1を通過した空気の一部は循環風路7を通って送風機の上流へ循環する。なお、脱着時における作用については実施例1と同様である。また、吸着行程と脱着行程を繰り返し運転する際に、脱着時の脱着効率を上げるために、脱着時には送風機3の風量を小さくする場合が多い。このため、風量を調整するための手段が必要となるが、本発明では風量を調節する手段の必要はなく、しかも効率的な脱着を行うことができる。
【0059】
【発明の効果】
以上のように本発明によれば、吸着材を通過した流れの一部を吸着材の上流側に導く循環風路を有するので、装置外部へ放出していた熱の一部を容易に回収でき、エネルギー効率が向上し、脱着速度が増加するという有利な効果を有する。
【0060】
また、吸着材を通過する風量に対する循環風路を流れる循環流の割合を変化させる循環流可変手段を設けているので、吸着材の温度調節および脱着用空気の温湿度の調節ができ、最適な条件で脱着を行い、吸着速度がより速くなるようにすることができる。また、この割合を調整することにより、脱着した水蒸気が風路内に結露することを防ぎ、装置からの水蒸気の排出速度を増加させることができる。
【図面の簡単な説明】
【図1】 本発明の実施例1の吸着装置の要部断面図
【図2】 循環量と脱着速度の関係を示すグラフ
【図3】 本発明の実施例2の吸着装置の要部断面図
【図4】 本発明の実施例3の吸着装置の要部断面図
【図5】 本発明の実施例3における他の例の吸着装置の要部断面図
【図6】 本発明の実施例4の吸着装置の要部断面図
【図7】 本発明の実施例5の吸着装置の要部断面図
【図8】 本発明の実施例6の吸着装置の要部断面図
【図9】 本発明の実施例6における他の例の吸着装置の要部断面図
【図10】 本発明の実施例7の吸着装置の要部断面図
【図11】 本発明の実施例8の吸着装置の要部断面図
【図12】 本発明の実施例9の吸着装置の要部断面図
【図13】 本発明の実施例10の吸脱着装置の要部断面図
【図14】 従来の吸着装置の要部断面図
【図15】 従来の他の例の吸着装置の要部断面図
【符号の説明】
1 吸着材
2 電気ヒーター
3 送風機
4 熱交換器
5 流入風路
6 流出風路
7 循環風路
8 循環量可変手段
9 湿度センサー
10 風量調整手段
11 補助ヒーター
12 循環切換手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an adsorbent desorption apparatus.
[0002]
[Prior art]
Conventionally, this type of desorption apparatus is generally as described in JP-A-7-16417. As shown in FIG. 14, this apparatus has an adsorbent 1 having a ventilation path, and is configured to allow desorption air heated by an electric heater 2 to flow into the adsorbent 1 by a blower 3. The adsorbent 1 heated by the warm desorption air releases or desorbs water vapor. The desorbed water vapor is discharged to the downstream side together with the desorption air as indicated by the white arrow in the figure, and the adsorbent 1 is desorbed and regenerated.
[0003]
Also, as described in JP-A-60-50328, there is a configuration in which a part of the heat of the desorption air discharged to the outside is recovered and used for preheating the desorption air. As shown in FIG. 15, this apparatus is provided with a heat exchanger 4 between the air that has passed through the adsorbent 1 and the air just before being heated by the electric heater 2, and the heat of the desorption air that is discharged. Part of this was used for preheating desorption air before flowing into the adsorbent.
[0004]
[Problems to be solved by the invention]
However, the conventional desorption apparatus described above has a problem that although the temperature of the air is lowered when passing through the adsorbent, the desorption air in a high temperature state is discharged to the outside as it is, so that the energy efficiency is poor. In addition, in the configuration that collects a part of the heat discharged to the outside, a heat exchanger is required, so that the configuration becomes complicated and there is a problem that the pressure loss of the air passage is increased.
[0005]
An object of the present invention is to solve the above problems.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention provides an adsorbent, a heating device for heating the adsorbent, a blower for sending desorption air to the adsorbent, and a part of the downstream flow of the adsorbent. The adsorbent desorption device includes a circulation air passage that guides the air to the upstream side of the adsorbent, and a circulation flow varying means that changes a ratio of the circulation flow that flows through the circulation air passage with respect to the amount of air passing through the adsorbent.
