JP3735407B2 - High strength aluminum alloy - Google Patents
High strength aluminum alloy Download PDFInfo
- Publication number
- JP3735407B2 JP3735407B2 JP10457696A JP10457696A JP3735407B2 JP 3735407 B2 JP3735407 B2 JP 3735407B2 JP 10457696 A JP10457696 A JP 10457696A JP 10457696 A JP10457696 A JP 10457696A JP 3735407 B2 JP3735407 B2 JP 3735407B2
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- toughness
- less
- cracking resistance
- stress corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Extrusion Of Metal (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は構造用部材に用いられるアルミニウム合金に関するものである。
【0002】
【従来技術】
車両用構造部材として、軽量化の要請の下に押出加工したアルミニウム合金が使用されている。
例えば、自動車用バンパーリィンホースメントにはJIS7003合金が、鉄道車両用にはJIS7075合金等が使用されている。
【0003】
【本発明が解決しようとする課題】
しかし、JIS7003合金では強度不充分であり、一方、JIS7075合金では高強度は得られるが、靱性が極端に悪くなるばかりでなく、バンパーリィンホースメント、サイドドアビームやサイドメンバー等の車両用部品の分野では耐応力腐食割れ性や押出加工性が悪く、実用的ではないという課題を抱えていた。
これらの車両用部品の分野では、車両の軽量化が燃費の向上に直接効果を与えるために、より高強度のアルミ材料の使用による小型化が要求される一方で、乗員保護という安全性の観点からは、靱性に優れたアルミ材料の使用による衝撃吸収性の向上が非常に重要となってきている。
従って、本発明は高強度であり、かつ、靱性、耐応力腐食割れ性および押出加工性にも優れたアルミニウム合金およびその製造方法を提供せんとするものである。
【0004】
【課題を解決するための手段】
押出成形用アルミニウム合金においては、Mg、Zn、Cuを添加することで高強度合金が得られるが、それに反比例して押出加工性および靱性が悪くなることは広く知られているところである。
しかし、本発明者はMg、Zn、Cuの成分に加えて、Mn、Cr、Zr、Fe、Siの成分量を変えて種々の合金を試作評価した結果、一定の組成範囲にては強度500MPa(以下、特に示さない限り0.2%耐力をいう)以上が得られ、かつ、靱性、耐応力腐食割れ性および押出加工性に優れることが明らかになった。
その内容について以下に述べる。
【0005】
MgおよびZnは金属間化合物成形による強度向上が期待できる高強度アルミニウム合金の添加主成分である。
Mgは強度向上に対する寄与は大きいが、押出加工性を著しく害する要因となる。
Znは押出加工性を比較的に低下させずに強度向上に寄与するが、Mgに対する添加比率を一定以上に高くすると、耐応力腐食割れ性が著しく低下することになる。
従って、後述する他の添加成分との組み合わせにて、強度約500MPaを維持しつつ、相反する靱性、耐応力腐食割れ性、押出加工性に優れた特性を確保するのにZn:7.0〜9.0wt%(以下、%と略す)、Mg:1.0〜2.0%が最適である。
Cuはアルミニウム合金において固溶硬化が期待できるとともに、結晶粒界部と結晶粒内との電位差緩和により、耐応力腐食割れ性を向上させることができる。一方、添加量が多すぎると、逆にCuとAlとの電位差腐食の原因となる。従って、Cu:0.2〜0.4%に選定した。
Mn、Cr、Zrは、一定の範囲については結晶粒を微細化する効果があり、押出加工性を低下させることなく、靱性、耐応力腐食割れ性を向上させることができる。その範囲は、種々試作評価した結果、Mn:0.1〜0.5%、Cr:0.05〜0.3%、Zr:0.1〜0.2%であった。
FeおよびSiは、通常、アルミニウムの精練、鋳造過程にて不純物として混入される成分であるが、Fe:0.15%以下、Si:0.1%以下にしないと、いずれも靱性を低下させることも明らかになった。
【0006】