[0007]
According to the above invention, a part of the high-temperature desorption air that has passed through the adsorbent circulates upstream of the adsorbent through the circulation air passage, so that a part of the heat discharged to the outside of the apparatus can be easily recovered and recycled. Can be used and energy efficiency can be improved. Further, since no heat exchanger is used, the configuration is simple and the pressure loss can be hardly increased. Further, by changing the ratio of the circulating flow through the circulation air duct, can adjust the temperature and humidity of the temperature regulation and desorption air of the adsorbent, performs desorption under optimal conditions, so that the adsorption rate becomes faster Can be. Further, the temperature of the adsorbent can be adjusted so as not to overheat above the temperature at which the crystal is broken, etc., and the durability of the adsorbent is increased. Further, by adjusting this ratio, it is possible to prevent the desorbed water vapor from condensing in the air passage, and to increase the amount of water vapor discharged from the apparatus.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention, as described in claim 1, and adsorbent, a heating device for heating the adsorbent, a blower for sending air for desorption to the adsorbent, the downstream side of the flow of the adsorbent one A circulation air passage that leads a portion to the upstream side of the adsorbent, and a circulation flow variable means that changes a ratio of the circulation flow that flows through the circulation air passage with respect to the amount of air passing through the adsorbent. By circulating a part of the high-temperature desorption air discharged to the outside after passing to the upstream side of the adsorbent, energy efficiency is increased, and the temperature of the adsorbent is further increased, so that the desorption speed from the adsorbent is increased. Can be improved. This is because the higher the temperature, the more adsorbent has the property of desorbing and desorbing more water vapor. The desorption speed refers to the desorption amount per certain time after the start of desorption. In addition, by changing the ratio of the circulation flow through the circulation air passage, the temperature of the adsorbent and the temperature and humidity of the desorption air can be adjusted, so that desorption is performed under optimum conditions, and the adsorption speed is faster. can do. Further, the temperature of the adsorbent can be adjusted so as not to overheat above the temperature at which the crystal is broken, etc., and the durability of the adsorbent is increased. Further, by adjusting this ratio, it is possible to prevent the desorbed water vapor from condensing in the air passage, and to increase the amount of water vapor discharged from the apparatus.
[0009]
Further, as described in claim 2 , the circulation air passage can be a double tube air passage surrounding the adsorbent.
[0010]
According to the present invention, the circulation air passage through which high-temperature air flows surrounds the portion of the adsorbent that is higher in temperature, thereby reducing heat dissipation from the adsorbent portion, further increasing the temperature of the adsorbent, Since the heat radiation from the material and the heating device part heats the circulating flow in the circulating air passage, the temperature of the circulating flow rises, and thus acts to further increase the temperature of the adsorbent. As a result, energy efficiency is further increased, and the desorption rate from the adsorbent can be further improved.
[0011]
Further, as described in claim 3 , it is possible to provide a circulating flow varying means for making the ratio of the circulating flow the same or larger as time passes from the start of desorption.
[0012]
Since the temperature of the adsorbent and the air flowing out of the adsorbent is relatively low for a while after the start of desorption, the relative humidity in the air may be high, causing condensation on the air passage wall surface due to cooling in the circulation air passage. Yes, the amount of water vapor discharged to the outside of the apparatus may decrease. Therefore, immediately after the start of adsorption, the amount of circulation is reduced to prevent condensation, and thereafter the amount of circulation is increased, whereby desorption from the adsorbent and discharge of water vapor to the outside of the apparatus can be performed more efficiently.
[0013]
According to a fourth aspect of the present invention, there is provided a humidity sensor for measuring the relative humidity of the air in the apparatus, and the circulating flow varying means is a ratio of the circulating flow to the amount of air passing through the adsorbent based on the output of the humidity sensor. Can be changed.
[0014]
According to this invention, by changing the ratio of the circulation flow based on the output of the humidity sensor, the desorbed water vapor is condensed on the air passage wall surface, and the release of water vapor to the outside of the device is reduced, and more The desorption from the adsorbent and the discharge of water vapor out of the apparatus can be performed efficiently.
[0015]
Further, as described in claim 5 , an air volume adjusting means for changing the air volume of the blower can be provided.
[0016]
According to this invention, the circulation amount flowing through the circulation air passage changes with the amount of air passing through the adsorbent, and the temperature of the adsorbent and the temperature and humidity of the desorption air can be adjusted and the amount of air can be adjusted. And the adsorption rate can be faster. Further, the temperature of the adsorbent can be adjusted so as not to overheat above the temperature at which the crystal is broken, etc., and the durability of the adsorbent is increased. Further, by adjusting this ratio, it is possible to prevent the desorbed water vapor from condensing in the air passage, and to increase the amount of water vapor discharged from the apparatus.
[0017]
Further, as described in claim 6 , there can be provided air volume adjusting means for making the air volume of the blower the same or smaller as time passes from the start of desorption.
[0018]
Since the temperature of the adsorbent and the air flowing out of the adsorbent is relatively low for a while after the start of desorption, the relative humidity in the air may be high, causing condensation on the air passage wall surface due to cooling in the circulation air passage. Yes, the amount of water vapor discharged to the outside of the apparatus may decrease. Therefore, according to the present invention, immediately after the start of adsorption, the air volume of the blower is increased to prevent condensation, and thereafter the air volume is decreased to more efficiently desorb the adsorbent and discharge water vapor out of the apparatus. Can do.
[0019]
According to a seventh aspect of the present invention , a humidity sensor that measures the relative humidity of the air in the air passage is provided, and the air volume adjusting means can change the air volume of the blower based on the output of the humidity sensor.
[0020]
According to the present invention, by changing the air volume of the blower based on the output of the humidity sensor, it is possible to prevent the desorbed water vapor from condensing on the wall surface of the air passage, thereby reducing the release of water vapor to the outside of the apparatus, and more efficient. It is possible to perform desorption from the adsorbent and discharge water vapor out of the apparatus well.
[0021]
Further, as described in claim 8 , an auxiliary heating device can be provided in the circulation air passage.
[0022]
According to this invention, since the auxiliary heating device heats the circulating flow passing through the circulation air passage, the temperature of the desorption air and the adsorbent further increases, and the desorption speed increases. Further, it is possible to prevent the water vapor from condensing in the circulation air passage, and to more efficiently desorb the adsorbent and discharge the water vapor outside the apparatus.
[0023]
Further, as described in claim 9, at the time of adsorption, the adsorption air can be Rukoto to prevent flow through the air circulation duct.
[0024]
According to the present invention, since the heated air does not circulate through the circulation air path during adsorption by the circulation switching means, only the treated air from the outside of the apparatus is passed through the adsorbent to efficiently adsorb the treated air. On the other hand, by circulating a part of the high-temperature desorption air discharged to the outside after passing through the adsorbent during desorption, energy efficiency increases, and the temperature of the adsorbent further increases. The desorption rate from the adsorbent can be improved. Therefore, efficient adsorption / desorption can be repeatedly performed without using means for switching the air volume of the blower between adsorption and desorption.
[0025]
Embodiments of the present invention will be described below with reference to the drawings.
[0026]
Example 1
FIG. 1 shows a desorption apparatus according to Embodiment 1 of the present invention.
[0027]
As shown in the figure, there are an adsorbent 1 and an electric heater 2 as a heating source, and a blower 3 for flowing desorption air to the adsorbent 1 is installed. The adsorbent 1 is formed by supporting an adsorbent such as zeolite on a substrate and forming a ventilation path. Moreover, the inflow air path 5 and the outflow air path 6 are connected, and the circulation air path 7 is installed from the downstream side of the adsorbent to the upstream side of the blower. In addition, the adsorbent 1 is not limited to the above-described one, and may be a material filled with a pellet-shaped adsorbent or a material obtained by kneading and adsorbing an adsorbent with a binder.