以上の成分範囲にて調整されたアルミニウム合金を用いて、常法されているビレット鋳造し、押出加工後、所定の熱処理にても充分に高強度アルミニウム押出形材が得られるが、本発明によるアルミニウム合金の特性を最も発揮させるには、以下に述べる製造条件が良い。
本発明によるアルミニウム合金を用いて円柱状のビレットを鋳造し、その後、440〜480℃にて10〜20時間均質化処理する。押出加工時のビレット加熱温度は400〜450℃が良い。400℃以下では押出加工性が悪く、450℃以上では再結晶が粗大化して耐応力腐食割れ性が低下する。
押出加工後に、そのまま人工時効処理を実施しても、強度、靱性、耐応力腐食割れ性、押出加工性に優れたアルミニウム押出形材が得られるが、さらに靱性および耐応力腐食割れ性を向上させるには、押出形材を400〜470℃に再加熱して、その後、1000℃/分以上の速度で冷却した後に80〜160℃にて10〜72時間焼き戻し処理するのが良い。
そのように製造した押出形材は、押出形材の断面にて繊維状組織部分の面積比率が90%以上で靱性、耐応力腐食割れ性に優れたアルミニウム押出形材が得られる。
【0007】
【発明の実施の形態】
本発明におけるアルミニウム合金例を従来と比較しながら説明する。
表1に示す合金A、Bが本発明による添加成分量の例を示し、比較合金C、Dは本発明の効果を確認するためのものであり、比較合金EはJIS7003に相当するアルミニウム合金である。
表2に示す押出形材は、図1に示す45mm×45mm、肉厚2mmの断面形状の角パイプを押出加工した材料の評価結果を示す。記号の意味は、例えば「A−(1)」にて説明すると、Aは合金Aを使用したことを示し、添字(1)は直径204mmの円柱ビレットを鋳造し、460℃にて12時間均質化処理したビレットを用いて、押出温度(ビレット加熱温度)440℃にて押出加工した後に90℃×6時間+150℃×10時間の人工時効処理したことを示し、添字(2)は押出加工までは(1)と同様であり、その後に押出形材を460℃にて1時間加熱し、速やかに水冷して常温まで冷却した後に90℃×6時間+150℃×24時間人工時効(焼き戻し)処理したことを示す。
【0008】
次に、材料特性の評価方法を説明する。
引張強度、0.2%耐力、伸びはJISZ2241に基づいて測定し、靱性は図2に示すように半円球形状のポンチにて打ち抜き荷重を負荷し、その際の変位(S)−荷重(F)曲線をとると、図3に示すグラフになる。
(a)は靱性が悪い場合に途中で材料割れが発生し、荷重が急激に低下する例を示す。(b)は靱性の良い例であり、評価方法としては、(S)−(F)曲線にて得られた積分値を測定し、JIS7003を用いたE−(1)の値を100として指数評価した。
耐応力腐食割れ性はJISH8711に準じて評価したが、腐食促進液はCrO3 、K2 Cr2 O7 、NaCl混合水溶液を用い、液温90℃に浸漬し、割れ発生までの時間を測定した。
繊維状組織面積比率は、押出形材を鏡面研摩した後にNaOH水溶液にてエッチング処理し、面積比率を測定した。
【0009】
【発明の効果】
表2にて示す結果から明らかなように、本発明による合金A、Bを用いて押出加工し、所定の熱処理をしたものは高強度でありながら、靱性、耐応力腐食割れ性に優れた特性を示す。
また、押出加工性においても、図1の断面形状のものを3000tonプレスにて直接押し出した場合に、合金A、Bは10〜12m/分の押出スピードが得られるが、合金Cは1〜2m/分であり、合金Dは4〜5m/分であった。
【0010】
【0011】
【図面の簡単な説明】
【図1】本発明によるアルミニウム合金を用いた押出形材の断面例を示す。
【図2】靱性評価方法の模式図を示す。
【図3】靱性評価における変位(S)−荷重(F)曲線を示す。
【符号の説明】
1・・・・・・供試材
2、2´・・・供試材固定上治具
3・・・・・・供試材固定下治具
4・・・・・・供試材に荷重をかけるポンチ
(a)・・・・靱性の悪い材料における変位−荷重曲線例
(b)・・・・靱性の良い材料における変位−荷重曲線例[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy used for a structural member.
[0002]
[Prior art]
As a structural member for a vehicle, an aluminum alloy extruded under the demand for weight reduction is used.
For example, JIS7003 alloy is used for automobile bumper reinforcement, and JIS7075 alloy is used for railway vehicles.