[0028]
Next, the operation and action will be described. Desorption air heated by the electric heater 2 and heated and the adsorbent 1 adsorbing water vapor by direct radiant heat from the electric heater 2 are heated to desorb water vapor. The desorbed water vapor is discharged from the outflow air passage 6 together with the desorption air passing through the adsorbent 1, but part of the air that has passed through the adsorbent 1 circulates upstream of the blower 3 through the circulation air passage 7. Although the temperature drops when passing through the adsorbent 1, the desorption air is at a high temperature of about 150 ° C., and part of this desorption air is circulated and mixed with the air flowing in from the inflow air passage 5. Part of the heat that has been exhausted can be easily recovered and used, improving energy efficiency. And since the temperature of desorption air rises more and the temperature of the adsorbent 1 is further raised, the desorption speed of the adsorbent increases. The results regarding the desorption rate obtained in the experiment are shown in FIG. The horizontal axis indicates the opening degree (mm) of the partition plate for switching the circulation amount. When the opening degree is small, the circulation amount is large. The vertical axis indicates the desorption amount (g / 2 min) per 2 minutes as the desorption rate, and the broken line indicates the desorption rate when there is no circulation. Although the average temperature of the adsorbent 2 minutes after the start of desorption is also shown in the graph, it can be seen that the temperature of the adsorbent increases as it circulates, and the desorption speed increases by up to about 25%. Moreover, since the temperature of the adsorbent 1 and the desorption air to pass through has risen more, the ability to sterilize fungi and general bacteria is also improved. Furthermore, if the apparatus has the same capacity as that of the conventional apparatus, since the flow velocity of the adsorbent is large, the temperature of the adsorbent can be lowered, the temperature amplitude when repeated adsorption / desorption is reduced, and durability is improved.
[0029]
In addition, although the circulation air path 7 was installed upstream of the air blower 3, if a circulation flow flows in the direction which circulates from the downstream of the adsorbent 1 to an upstream, the circulation air path 7 will be installed in the downstream of the air blower. It doesn't matter. Even if there is no clear inflow or outflow path in the apparatus, the same effect can be obtained if the desorption air flows in from the outside of the apparatus and flows out of the apparatus.
[0030]
(Example 2)
FIG. 3 shows a detaching apparatus according to Embodiment 2 of the present invention.
[0031]
Here, the same reference numerals are given to the same components as those of the first embodiment of the present invention shown in FIG. In FIG. 3, the circulation air passage 7 is a double-cylinder air passage surrounding the adsorbent 1 and the electric heater 2.
[0032]
The operation and action are the same as in the case of Example 1, but the circulation air passage 7 through which high-temperature air flows surrounds the parts of the adsorbent 1 and the electric heater 2 that are higher in temperature, so that the adsorbent part is separated from the adsorbent part. Since the heat dissipation of the adsorbent 1 is further increased, the temperature of the adsorbent 1 is further increased, and the heat dissipated from the adsorbent 1 and the heating device portion heats the circulating flow of the circulation air passage 7, and thus the temperature of the circulating flow is further increased. It acts to increase the temperature of the adsorbent 1. As a result, energy efficiency is further increased, and the desorption rate from the adsorbent 1 can be further improved.
[0033]
In FIG. 3, the circulation air passage 7 surrounds the entire circumference. However, even if it is not completely the entire circumference, there is an effect.
[0034]
Example 3
4 and 5 show a desorption apparatus according to Embodiment 3 of the present invention.
[0035]
Here, the same reference numerals are given to the same components as those of the second embodiment of the present invention shown in FIG. 4 and 5, circulating flow varying means 8 is installed at the outlet and the inlet of the circulation air passage 7. Note that the circulating flow varying means 8 is not installed at both the outlet and the inlet, and either of them may be installed, or it may be installed at another place.
[0036]
Although the operation and action are the same as those in the second embodiment, the circulating flow varying means 8 changes the ratio of the circulating flow flowing through the circulating air passage 7 with respect to the air volume passing through the adsorbent 1. As shown by the black arrows in FIGS. 4 and 5, a part of the circulating flow varying means 8 is displaced to change the ratio of the circulating flow that flows through the circulating air passage 7. Temperature and humidity can be adjusted, desorption can be performed under optimum conditions, and the adsorption rate can be increased. Moreover, the temperature of the adsorbent 1 can be adjusted so as not to overheat above the temperature at which the crystal is broken, etc., and the durability of the adsorbent 1 is increased. Further, by adjusting this ratio, it is possible to prevent the desorbed water vapor from condensing in the air passage, and to increase the water vapor discharge rate from the apparatus. The circulation amount may be controlled at a preset time, or the temperature / humidity of the air in the air passage or the temperature of the adsorbent 1 may be measured by a sensor and controlled based on the output.
[0037]
(Example 4)
FIG. 6 shows a detaching apparatus according to Embodiment 4 of the present invention.
[0038]
Here, the same reference numerals are given to the same components as those of the third embodiment of the present invention shown in FIG. In FIG. 6, a circulating flow variable means 8 is provided for increasing or decreasing the ratio of the circulating flow over time from the start of desorption.
[0039]
The operation and action are the same as in the third embodiment, but the circulating flow varying means 8 has the same ratio of the circulating flow through the circulating air passage 7 to the air volume passing through the adsorbent 1 as time passes from the start of desorption or the same. Works to make it bigger. Since the temperature of the adsorbent 1 and the air flowing out of the adsorbent 1 is relatively low for a while after the start of desorption, the relative humidity in the air becomes high and the air is cooled by the circulation air passage 7 to cause condensation on the air passage wall surface. In some cases, the amount of water vapor discharged outside the apparatus may be reduced. Therefore, immediately after the start of adsorption, the amount of circulation is reduced to prevent condensation, and thereafter the amount of circulation is increased, whereby desorption from the adsorbent 1 and discharge of water vapor to the outside of the apparatus can be performed more efficiently.
[0040]
(Example 5)
FIG. 7 shows a desorption apparatus according to Embodiment 5 of the present invention.
[0041]
Here, the same reference numerals are given to the same components as those of the third embodiment of the present invention shown in FIG. In FIG. 7, a humidity sensor 9 is installed in the vicinity of the outlet of the adsorbent 1, and a circulation flow variable means 8 that changes the ratio of the circulation flow based on the output of the humidity sensor 9 is provided.
[0042]
The operation and action are the same as in the third embodiment, but the circulating flow varying means 8 is displaced as indicated by the black arrow in the figure based on the output of the humidity sensor 9 to change the ratio of the circulating flow. As a result, desorption is performed under optimal circulation conditions, and the desorbed water vapor is prevented from condensing on the wall surface of the air passage, and the amount of water vapor released to the outside of the apparatus is prevented from being reduced. Can be discharged out of the apparatus.
[0043]
The humidity sensor 9 may be installed at a position other than that shown in the figure.
[0044]
(Example 6)
8 and 9 show a detaching apparatus according to Embodiment 6 of the present invention.
[0045]
Here, the same reference numerals are given to the same components as those of the second embodiment of the present invention shown in FIG. 8 and 9, an air volume adjusting means 10 for changing the air volume of the blower 3 is provided. In FIG. 8, the voltage of the blower 3 is changed by an electric circuit. In FIG. 9, the area on the suction side of the blower 3 is shown. The air volume is changed by changing it.
[0046]
The operation and action are the same as those in the second embodiment. However, by changing the air volume of the blower 3, the circulation amount flowing through the circulation air passage 7 is changed together with the air amount passing through the adsorbent 1, and the temperature of the adsorbent 1 is adjusted. In addition, the temperature and humidity of the desorption air and the air volume can be adjusted, and desorption can be performed under optimum conditions so that the adsorption speed can be increased. Further, the temperature of the adsorbent can be adjusted so as not to overheat above the temperature at which the crystal is broken, etc., and the durability of the adsorbent is increased. Further, by adjusting this ratio, it is possible to prevent the desorbed water vapor from condensing in the air passage, and to increase the water vapor discharge rate from the apparatus.
[0047]
(Example 7)
FIG. 10 shows a detaching apparatus according to Embodiment 7 of the present invention.
[0048]
Here, the same reference numerals are given to the same components as those of the second embodiment of the present invention shown in FIG. In FIG. 10, the air volume adjusting means 10 is installed to make the air volume of the blower 3 the same or smaller as time passes from the start of desorption.