[0003]
[Problems to be solved by the present invention]
However, JIS7003 alloy has insufficient strength, while JIS7075 alloy provides high strength, but not only the toughness is extremely deteriorated, but also the field of vehicle parts such as bumper reinforcement, side door beams and side members. However, stress corrosion cracking resistance and extrusion processability were poor, and there was a problem that it was not practical.
In the field of these vehicle parts, the weight reduction of the vehicle has a direct effect on the improvement of fuel consumption, so miniaturization is required by using higher-strength aluminum material. Therefore, it has become very important to improve impact absorption by using an aluminum material having excellent toughness.
Accordingly, the present invention is to provide an aluminum alloy having high strength and excellent in toughness, stress corrosion cracking resistance and extrudability, and a method for producing the same.
[0004]
[Means for Solving the Problems]
In an aluminum alloy for extrusion molding, a high-strength alloy can be obtained by adding Mg, Zn, and Cu, but it is widely known that extrusion processability and toughness deteriorate in inverse proportion.
However, as a result of the trial evaluation of various alloys by changing the component amounts of Mn, Cr, Zr, Fe, and Si in addition to the components of Mg, Zn, and Cu, the present inventor has a strength of 500 MPa in a certain composition range. (Hereinafter, 0.2% proof stress unless otherwise indicated) was obtained, and it was revealed that the toughness, the stress corrosion cracking resistance and the extrudability were excellent.
The contents are described below.
[0005]
Mg and Zn are additive main components of a high-strength aluminum alloy that can be expected to improve strength by forming an intermetallic compound.
Mg greatly contributes to strength improvement, but is a factor that significantly impairs extrusion processability.
Zn contributes to strength improvement without relatively degrading the extrusion processability, but when the ratio of addition to Mg is increased to a certain level or more, the stress corrosion cracking resistance is remarkably lowered.
Accordingly, Zn: 7.0 to secure properties excellent in conflicting toughness, stress corrosion cracking resistance and extrusion processability while maintaining a strength of about 500 MPa in combination with other additive components described later. 9.0 wt% (hereinafter abbreviated as%) and Mg: 1.0 to 2.0% are optimal.
Cu can be expected to be solid solution hardened in an aluminum alloy, and stress corrosion cracking resistance can be improved by relaxing the potential difference between the crystal grain boundary and the crystal grain. On the other hand, if the amount added is too large, it will cause potential difference corrosion between Cu and Al. Therefore, Cu: 0.2 to 0.4% was selected.
Mn, Cr, and Zr have an effect of refining crystal grains within a certain range, and can improve toughness and stress corrosion cracking resistance without deteriorating extrusion processability. As a result of various prototype evaluations, the ranges were Mn: 0.1 to 0.5%, Cr: 0.05 to 0.3%, and Zr: 0.1 to 0.2%.
Fe and Si are components that are usually mixed as impurities during the scouring and casting of aluminum. However, unless Fe: 0.15% or less and Si: 0.1% or less, both reduce toughness. It became clear.
[0006]
Using an aluminum alloy adjusted in the above component range, a sufficiently high strength aluminum extruded shape can be obtained even after a predetermined heat treatment after billet casting, which is a conventional method, and extrusion. In order to make the most of the characteristics of the aluminum alloy, the manufacturing conditions described below are good.
A cylindrical billet is cast using the aluminum alloy according to the present invention, and then homogenized at 440 to 480 ° C. for 10 to 20 hours. The billet heating temperature at the time of extrusion is preferably 400 to 450 ° C. If it is 400 ° C. or lower, the extrusion processability is poor, and if it is 450 ° C. or higher, the recrystallization becomes coarse and the stress corrosion cracking resistance decreases.
Even if the artificial aging treatment is carried out as it is after extrusion, an aluminum extruded shape with excellent strength, toughness, stress corrosion cracking resistance and extrusion processability can be obtained, but the toughness and stress corrosion cracking resistance are further improved. For this, it is preferable to reheat the extruded profile to 400 to 470 ° C., and then cool it at a rate of 1000 ° C./min or more, and then temper at 80 to 160 ° C. for 10 to 72 hours.