[0049]
Although the operation and action are the same as in Example 2, since the temperature of the air flowing out from the adsorbent 1 and the adsorbent 1 is relatively low for a while after the start of desorption, the relative humidity in the air becomes high, and the circulation wind There is a case where condensation is generated on the wall surface of the air passage after being cooled in the passage 7, and the amount of water vapor discharged to the outside of the apparatus may be reduced. Therefore, the air volume adjusting means 10 increases the air volume of the blower 3 immediately after the start of adsorption to prevent condensation, and thereafter controls the air volume to be the same or smaller so that desorption from the adsorbent 1 can be performed more efficiently. Water vapor can be discharged outside the apparatus.
[0050]
(Example 8)
FIG. 11 shows a detaching apparatus according to Embodiment 8 of the present invention.
[0051]
Here, the same reference numerals are given to the same components as those of the sixth embodiment of the present invention shown in FIG. A humidity sensor 9 is installed in the vicinity of the outlet of the adsorbent 1, and an air volume adjusting means 10 for changing the air volume of the blower 3 in accordance with the output of the humidity sensor 9 is provided.
[0052]
Although the operation and action are the same as in the sixth embodiment, the air volume adjusting means 10 changes the ratio of the circulating flow based on the output of the humidity sensor 9. As a result, desorption is performed under optimal circulation conditions, and the desorbed water vapor is condensed on the wall surface of the air passage and the amount of water vapor released to the outside of the apparatus is prevented from being reduced. Water vapor can be discharged outside the apparatus.
[0053]
Example 9
FIG. 12 shows a detaching apparatus according to Embodiment 9 of the present invention.
[0054]
Here, the same reference numerals are given to the same components as those of the first embodiment of the present invention shown in FIG. In FIG. 12, an auxiliary electric heater 11 as a heating source is installed in the circulation air passage 7.
[0055]
Although the operation and action are the same as those in the first embodiment, the auxiliary electric heater 11 heats the circulating flow passing through the circulation air passage 7, so that the temperature of the desorption air and the adsorbent 1 is further increased, and the desorption speed is increased. To increase. Further, it is possible to prevent the water vapor from condensing in the circulation air passage 7 and to more efficiently desorb the water from the adsorbent 1 and discharge the water vapor outside the apparatus.
[0056]
(Example 10)
FIG. 13 shows an adsorption / desorption device according to Embodiment 10 of the present invention.
[0057]
Here, the same reference numerals are given to the same components as those of the first embodiment of the present invention shown in FIG. In FIG. 13, circulation switching means 12 is installed at the inlet and outlet of the circulation air passage 7.
[0058]
Next, the operation and action will be described. In the suction stroke, the circulation switching means 12 is switched to the position of the broken line in the figure. The electric heater 2 is not energized, the blower 3 is operated, and the air to be treated is guided from the inflow air path 5 to the adsorbent 1. The air that has passed through the adsorbent 1 is discharged from the outflow air passage 6 without passing through the circulation air passage 7. On the other hand, at the time of desorption, the desorption air heated by the electric heater 2 and heated and the adsorbent 1 adsorbing water vapor by the direct radiation heat from the electric heater 2 are heated to desorb the water vapor. The desorbed water vapor is discharged from the outflow air passage 6 together with the desorption air passing through the adsorbent 1, but the circulation switching means 12 is switched to the position of the solid line in the figure, and a part of the air passing through the adsorbent 1 is circulating air. It circulates through the path 7 upstream of the blower. The action at the time of desorption is the same as that in the first embodiment. Further, when the adsorption process and the desorption process are repeatedly performed, the air volume of the blower 3 is often reduced during the desorption in order to increase the desorption efficiency during the desorption. For this reason, means for adjusting the air volume is required, but in the present invention, there is no need for means for adjusting the air volume, and efficient desorption can be performed.
[0059]
【The invention's effect】
As described above, according to the present invention, since the circulation air passage that guides a part of the flow that has passed through the adsorbent to the upstream side of the adsorbent is provided, a part of the heat released to the outside of the apparatus can be easily recovered. , Energy efficiency is improved and desorption rate is increased.
[0060]
Further, since the provided circulating flow varying means for varying the rate of circulation through the air circulation duct for air volume passing through the adsorbent, you can adjust the temperature and humidity of the temperature regulation and desorption air adsorbents optimum Desorption can be performed under conditions to increase the adsorption rate. In addition, by adjusting this ratio, it is possible to prevent desorbed water vapor from condensing in the air passage and increase the water vapor discharge speed from the apparatus.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part of an adsorption device according to a first embodiment of the present invention. FIG. 2 is a graph showing a relationship between the circulation rate and the desorption speed. FIG. 4 is a cross-sectional view of a main part of an adsorption device according to a third embodiment of the present invention. FIG. 5 is a cross-sectional view of a main portion of another example of the adsorption device according to the third embodiment of the present invention. FIG. 7 is a cross-sectional view of the main part of the adsorption device of the fifth embodiment of the present invention. FIG. 8 is a cross-sectional view of the main part of the adsorption device of the sixth embodiment of the present invention. FIG. 10 is a cross-sectional view of the main part of the adsorption device of the seventh embodiment of the present invention. FIG. 11 is a main part of the adsorption device of the eighth embodiment of the present invention. Sectional view [FIG. 12] Cross-sectional view of the main part of the adsorption device of Embodiment 9 of the present invention [FIG. 13] Cross-sectional view of the main part of the adsorption / desorption device of Embodiment 10 of the present invention [FIG. Fragmentary cross-sectional view of a main portion sectional view and FIG. 15 of another conventional example adsorption unit [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Adsorbent 2 Electric heater 3 Blower 4 Heat exchanger 5 Inflow air path 6 Outflow air path 7 Circulation air path 8 Circulation amount variable means 9 Humidity sensor 10 Air volume adjustment means 11 Auxiliary heater 12 Circulation switching means

Claims (9)

吸着材と、前記吸着材を加熱する加熱装置と、前記吸着材へ脱着用の空気を送る送風機と、前記吸着材の下流側の流れの一部を前記吸着材の上流側に導く循環風路と、前記吸着材を通過する風量に対する前記循環風路を流れる循環流の割合を変化させる循環流可変手段とを有する吸着材の脱着装置。An adsorbent, a heating device that heats the adsorbent, a blower that sends desorption air to the adsorbent, and a circulation air passage that guides a part of the downstream flow of the adsorbent to the upstream side of the adsorbent And an adsorbent desorption device comprising: a circulating flow varying means for changing a ratio of the circulating flow flowing through the circulating air passage to the air volume passing through the adsorbent. 循環風路は吸着材を囲むような二重筒型の風路とした請求項1記載の吸着剤の脱着装置。  2. The adsorbent desorption device according to claim 1, wherein the circulation air passage is a double cylinder air passage surrounding the adsorbent. 脱着開始から時間が経つにつれて、吸着材を通過する風量に対する循環風路を流れる循環流の割合を同じかあるいは大きくする循環流可変手段を有する請求項記載の吸着材の脱着装置。As time passes from the desorption start, desorber adsorbent of claim 1, further comprising a circulating flow varying means for same or increase the ratio of the circulating flow through the air circulation duct for air volume passing through the adsorbent. 装置内の空気の相対湿度を測定する湿度センサーを設け、循環流可変手段は前記湿度センサーの出力に基づいて吸着材を通過する風量に対する循環流の割合を変化させる請求項記載の吸着材の脱着装置。The humidity sensor for measuring the relative humidity of the air in the apparatus is provided, the circulation flow varying means of adsorption material according to claim 1, wherein changing the ratio of circulation flow with respect to the amount of air passing through an adsorbent based on an output of said humidity sensor Desorption device. 送風機の風量を変化させる風量調整手段を有する請求項1記載の吸着材の脱着装置。  The adsorbent desorption apparatus according to claim 1, further comprising an air volume adjusting unit that changes an air volume of the blower. 脱着開始から時間が経つにつれて送風機の風量を同じかあるいは小さくする風量調整手段を有する請求項記載の吸着材の脱着装置。6. The adsorbent desorption apparatus according to claim 5, further comprising an air volume adjusting means for making the air volume of the blower the same or smaller as time passes from the start of desorption. 装置内の空気の相対湿度を測定する湿度センサーを設け、風量調整手段は前記湿度センサーの出力に基づいて送風機の風量を変化させる請求項記載の吸着材の脱着装置。6. The adsorbent desorption apparatus according to claim 5, wherein a humidity sensor for measuring the relative humidity of air in the apparatus is provided, and the air volume adjusting means changes the air volume of the blower based on the output of the humidity sensor. 循環風路内に補助加熱装置を設けた請求項1〜7のいずれか1項記載の吸着材の脱着装置。The adsorbent desorption device according to any one of claims 1 to 7 , wherein an auxiliary heating device is provided in the circulation air passage. 吸着時に、吸着用空気は循環風路を流れないようにした請求項1〜8のいずれか1項に記載の吸着材の脱着装置。The adsorption / desorption device according to any one of claims 1 to 8 , wherein the adsorption air does not flow through the circulation air passage during adsorption.