The extruded profile produced in such a manner provides an aluminum extruded profile that is excellent in toughness and stress corrosion cracking resistance when the area ratio of the fibrous structure portion is 90% or more in the cross section of the extruded profile.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
An example of an aluminum alloy in the present invention will be described in comparison with a conventional example.
Alloys A and B shown in Table 1 show examples of additive component amounts according to the present invention, comparative alloys C and D are for confirming the effects of the present invention, and comparative alloy E is an aluminum alloy corresponding to JIS7003. is there.
The extruded profile shown in Table 2 shows the evaluation results of the material obtained by extruding the square pipe having a cross-sectional shape of 45 mm × 45 mm and a wall thickness of 2 mm shown in FIG. The meaning of the symbol is, for example, “A- (1)”. A indicates that the alloy A was used, and the subscript (1) is a cylindrical billet with a diameter of 204 mm, which is homogeneous at 460 ° C. for 12 hours. It is shown that the artificial aging treatment of 90 ° C. × 6 hours + 150 ° C. × 10 hours was performed after extrusion at 440 ° C. using the billet treated with an extrusion temperature (billet heating temperature). Is the same as (1), after which the extruded shape was heated at 460 ° C. for 1 hour, rapidly cooled with water and cooled to room temperature, then 90 ° C. × 6 hours + 150 ° C. × 24 hours artificial aging (tempering) Indicates that it has been processed.
[0008]
Next, a method for evaluating material properties will be described.
Tensile strength, 0.2% proof stress, and elongation were measured based on JISZ2241, and toughness was determined by applying a punching load with a semicircular punch as shown in FIG. 2, and the displacement (S) -load ( F) If a curve is taken, the graph shown in FIG. 3 is obtained.
(A) shows an example in which material cracking occurs in the middle when the toughness is poor, and the load rapidly decreases. (B) is an example of good toughness, and as an evaluation method, an integrated value obtained by the (S)-(F) curve is measured, and the value of E- (1) using JIS7003 is taken as 100. evaluated.
The stress corrosion cracking resistance was evaluated according to JISH8711. The corrosion accelerating solution was a mixed solution of CrO 3 , K 2 Cr 2 O 7 and NaCl, immersed in a liquid temperature of 90 ° C., and the time until cracking was measured. .
The fibrous tissue area ratio was measured by mirror-polishing the extruded profile and then etching with an aqueous NaOH solution to measure the area ratio.
[0009]
【The invention's effect】
As is apparent from the results shown in Table 2, the alloys A and B according to the present invention were extruded and subjected to a predetermined heat treatment, which had high strength but excellent toughness and stress corrosion cracking resistance. Indicates.
Also, in the extrusion processability, when the one having the cross-sectional shape of FIG. 1 is directly extruded by a 3000 ton press, the extrusion speeds of the alloys A and B are 10 to 12 m / min, but the alloy C is 1 to 2 m. The alloy D was 4 to 5 m / min.
[0010]
[0011]
[Brief description of the drawings]
FIG. 1 shows an example of a cross section of an extruded profile using an aluminum alloy according to the present invention.
FIG. 2 shows a schematic diagram of a toughness evaluation method.
FIG. 3 shows a displacement (S) -load (F) curve in toughness evaluation.
[Explanation of symbols]
1 ....
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10457696A JP3735407B2 (en) | 1996-04-02 | 1996-04-02 | High strength aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10457696A JP3735407B2 (en) | 1996-04-02 | 1996-04-02 | High strength aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09268342A JPH09268342A (en) | 1997-10-14 |
JP3735407B2 true JP3735407B2 (en) | 2006-01-18 |
Family
ID=14384272
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10457696A Expired - Lifetime JP3735407B2 (en) | 1996-04-02 | 1996-04-02 | High strength aluminum alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3735407B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087508B2 (en) | 2011-06-02 | 2018-10-02 | Aisin Keikinzoku Co., Ltd. | Aluminum alloy and method of manufacturing extrusion using same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2184166C2 (en) * | 2000-08-01 | 2002-06-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Aluminum-based high-strength alloy and product manufactured therefrom |
FR2846669B1 (en) | 2002-11-06 | 2005-07-22 | Pechiney Rhenalu | PROCESS FOR THE SIMPLIFIED MANUFACTURE OF LAMINATED PRODUCTS OF A1-Zn-Mg ALLOYS AND PRODUCTS OBTAINED THEREBY |
JP4977281B2 (en) | 2005-09-27 | 2012-07-18 | アイシン軽金属株式会社 | High-strength aluminum alloy extruded material excellent in shock absorption and stress corrosion cracking resistance and method for producing the same |
JP5588170B2 (en) * | 2007-03-26 | 2014-09-10 | アイシン軽金属株式会社 | 7000 series aluminum alloy extruded material and method for producing the same |
JP5344855B2 (en) * | 2008-06-05 | 2013-11-20 | 株式会社神戸製鋼所 | Aluminum alloy extruded material with excellent crushing properties |
CN102994830A (en) * | 2012-09-29 | 2013-03-27 | 吴雅萍 | High-strength aluminum alloy material |
CN103710594A (en) * | 2013-12-17 | 2014-04-09 | 芜湖万润机械有限责任公司 | Method for preparing aluminum alloy sections for car bumpers |
KR102520011B1 (en) * | 2018-03-27 | 2023-04-10 | 후루카와 덴키 고교 가부시키가이샤 | Aluminum alloy materials and conductive members using them, battery members, fastening components, spring components and structural components |
JP6672503B1 (en) * | 2019-03-28 | 2020-03-25 | 株式会社神戸製鋼所 | Automotive door beams made of extruded aluminum alloy |
JP7541047B2 (en) * | 2022-04-11 | 2024-08-27 | 株式会社神戸製鋼所 | Door beam for automobiles and manufacturing method thereof |
-
1996
- 1996-04-02 JP JP10457696A patent/JP3735407B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10087508B2 (en) | 2011-06-02 | 2018-10-02 | Aisin Keikinzoku Co., Ltd. | Aluminum alloy and method of manufacturing extrusion using same |
Also Published As
Publication number | Publication date |
---|---|
JPH09268342A (en) | 1997-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8105449B2 (en) | High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same | |
JPH0860285A (en) | Bumper reinforcement made of aluminum alloy and its production | |
JP7044863B2 (en) | Al-Mg-Si based aluminum alloy material | |
JP3735407B2 (en) | High strength aluminum alloy | |
JPH08144031A (en) | Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability | |
CN115053008A (en) | Method for manufacturing high-strength aluminum alloy extruded material | |
JP2928445B2 (en) | High-strength aluminum alloy extruded material and method for producing the same | |
DE102011112005A1 (en) | Alloy, preferably aluminum casting alloy, useful e.g. as a sand or die casting alloy, comprises a specified range of silicon, zinc, iron, copper, magnesium, strontium, sodium, antimony and aluminum | |
JPH1030147A (en) | Aluminum-zinc-magnesium alloy extruded material and its production | |
JP4846124B2 (en) | Method for producing aluminum alloy pipe material for automobile piping having excellent corrosion resistance and workability | |
JPH116044A (en) | High strength/high toughness aluminum alloy | |
JP4452696B2 (en) | Method for producing high-strength aluminum alloy material for automobile headrest frame with improved workability | |
JP3853021B2 (en) | Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance | |
JP3539980B2 (en) | Aluminum alloy automobile side door impact beam | |
JP2003171726A (en) | Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor | |
EP4137595A1 (en) | Aluminum casting alloy for near net shaped casting of structural or non-structural components | |
JP4286431B2 (en) | Manufacturing method of aluminum alloy piping material | |
JP3929850B2 (en) | Structural aluminum alloy forging with excellent corrosion resistance and method for producing the same | |
JP2001262265A (en) | Hot rolling stock of high formability aluminum alloy sheet | |
JPH05171328A (en) | Thin hollow shape of aluminum alloy excellent in bendability and its production | |
JPH08269608A (en) | High strength aluminum alloy excellent in formability and corrosion resistance | |
JP4086404B2 (en) | Aluminum alloy door beam | |
JP4704557B2 (en) | Aluminum alloy fin material excellent in reflaring formability and its manufacturing method | |
JPH09202933A (en) | High strength aluminum alloy excellent in hardenability | |
JP2001254161A (en) | METHOD OF MANUFACTURING HIGH STRENGTH Al-Cu-Mg ALLOY EXCELLENT IN WORKABILITY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040413 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040608 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050609 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050707 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20050913 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051012 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051024 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313532 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20161028 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term |