JP12801796A 1996-05-23 1996-05-23 Adsorbent desorption device Expired - Fee Related JP3735941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12801796A JP3735941B2 (en) 1996-05-23 1996-05-23 Adsorbent desorption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12801796A JP3735941B2 (en) 1996-05-23 1996-05-23 Adsorbent desorption device

Publications (2)

Publication Number Publication Date
JPH09310886A JPH09310886A (en) 1997-12-02
JP3735941B2 true JP3735941B2 (en) 2006-01-18

Family

ID=14974433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12801796A Expired - Fee Related JP3735941B2 (en) 1996-05-23 1996-05-23 Adsorbent desorption device

Country Status (1)

Country Link
JP (1) JP3735941B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003161465A (en) * 2001-11-26 2003-06-06 Daikin Ind Ltd Humidity conditioning device
JP3807409B2 (en) * 2004-04-27 2006-08-09 ダイキン工業株式会社 Humidity control device
JP4754358B2 (en) * 2006-01-13 2011-08-24 高砂熱学工業株式会社 Adsorption tower for gas purification and method for regenerating adsorbent in adsorption tower
JP5346707B2 (en) * 2009-06-22 2013-11-20 パナソニック株式会社 Dehumidifier
JP2014126255A (en) * 2012-12-26 2014-07-07 Daikin Ind Ltd Humidity controller and dehumidification system using humidity controller

Also Published As

Publication number Publication date
JPH09310886A (en) 1997-12-02

Similar Documents

Publication Publication Date Title
WO2006129544A1 (en) Air conditioning system
CN101855100A (en) The cooling mechanism of automobile thermal source
CN102505436A (en) Washing and drying all-in-one machine with heat pump and drying mode
JP3735941B2 (en) Adsorbent desorption device
CN206728498U (en) A kind of electrical control cubicles with cooling mechanism
JPH11169644A (en) Dehumidifying device
JP4781886B2 (en) Air conditioner
WO2007040217A1 (en) Humidifying unit and outdoor machine of air conditioner
KR200267391Y1 (en) Constant humidity control unit using a thermoelectric module
JP3755734B2 (en) Moisture exchange device
JP2683304B2 (en) Electric hot air heater
JPH06143997A (en) Vehicle humidifier
JP3774963B2 (en) Heating system
JPH04283332A (en) Drying type dehumidifying/moistening device
JP2004291863A (en) Vehicular air-conditioner
CN217715216U (en) Energy-saving rotary dehumidifier
JP2019120484A (en) Dehumidifying air conditioner
CN212431076U (en) Indoor machine of air conditioner
WO2023234131A1 (en) Co2 adsorption device
JP2005042947A (en) Dehumidifier
KR101980257B1 (en) Hybrid Dehumidification Air Conditioning Equipment including Membrane
JP5329333B2 (en) Dehumidifier
JP3349674B2 (en) rice cooker
JP2009273963A (en) Dehumidifying apparatus
JP4089463B2 (en) Dehumidified air supply device and humidity control system using the device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050614

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees