JP3735107B2 - Active matrix liquid crystal display device - Google Patents

Active matrix liquid crystal display device Download PDF

Info

Publication number
JP3735107B2
JP3735107B2 JP2004076283A JP2004076283A JP3735107B2 JP 3735107 B2 JP3735107 B2 JP 3735107B2 JP 2004076283 A JP2004076283 A JP 2004076283A JP 2004076283 A JP2004076283 A JP 2004076283A JP 3735107 B2 JP3735107 B2 JP 3735107B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pixel electrode
electrode
display device
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004076283A
Other languages
Japanese (ja)
Other versions
JP2004240439A (en
Inventor
亨 佐々木
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004076283A priority Critical patent/JP3735107B2/en
Publication of JP2004240439A publication Critical patent/JP2004240439A/en
Application granted granted Critical
Publication of JP3735107B2 publication Critical patent/JP3735107B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、量産性が良好で低コストかつ高画質のアクティブマトリクス型液晶表示装置
に関する。
The present invention relates to an active matrix type liquid crystal display device with good mass productivity, low cost and high image quality.

従来のアクティブマトリクス型液晶表示装置では、液晶組成物層を駆動する電極として2枚の基板界面上に形成し相対向させた透明電極を用いていた。これは、液晶組成物層に印加する電界の方向を基板界面にほぼ垂直な方向とすることで動作する、ツイステッドネマチック(TN)表示方式に代表される表示方式を採用していることによる。以下、この液晶組成物層に印加する主たる電界方向が基板界面にほぼ垂直な方向である表示方式を縦電界方式と称する。   In a conventional active matrix type liquid crystal display device, transparent electrodes formed on the interface between two substrates and opposed to each other are used as electrodes for driving a liquid crystal composition layer. This is because a display method represented by a twisted nematic (TN) display method, which operates by setting the direction of the electric field applied to the liquid crystal composition layer to a direction substantially perpendicular to the substrate interface, is adopted. Hereinafter, a display method in which the main electric field direction applied to the liquid crystal composition layer is a direction substantially perpendicular to the substrate interface is referred to as a vertical electric field method.

また、一方の基板上に形成した櫛歯状電極対を用いて液晶組成物層に電界を印加する方式が、例えば特公昭63−21907 号により提案されている。ここで言う櫛歯状電極対は、図5中の1,2で示すような櫛の歯のような形状を有する2つの電極を互いの歯の部分が重ならずに噛み合うように配置したものである。この場合、液晶組成物層を駆動する電極は透明である必要はなく、導電性が高く不透明な金属電極を用いることができる。また、液晶組成物分子の配向は、電極間に電圧を印加しない状態において、ホモジニアス配向,90°ツイスト配向あるいはホメオトロピック配向を取ることができ、TNモード,ゲストホスト(GH)モードあるいは電界制御複屈折(ECB)モードなどの電圧効果型表示方式や、電流効果型の動的散乱(DS)モード表示方式を用いることができる。以下、この液晶組成物層に印加する主たる電界方向が基板界面にほぼ平行な方向である表示方式を横電界方式と称する。   Further, for example, Japanese Patent Publication No. 63-21907 proposes a method of applying an electric field to a liquid crystal composition layer using a comb-like electrode pair formed on one substrate. The comb-like electrode pair referred to here is an arrangement in which two electrodes having a comb-like shape as indicated by 1 and 2 in FIG. 5 are arranged so that their teeth do not overlap each other. It is. In this case, the electrode for driving the liquid crystal composition layer does not need to be transparent, and an opaque metal electrode having high conductivity can be used. In addition, the liquid crystal composition molecules can be oriented in a homogeneous orientation, 90 ° twist orientation, or homeotropic orientation in a state where no voltage is applied between the electrodes. A voltage effect type display method such as a refraction (ECB) mode or a current effect type dynamic scattering (DS) mode display method can be used. Hereinafter, a display method in which the main electric field direction applied to the liquid crystal composition layer is a direction substantially parallel to the substrate interface is referred to as a horizontal electric field method.

横電界方式の動作原理を図2および図3を用いて説明する。   The operation principle of the horizontal electric field method will be described with reference to FIGS.

図2(a),(b)は液晶表示装置内での液晶の動作を示す断面図を、図2(c),(d)はその平面図を表す。図2ではアクティブ素子を省略し、また、画素内での櫛歯状電極対の一部分を示した。   2A and 2B are sectional views showing the operation of the liquid crystal in the liquid crystal display device, and FIGS. 2C and 2D are plan views thereof. In FIG. 2, the active element is omitted, and a part of the comb-like electrode pair in the pixel is shown.

電圧無印加時の断面図を図2(a)に、その時の平面図を図2(c)に示す。少なくとも一方が透明な一対の基板3の向き合った表面に櫛歯状の形状をした対をなす画素電極1,2が形成され、その上に配向膜4が塗布および配向処理されている。間には液晶組成物が挟持されている。棒状の液晶分子5は、画素電極1,2間に電圧が印加されない時には櫛歯状画素電極対1,2の長辺方向に対して若干の角度を持つように配向されている。上下界面上での液晶分子5の配向方向はここでは平行である場合を例に説明する。また、液晶組成物の誘電率異方性は正を想定している。   FIG. 2A shows a sectional view when no voltage is applied, and FIG. 2C shows a plan view at that time. A pair of pixel electrodes 1 and 2 having a comb-like shape are formed on opposite surfaces of a pair of substrates 3 at least one of which is transparent, and an alignment film 4 is applied and aligned. A liquid crystal composition is sandwiched between them. The rod-like liquid crystal molecules 5 are aligned so as to have a slight angle with respect to the long side direction of the comb-like pixel electrode pair 1 and 2 when no voltage is applied between the pixel electrodes 1 and 2. Here, the case where the alignment directions of the liquid crystal molecules 5 on the upper and lower interfaces are parallel will be described as an example. In addition, the dielectric anisotropy of the liquid crystal composition is assumed to be positive.

次に、櫛歯状画素電極対1,2間に電圧を与えて液晶組成物層に電界7を印加すると図2(c),(d)に示したように電界7の方向に液晶分子5がその向きを変える。偏光板6を所定の角度に配置することで電界印加によって光透過率を変えることが可能になる。図3に示すように、印加電圧の実効値を増大させると相対的な光透過率が変化する。このように、横電界方式によれば透明電極を使用せずにコントラストを与える表示が可能になる。   Next, when a voltage is applied between the comb-like pixel electrode pair 1 and 2 and an electric field 7 is applied to the liquid crystal composition layer, the liquid crystal molecules 5 are oriented in the direction of the electric field 7 as shown in FIGS. Changes its direction. By disposing the polarizing plate 6 at a predetermined angle, the light transmittance can be changed by applying an electric field. As shown in FIG. 3, when the effective value of the applied voltage is increased, the relative light transmittance changes. As described above, according to the horizontal electric field method, it is possible to perform display that provides contrast without using a transparent electrode.

なお、図2では櫛歯状画素電極対1,2を一方の基板表面に形成したが、一対の基板両方に分けても何ら効果は変わるものではない。ただし、配線を微細化する場合や熱,外力等による種々の変形などを鑑みると、一方の基板に備えたほうがより高精度なアライメントが可能になり、望ましい。また、液晶組成物の誘電率異方性は正を想定したが、負であっても構わない。その場合には初期配向状態を画素電極の長辺方向に垂直な方向から若干の角度を持つように配向させる。さらに、偏光板6を配置する角度を変えれば、図3とは逆の傾きを有する特性を得ることもできる。   In FIG. 2, the comb-like pixel electrode pairs 1 and 2 are formed on the surface of one substrate. However, the effect does not change even if divided into a pair of substrates. However, in view of miniaturization of wiring and various deformations due to heat, external force, etc., it is desirable to provide one of the substrates because higher-precision alignment is possible. Further, although the dielectric anisotropy of the liquid crystal composition is assumed to be positive, it may be negative. In that case, the initial alignment state is aligned so as to have a slight angle from the direction perpendicular to the long side direction of the pixel electrode. Furthermore, if the angle at which the polarizing plate 6 is disposed is changed, it is possible to obtain characteristics having an inclination opposite to that in FIG.

従来の縦電界方式のアクティブマトリクス型液晶表示装置では、透明電極の電圧変動を防止するために、透明電極に電荷蓄積用の容量素子を接続していた。しかしながら、前記の縦電界方式では、可能な限り光の利用効率を向上させるために容量素子の大きさを縮小すると、前記の透明電極に蓄積された電荷を保持するためには約1012Ωcm以上の極めて高い比抵抗の液晶組成物を使用する必要が生じる。このため、低い光学しきい値電圧や適切な大きさの複屈折等を有し、かつ不純物によって汚染されにくい液晶組成物の選択の自由度が大幅に限定されていた。さらに、液晶組成物層の比抵抗は基板界面上の液晶組成物分子を所定方向に配向制御する配向膜材料にも依存するため、液晶組成物層の比抵抗を高く保つ配向膜材料を用いる必要がある。このため、適切なプレチルト角(基板界面上の液晶組成物分子の傾き角)を発現し、かつ直流電荷の残留しにくい配向膜として実用可能な材料は限定されていた。これらのため、表示むらや残像などの画質劣化が発生しやすかった。   In the conventional vertical electric field type active matrix liquid crystal display device, in order to prevent the voltage fluctuation of the transparent electrode, a capacitive element for charge storage is connected to the transparent electrode. However, in the above-described vertical electric field method, when the size of the capacitive element is reduced in order to improve the light utilization efficiency as much as possible, an extremely high voltage of about 1012 Ωcm or more is required to hold the charge accumulated in the transparent electrode. It is necessary to use a liquid crystal composition having a high specific resistance. For this reason, the freedom degree of selection of the liquid crystal composition which has a low optical threshold voltage, an appropriate magnitude | size birefringence, etc., and is hard to be contaminated with an impurity was limited significantly. Furthermore, since the specific resistance of the liquid crystal composition layer also depends on the alignment film material that controls the alignment of liquid crystal composition molecules on the substrate interface in a predetermined direction, it is necessary to use an alignment film material that keeps the specific resistance of the liquid crystal composition layer high. There is. For this reason, materials that can be used as an alignment film that expresses an appropriate pretilt angle (tilt angle of liquid crystal composition molecules on the substrate interface) and hardly retains DC charges have been limited. For these reasons, image quality deterioration such as display unevenness and afterimages is likely to occur.

また、前記の従来の横電界方式では、電荷蓄積用の容量素子を接続していなかったため櫛歯状電極対の電圧変動を抑えることが不可能であり、表示むらが発生しやすかった。さらに、櫛歯状電極対を用いるため光の利用効率は著しく低下し、液晶表示装置の明るさを向上させることが困難になっていた。   Further, in the conventional lateral electric field method, since no capacitive element for charge storage is connected, it is impossible to suppress the voltage fluctuation of the comb-like electrode pair, and display unevenness is likely to occur. Furthermore, since the comb-like electrode pair is used, the light utilization efficiency is remarkably lowered, and it is difficult to improve the brightness of the liquid crystal display device.

さらに、前記の従来の横電界方式においても画素電極近傍では基板界面に垂直な方向の電界成分が発生し、この部分における光漏れによって斜め方向から見たコントラスト比が低下するという問題があった。   Further, even in the conventional lateral electric field method, there is a problem that an electric field component in a direction perpendicular to the substrate interface is generated in the vicinity of the pixel electrode, and the contrast ratio viewed from an oblique direction is lowered due to light leakage in this portion.

本発明はこれらの課題を同時に解決するもので、その第1の目的は、使用可能な液晶組成物および配向膜材料の選択の自由度を広げ、画質劣化を防止することにある。   The present invention solves these problems at the same time, and a first object of the invention is to widen the degree of freedom in selecting a usable liquid crystal composition and alignment film material and to prevent image quality deterioration.

第2の目的は、液晶表示装置の明るさを向上させることにある。   The second object is to improve the brightness of the liquid crystal display device.

第3の目的は、斜め方向から見たコントラスト比が高い横電界方式を実現する方法を提供することにある。   A third object is to provide a method for realizing a lateral electric field method having a high contrast ratio as viewed from an oblique direction.

前記の目的を達成するために以下の手段を用いる。   In order to achieve the above object, the following means are used.

少なくとも一方が透明な一対の基板と、前記基板間に挟持された液晶組成物層およびカラーフィルタと、前記基板のいずれか一方の基板の向き合った表面にマトリクス状に配置された複数の走査配線および信号配線と、対をなす第1と第2の画素電極と、前記第1と第2の画素電極のいずれか一方と前記走査配線と前記信号配線とに接続されたアクティブ素子と、前記各走査配線に接続された走査配線駆動手段と、前記各信号配線に接続された信号配線駆動手段とを備えた液晶表示装置において、
[手段1]
前記第1と第2の画素電極のいずれか一方は、前記信号配線延在方向に延在しかつ前記走査配線延在方向に隣接する画素間で共有される電極を有する。
A pair of substrates at least one of which is transparent, a liquid crystal composition layer and a color filter sandwiched between the substrates, a plurality of scanning wirings arranged in a matrix on the facing surface of any one of the substrates, and A signal line; a pair of first and second pixel electrodes; an active element connected to one of the first and second pixel electrodes; the scan line; and the signal line; In a liquid crystal display device comprising scanning line driving means connected to wiring and signal wiring driving means connected to each signal wiring,
[Means 1]
One of the first and second pixel electrodes includes an electrode that extends in the signal wiring extending direction and is shared between adjacent pixels in the scanning wiring extending direction.

手段1によれば、前記第1と第2の画素電極のいずれか一方は、前記信号配線延在方向に延在しかつ前記走査配線延在方向に隣接する画素間で共有される電極を有することにより、各画素に独立に設けて共有しない場合より電極の数を減らすことができ、画素内の電極の占める領域が低減できる為、開口率を向上することが出来る。   According to the means 1, one of the first and second pixel electrodes has an electrode that extends in the signal wiring extending direction and is shared between adjacent pixels in the scanning wiring extending direction. As a result, the number of electrodes can be reduced as compared with the case where each pixel is provided independently and not shared, and the area occupied by the electrodes in the pixel can be reduced, so that the aperture ratio can be improved.

[手段2]
前記カラーフィルタは前記走査配線延在方向に隣接する画素間に境界を有し、かつ前記走査配線延在方向に隣接する画素間で共有される電極上に該境界が位置づけられている。
[Means 2]
The color filter has a boundary between pixels adjacent in the scanning wiring extending direction, and the boundary is positioned on an electrode shared between pixels adjacent in the scanning wiring extending direction.

手段2によれば、カラーフィルタの境界も隣接画素の境界となる画素電極上とすることで、さらに開口率が向上する。   According to the means 2, the aperture ratio is further improved by setting the boundary of the color filter on the pixel electrode which becomes the boundary of the adjacent pixel.

[手段3]
前記走査配線延在方向に隣接する画素間で共有される電極が共通電極である。
[Means 3]
An electrode shared between adjacent pixels in the scanning wiring extending direction is a common electrode.

手段3によれば、前記走査配線延在方向に隣接する画素間で共有される電極が共通電極であることにより、隣接画素間で同一の電位の印加が可能となり、かつ隣接画素間での共通電位が一致することで輝度むらが防止できる。   According to the means 3, since the electrode shared between the adjacent pixels in the scanning wiring extending direction is a common electrode, the same potential can be applied between the adjacent pixels, and the common between the adjacent pixels can be applied. Uneven luminance can be prevented by matching the potentials.

[手段4]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極は前記信号配線延在方向に隣接する画素間で共有され、他方の電極は各画素で前記アクティブ素子と接続されている。
[Means 4]
One of the first and second pixel electrodes, which is an electrode shared between pixels adjacent in the scanning wiring extending direction, is shared between pixels adjacent in the signal wiring extending direction, and the other The electrode is connected to the active element in each pixel.

手段4によれば、共有される電極が、該電極を中心に縦方向、横方向の画素で共有されるため、上下左右の画素間で電位が安定し、輝度むらが低減するなどの画質の向上が図れる。   According to the means 4, since the shared electrode is shared by the pixels in the vertical direction and the horizontal direction around the electrode, the potential is stable between the upper, lower, left and right pixels, and the luminance unevenness is reduced. Improvement can be achieved.

[手段5]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極と、他方の電極の間に容量素子を構成する。
[Means 5]
A capacitive element is formed between one electrode of the first and second pixel electrodes, which is an electrode shared between pixels adjacent in the scanning wiring extending direction, and the other electrode.

手段5によれば、第1の電極に加わる信号と第2の電極に加わる信号の双方は、一方が複数の走査信号線を交差して走査信号線の影響を受けた信号配線からの信号、他方は複数の走査信号線を交差して走査信号線の影響を受けた共通電極となり、この間で容量を構成することにより走査信号からの影響を互いに相殺する方向に働く容量を形成でき、画質をさらに改善することが出来る。   According to the means 5, both the signal applied to the first electrode and the signal applied to the second electrode are signals from the signal wiring, one of which intersects the plurality of scanning signal lines and is affected by the scanning signal lines, The other crosses a plurality of scanning signal lines to become a common electrode affected by the scanning signal lines, and by forming a capacitance between them, it is possible to form a capacitance that works in a direction that cancels the influence from the scanning signal to each other. Further improvements can be made.

[手段6]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極とは異なる他方の電極と、前記画素の上側と下側に配置される2本の走査信号線のうちの該他方の電極と前記アクティブ素子により接続されていない側の走査信号線との間に容量素子を構成する。
[Means 6]
The other electrode different from one of the first and second pixel electrodes, which is an electrode shared between adjacent pixels in the scanning wiring extending direction, and the upper and lower sides of the pixel A capacitive element is formed between the other electrode of the two scanning signal lines to be connected and the scanning signal line on the side not connected by the active element.

手段6によれば、容量を増加することができ、電圧変動を抑えて表示むらを解消できる。   According to the means 6, the capacity can be increased, and the display unevenness can be eliminated by suppressing the voltage fluctuation.

[手段7]
前記第1の画素電極と第2の画素電極が同層に配置されている。
[Means 7]
The first pixel electrode and the second pixel electrode are arranged in the same layer.

手段7によれば、電極のアライメントずれが小さく抑制され、電極間の静電容量のばらつきが抑えられ、表示むらを解消できる。   According to the means 7, the misalignment of the electrodes is suppressed to be small, the variation in capacitance between the electrodes is suppressed, and the display unevenness can be eliminated.

[手段8]
前記カラーフィルタ上に保護膜が形成されている。
[Means 8]
A protective film is formed on the color filter.

少なくとも一方が透明な一対の基板と、前記基板間に挟持された液晶組成物層およびカラーフィルタと、前記基板のいずれか一方の基板の向き合った表面にマトリクス状に配置された複数の走査配線および信号配線と、対をなす第1と第2の画素電極と、前記第1と第2の画素電極のいずれか一方と前記走査配線と前記信号配線とに接続されたアクティブ素子と、前記各走査配線に接続された走査配線駆動手段と、前記各信号配線に接続された信号配線駆動手段とを備えた液晶表示装置において、
[手段9]
前記第1と第2の画素電極のいずれか一方は、前記信号配線延在方向に延在しかつ前記走査配線延在方向に隣接する画素間で共有される電極を有し、該電極は該電極が形成された基板上の前記カラーフィルタと配向膜の間に形成されている。
A pair of substrates at least one of which is transparent, a liquid crystal composition layer and a color filter sandwiched between the substrates, a plurality of scanning wirings arranged in a matrix on the facing surface of any one of the substrates, and A signal line; a pair of first and second pixel electrodes; an active element connected to one of the first and second pixel electrodes; the scan line; and the signal line; In a liquid crystal display device comprising scanning line driving means connected to wiring and signal wiring driving means connected to each signal wiring,
[Means 9]
Either one of the first and second pixel electrodes includes an electrode extending in the signal wiring extending direction and shared between adjacent pixels in the scanning wiring extending direction, It is formed between the color filter and the alignment film on the substrate on which the electrode is formed.

手段9によれば、信号配線延在方向に延在しかつ前記走査配線延在方向に隣接する画素間で共有される電極の領域内にカラーフィルタの境界を位置づける際に、該電極とカラーフィルタを同一基板上とすることでアライメント精度が向上し、位置合わせが容易なる。これにより、該電極の幅をアライメントずれが低減する分補足でき、さらに開口率が向上する。   According to the means 9, when positioning the boundary of the color filter in the region of the electrode extending in the signal wiring extending direction and shared between the pixels adjacent in the scanning wiring extending direction, the electrode and the color filter Alignment on the same substrate improves alignment accuracy and facilitates alignment. As a result, the width of the electrode can be supplemented by the reduction in misalignment, and the aperture ratio is further improved.

少なくとも一方が透明な一対の基板と、前記基板間に挟持された液晶組成物層およびカラーフィルタと、前記基板のいずれか一方の基板の向き合った表面にマトリクス状に配置された複数の走査配線および信号配線と、対をなす第1と第2の画素電極と、前記第1と第2の画素電極のいずれか一方と前記走査配線と前記信号配線とに接続されたアクティブ素子と、前記各走査配線に接続された走査配線駆動手段と、前記各信号配線に接続された信号配線駆動手段とを備えた液晶表示装置において、
[手段10]
前記第1と第2の画素電極のいずれか一方は、前記信号配線延在方向に延在しかつ前記走査配線延在方向に隣接する画素間で共有される電極を有し、該電極は該電極が形成された基板上の保護膜と配向膜の間に形成されている。
A pair of substrates at least one of which is transparent, a liquid crystal composition layer and a color filter sandwiched between the substrates, a plurality of scanning wirings arranged in a matrix on the facing surface of any one of the substrates, and A signal line; a pair of first and second pixel electrodes; an active element connected to one of the first and second pixel electrodes; the scan line; and the signal line; In a liquid crystal display device comprising scanning line driving means connected to wiring and signal wiring driving means connected to each signal wiring,
[Means 10]
Either one of the first and second pixel electrodes includes an electrode extending in the signal wiring extending direction and shared between adjacent pixels in the scanning wiring extending direction, It is formed between the protective film and the alignment film on the substrate on which the electrode is formed.

手段10によれば、該電極を保護膜と配向膜の間に位置づけることにより、該電極を平坦化した下地層上に形成でき、断線などの不良を低減できる。さらに、液晶組成物層に対する該電極の距離が近いものとなるため、該電極からの電気力線が強いものとなり、目的の電界強度を実現するのに要する駆動電圧を低減することができる。   According to the means 10, by positioning the electrode between the protective film and the alignment film, the electrode can be formed on the flattened underlayer, and defects such as disconnection can be reduced. Further, since the distance of the electrode to the liquid crystal composition layer is short, the electric lines of force from the electrode are strong, and the driving voltage required to achieve the target electric field strength can be reduced.

[手段11]
前記保護膜は有機膜である。
[Means 11]
The protective film is an organic film.

手段11によれば、下地層の平坦化効果を高いものとすることができ、さらに電極の断線が低減する。   According to the means 11, the flattening effect of the underlayer can be increased, and further the disconnection of the electrode is reduced.

[手段12]
前記走査配線延在方向に隣接する画素間で共有される電極が共通電極である。
[Means 12]
An electrode shared between adjacent pixels in the scanning wiring extending direction is a common electrode.

手段12によれば、前記走査配線延在方向に隣接する画素間で共有される電極が共通電極であることにより、隣接画素間で同一の電位の印加が可能となり、かつ隣接画素間での共通電位が一致することで輝度むらが防止できる。   According to the means 12, the electrode shared between the pixels adjacent in the scanning wiring extending direction is a common electrode, so that the same potential can be applied between the adjacent pixels, and common between the adjacent pixels. Uneven luminance can be prevented by matching the potentials.

[手段13]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極は前記信号配線延在方向に隣接する画素間で共有され、他方の電極は各画素で前記アクティブ素子と接続されている。
[Means 13]
One of the first and second pixel electrodes, which is an electrode shared between pixels adjacent in the scanning wiring extending direction, is shared between pixels adjacent in the signal wiring extending direction, and the other The electrode is connected to the active element in each pixel.

手段13によれば、共有される電極が、該電極を中心に縦方向、横方向の画素で共有されるため、上下左右の画素間で電位が安定し、輝度むらが低減するなどの画質の向上が図れる。   According to the means 13, since the shared electrode is shared by the pixels in the vertical direction and the horizontal direction around the electrode, the potential is stable between the upper, lower, left and right pixels, and the luminance unevenness is reduced. Improvement can be achieved.

[手段14]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極と、他方の電極の間に容量素子を構成する。
[Means 14]
A capacitive element is formed between one electrode of the first and second pixel electrodes, which is an electrode shared between pixels adjacent in the scanning wiring extending direction, and the other electrode.

手段14によれば、第1の電極に加わる信号と第2の電極に加わる信号の双方は、一方が複数の走査信号線を交差して走査信号線の影響を受けた信号配線からの信号、他方は複数の走査信号線を交差して走査信号線の影響を受けた共通電極となり、この間で容量を構成することにより走査信号からの影響を互いに相殺する方向に働く容量を形成でき、画質をさらに改善することが出来る。   According to the means 14, both the signal applied to the first electrode and the signal applied to the second electrode are signals from the signal wiring, one of which intersects the plurality of scanning signal lines and is affected by the scanning signal lines, The other crosses a plurality of scanning signal lines to become a common electrode affected by the scanning signal lines, and by forming a capacitance between them, it is possible to form a capacitance that works in a direction that cancels the influence from the scanning signal to each other. Further improvements can be made.

[手段15]
前記走査配線延在方向に隣接する画素間で共有される電極となる前記第1と第2の画素電極のいずれか一方の電極とは異なる他方の電極と、前記画素の上側と下側に配置される2本の走査信号線のうちの該他方の電極と前記アクティブ素子により接続されていない側の走査信号線との間に容量素子を構成する。
[Means 15]
The other electrode different from one of the first and second pixel electrodes, which is an electrode shared between adjacent pixels in the scanning wiring extending direction, and the upper and lower sides of the pixel A capacitive element is formed between the other electrode of the two scanning signal lines to be connected and the scanning signal line on the side not connected by the active element.

手段15によれば、容量を増加することができ、電圧変動を抑えて表示むらを解消できる。   According to the means 15, the capacity can be increased, and the display unevenness can be eliminated by suppressing the voltage fluctuation.

[手段16]
前記アクティブマトリクス型エッチング表示装置が横電界方式である。
[Means 16]
The active matrix etching display device is a lateral electric field type.

手段16によれば、横電界方式であるからこそ、必ずしも従来のTN方式のような全面に形成された共通電極、あるいはSTN方式のような各画素毎に必ず分離されていなければならないストライプ状の共通電極のいずれもが不要となり、隣接画素間で共有され、かつパターニングされている電極が形成できる。   According to the means 16, because of the horizontal electric field method, the common electrode formed on the entire surface as in the conventional TN method or the stripe shape that must be separated for each pixel as in the STN method. None of the common electrodes is required, and an electrode that is shared between adjacent pixels and patterned can be formed.

[手段17]
前記アクティブ素子のチャネル層が多結晶シリコンである。
[Means 17]
The channel layer of the active element is polycrystalline silicon.

手段17によれば、チャネル層の移動度がアモルファスシリコンより向上するため、さらに画質の改善が実現する。   According to the means 17, since the mobility of the channel layer is higher than that of amorphous silicon, the image quality is further improved.

少なくとも一方が透明な一対の基板と、前記基板間に挟持された液晶組成物層と、前記基板のいずれか一方の基板の向き合った表面にマトリクス状に配置された複数の走査配線および信号配線と、対をなす画素電極と、前記画素電極および前記走査配線および信号配線に接続されたアクティブ素子と、前記各走査配線に接続された走査配線駆動手段と、前記各信号配線に接続された信号配線駆動手段とを備えた液晶表示装置において、
[手段18]
A pair of substrates at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, and a plurality of scanning wirings and signal wirings arranged in a matrix on the facing surface of one of the substrates, A pair of pixel electrodes; an active element connected to the pixel electrode and the scanning wiring and signal wiring; scanning wiring driving means connected to each scanning wiring; and signal wiring connected to each signal wiring. In a liquid crystal display device comprising a driving means,
[Means 18]

前記対をなす画素電極を短冊状の形状とし、その一方の電極の長辺方向を他方の電極の長辺方向とほぼ平行とし、さらに、対をなす画素電極のうちの少なくとも一方の電極と、前記走査配線との間に絶縁物を介して容量素子を形成する。あるいは、対をなす画素電極のうちの一方の電極を、隣接する画素における対をなす画素電極のうちの一方の電極と接続し、対をなす画素電極のうちの他方の電極との間に絶縁物を介して容量素子を形成する。特に、前記容量素子を比抵抗が1010Ωcm以上の絶縁物を介して形成する。 The paired pixel electrodes have a strip shape, the long side direction of one of the electrodes is substantially parallel to the long side direction of the other electrode, and at least one of the paired pixel electrodes; A capacitive element is formed between the scanning wirings via an insulator. Alternatively, one of the paired pixel electrodes is connected to one of the paired pixel electrodes in an adjacent pixel and insulated from the other of the paired pixel electrodes. A capacitor element is formed through an object. In particular, the capacitive element is formed through an insulator having a specific resistance of 10 10 Ωcm or more.

[手段19]
前記液晶組成物の比抵抗を1010Ωcm以上とする。望ましくは、前記容量素子を構成する絶縁物の比抵抗と誘電率の積が、液晶組成物の比抵抗と誘電率の積の値以上である部材を用いる。さらに、前記走査配線駆動手段から出力される駆動信号における1垂直走査期間を、前記容量素子を構成する絶縁物の比抵抗と誘電率の積で表わされる時定数よりも小さく設定することが望ましい。
[Means 19]
The specific resistance of the liquid crystal composition is 10 10 Ωcm or more. Desirably, a member is used in which the product of the specific resistance and dielectric constant of the insulator constituting the capacitive element is equal to or greater than the product of the specific resistance and dielectric constant of the liquid crystal composition. Further, it is desirable to set one vertical scanning period in the drive signal output from the scanning wiring driving means to be smaller than a time constant represented by a product of a specific resistance and a dielectric constant of an insulator constituting the capacitive element.

[手段20]
前記対をなす画素電極の短辺の長さを、対をなす画素電極間の距離より短くする。また、二つ以上の非導電性構成部材を有し、かつそれらのうちの少なくとも一つの部材の誘電率が前記液晶組成物の誘電率よりも小さい部材を用いる。望ましくは、前記液晶組成物層に接する部材として、その誘電率が前記液晶組成物の誘電率よりも小さい部材を用いる。
[Means 20]
The length of the short side of the paired pixel electrodes is made shorter than the distance between the paired pixel electrodes. In addition, a member having two or more non-conductive constituent members and a dielectric constant of at least one of them being smaller than a dielectric constant of the liquid crystal composition is used. Preferably, a member having a dielectric constant smaller than that of the liquid crystal composition is used as a member in contact with the liquid crystal composition layer.

前記手段19によれば、対をなす画素電極は液晶組成物層に対して主として基板界面に平行な電界を印加する構造を有しており、電極間の距離は従来の縦電界方式のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の距離に比べて大きくとることができる。また、等価的な断面積は従来のものより小さく抑えることができる。したがって、本発明による対をなす画素電極間の電気抵抗は従来のアクティブマトリクス型液晶表示装置における相対向させた透明電極間の電気抵抗は桁違いに大きくすることができる。さらに、本発明による対をなす画素電極間の静電容量は容量素子と並列接続になり、電気抵抗も十分高い容量素子を実現できる。これにより、画素電極に蓄積された電荷を保持することが容易になり、従来より低い比抵抗の液晶組成物を用いることが可能になる。また、画素電極は櫛歯状電極対に比べて単純な形状であるため、光の利用効率を向上させる。さらに、画素電極近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが可能になる。また、対をなす画素電極のうちの一方の電極を、隣接する画素における対をなす画素電極のうちの一方の電極と接続した場合には、従来のアクティブマトリクス型液晶表示装置における共通電極とほぼ同等の作用をする。   According to the means 19, the paired pixel electrodes have a structure in which an electric field parallel to the substrate interface is applied to the liquid crystal composition layer, and the distance between the electrodes is a conventional vertical electric field type active matrix. Larger than the distance between transparent electrodes opposed to each other in the liquid crystal display device. Also, the equivalent cross-sectional area can be kept smaller than the conventional one. Therefore, the electrical resistance between the paired pixel electrodes according to the present invention can be increased by an order of magnitude between the transparent electrodes opposed to each other in the conventional active matrix liquid crystal display device. Further, the capacitance between the paired pixel electrodes according to the present invention is connected in parallel with the capacitive element, and a capacitive element having sufficiently high electrical resistance can be realized. As a result, it becomes easy to hold the charge accumulated in the pixel electrode, and a liquid crystal composition having a lower specific resistance than before can be used. Further, since the pixel electrode has a simple shape as compared with the comb-like electrode pair, the light use efficiency is improved. Furthermore, the electric field component in the direction perpendicular to the substrate interface generated in the vicinity of the pixel electrode can be suppressed smaller than the lateral electric field component. In addition, when one of the paired pixel electrodes is connected to one of the paired pixel electrodes in an adjacent pixel, it is almost the same as the common electrode in the conventional active matrix liquid crystal display device. Equivalent action.

また、前記手段20によれば、従来より低い比抵抗の液晶組成物を用いても画素電極に蓄積された電荷を保持するのに十分な電気抵抗を有する液晶組成物層を構成することが可能になり、さらに、1垂直走査期間内に画素電極に蓄積された電荷が漏れていくのを抑制することが可能になるため、画素電極の電圧変動を十分小さく抑えることが容易になる。   Further, according to the means 20, it is possible to form a liquid crystal composition layer having an electric resistance sufficient to hold charges accumulated in the pixel electrode even when a liquid crystal composition having a specific resistance lower than that of the conventional one is used. Furthermore, since it is possible to suppress the leakage of the charge accumulated in the pixel electrode within one vertical scanning period, it is easy to suppress the voltage fluctuation of the pixel electrode sufficiently small.

また、液晶組成物層に電界が集中しやすくなるため、液晶組成物層に横電界を効率良く印加でき、画素電極近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが可能になる。   In addition, since the electric field tends to concentrate on the liquid crystal composition layer, a horizontal electric field can be efficiently applied to the liquid crystal composition layer, and the electric field component in the direction perpendicular to the substrate interface generated in the vicinity of the pixel electrode is compared with the horizontal electric field component. It becomes possible to keep it small.

以上説明したように、本発明によれば、従来よりも液晶組成物の比抵抗が低くてもよいため、液晶組成物や配向膜材料の選択の自由度が広がる。よって、画素電極に蓄積された電荷を保持するのに十分な比抵抗を有していれば、低い光学しきい値電圧や適切な大きさの複屈折等を有し、かつ不純物によって汚染されにくい液晶組成物が使用可能になる。また、液晶組成物層の比抵抗を低下させやすい配向膜材料でも、適切なプレチルト角を発現し、かつ直流電荷の残留しにくい配向膜が使用可能になる。このため、表示むらや残像などの画質劣化を防止することができる。   As described above, according to the present invention, the specific resistance of the liquid crystal composition may be lower than that of the related art, so that the degree of freedom in selecting the liquid crystal composition and the alignment film material is expanded. Therefore, if it has a specific resistance sufficient to hold the charge accumulated in the pixel electrode, it has a low optical threshold voltage, an appropriate magnitude of birefringence, etc., and is hardly contaminated by impurities. The liquid crystal composition can be used. In addition, even with an alignment film material that can easily reduce the specific resistance of the liquid crystal composition layer, an alignment film that exhibits an appropriate pretilt angle and hardly retains direct current charge can be used. For this reason, it is possible to prevent image quality deterioration such as display unevenness and afterimage.

また、電極間の距離が大きい短冊状の画素電極は櫛歯状電極対に比べて単純な形状であるため、光の利用効率を向上することが可能になる。このため、液晶表示装置の明るさを向上することができる。   In addition, since the strip-shaped pixel electrode having a large distance between the electrodes has a simple shape as compared with the comb-like electrode pair, the light use efficiency can be improved. For this reason, the brightness of the liquid crystal display device can be improved.

さらに、液晶組成物層に横電界を効率良く印加できるため、画素電極近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが可能になる。このため、この部分での液晶分子の立上りによる光漏れが減少し、斜め方向から見たコントラスト比を向上することができる。   Furthermore, since a lateral electric field can be efficiently applied to the liquid crystal composition layer, the electric field component in the direction perpendicular to the substrate interface generated in the vicinity of the pixel electrode can be suppressed to be smaller than the lateral electric field component. For this reason, light leakage due to the rise of liquid crystal molecules in this portion is reduced, and the contrast ratio viewed from an oblique direction can be improved.

以下、本発明の実施例を図面を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1(a)は本実施例におけるアクティブマトリクス型液晶表示装置の平面図の一部である。図1(b)は図1(a)のA−A′における断面図、図1(c)は図1(a)のB−B′における断面図である。基板として表面を研磨したガラス基板を2枚用いた。図1(a)に示すように、一方の基板31上に走査配線10を互いに平行に配置し、膜厚約300nmの窒化シリコンからなるゲート絶縁膜13,アモルファスシリコンからなるチャネル層16を形成し、短冊状の第1の画素電極1および信号配線11をいずれも走査配線10と交差するような方向に配置した。これにより、走査配線10と信号配線11の各交点付近にアクティブ素子である薄膜トランジスタが形成される。第1の画素電極1と対をなすべき他方の画素電極は隣接する画素どうしで接続し、ストライプ状の第2の画素電極2として図1(b)に示すように他方の基板32上に形成した。この第2の画素電極は従来のアクティブマトリクス型液晶表示装置における共通電極とほぼ同等の作用をする。これにより、第1の画素電極1と第2の画素電極2の間で液晶組成物層50に対して電界7が印加され、かつその方向が基板界面にほぼ平行な横電界方式が実現できる。対をなす画素電極1,2は従来の櫛歯状電極対に比べて単純な形状であるため、光の利用効率は以下のようになる。画素ピッチは水平方向(すなわち共通電極2の間隔)が80μm、垂直方向(すなわち走査配線10の間隔)が240μmである場合、各部の寸法を、第1の画素電極1の幅(短辺の長さ)は4μm、共通電極2の幅(短辺の長さ)は12μm、第1の画素電極1と第2の画素電極2の間の距離は23μmとして、第1の画素電極1および第2の画素電極2の短辺の長さをそれらの間の距離よりも短くすることができた。この時、光の利用効率を画素面積に占める有効表示面積と定義すると、
50.3%になる。したがって、本実施例によるアクティブマトリクス型液晶表示装置の透過率は8.4%になった。容量素子12は、図1(c)に示すように、第1の画素電極1を走査配線10の上に27μmだけ伸ばしてゲート絶縁膜
13を挟む構造として形成した。よって、この容量素子12の静電容量は約21.4fFになった。
FIG. 1A is a part of a plan view of an active matrix type liquid crystal display device in this embodiment. 1B is a cross-sectional view taken along the line AA ′ of FIG. 1A, and FIG. 1C is a cross-sectional view taken along the line BB ′ of FIG. Two glass substrates whose surfaces were polished were used as the substrates. As shown in FIG. 1A, scanning wirings 10 are arranged in parallel to each other on one substrate 31 to form a gate insulating film 13 made of silicon nitride and a channel layer 16 made of amorphous silicon with a film thickness of about 300 nm. The strip-shaped first pixel electrode 1 and the signal wiring 11 are both arranged in a direction intersecting with the scanning wiring 10. Thereby, a thin film transistor which is an active element is formed in the vicinity of each intersection of the scanning wiring 10 and the signal wiring 11. The other pixel electrode to be paired with the first pixel electrode 1 is connected between adjacent pixels, and formed as a striped second pixel electrode 2 on the other substrate 32 as shown in FIG. 1B. did. The second pixel electrode has substantially the same function as the common electrode in the conventional active matrix type liquid crystal display device. Thereby, an electric field 7 is applied to the liquid crystal composition layer 50 between the first pixel electrode 1 and the second pixel electrode 2, and a lateral electric field method in which the direction is substantially parallel to the substrate interface can be realized. Since the paired pixel electrodes 1 and 2 have a simpler shape than the conventional comb-like electrode pair, the light utilization efficiency is as follows. When the pixel pitch is 80 μm in the horizontal direction (that is, the interval between the common electrodes 2) and 240 μm in the vertical direction (that is, the interval between the scanning wirings 10), the dimensions of each part are set to the width of the first pixel electrode 1 (the length of the short side). ) Is 4 μm, the width (short side length) of the common electrode 2 is 12 μm, and the distance between the first pixel electrode 1 and the second pixel electrode 2 is 23 μm. The length of the short side of each pixel electrode 2 could be made shorter than the distance between them. At this time, if the light use efficiency is defined as the effective display area in the pixel area,
It becomes 50.3%. Therefore, the transmittance of the active matrix liquid crystal display device according to this example was 8.4%. As shown in FIG. 1C, the capacitor element 12 was formed to have a structure in which the first pixel electrode 1 was extended by 27 μm on the scanning wiring 10 and the gate insulating film 13 was sandwiched therebetween. Therefore, the capacitance of the capacitive element 12 is about 21.4 fF.

さらに、この表面に保護膜としてエポキシ系の樹脂からなる透明な有機ポリマ14,15を積層し、ポリイミド系の樹脂からなる配向膜4を積層した。各基板上の配向膜4を、プレチルト角が約0.5度、両基板界面上のラビング方向8が互いにほぼ反平行で、かつ印加電界方向7とのなす角度が85度になるようにラビング処理を施した。両基板間に誘電率異方性が正でその値が4.5であり、複屈折が0.072(589nm,20℃)のネマチック液晶組成物50を挟んだ。ギャップは液晶封入状態で4.5μmとした。これにより、第1の画素電極1と第2の画素電極2の間の静電容量は約2.14fFになった。一方の基板の外側には偏光板6をその偏光透過軸がラビング方向8にほぼ平行になるように配置し
、他方の基板の外側には偏光板6をそれに直交するように配置した。これによりノーマリクローズ特性を得る。各走査配線10および各信号配線11にはそれぞれ走査配線駆動用LSIおよび信号配線駆動用LSI(図示せず)を接続した。
第1の画素電極1に蓄積された電荷は、第1の画素電極1と第2の画素電極2の間の静電容量と容量素子12を並列接続した容量である約23.5fFに蓄積されることになり、液晶組成物50の比抵抗が5×1010Ωcmであっても第1の画素電極1の電圧変動を抑制することができる。このため、画質劣化を防止することができた。
Further, transparent organic polymers 14 and 15 made of an epoxy resin were laminated on the surface as a protective film, and an alignment film 4 made of a polyimide resin was laminated. The alignment film 4 on each substrate is rubbed so that the pretilt angle is about 0.5 degrees, the rubbing direction 8 on the interface between both substrates is substantially antiparallel to each other, and the angle formed with the applied electric field direction 7 is 85 degrees. Treated. A nematic liquid crystal composition 50 having a positive dielectric anisotropy and a value of 4.5 between both substrates and a birefringence of 0.072 (589 nm, 20 ° C.) was sandwiched. The gap was 4.5 μm when the liquid crystal was sealed. As a result, the electrostatic capacitance between the first pixel electrode 1 and the second pixel electrode 2 was about 2.14 fF. A polarizing plate 6 is disposed outside one substrate so that its polarization transmission axis is substantially parallel to the rubbing direction 8, and a polarizing plate 6 is disposed outside the other substrate so as to be orthogonal thereto. Thereby, a normally closed characteristic is obtained. A scanning wiring driving LSI and a signal wiring driving LSI (not shown) were connected to each scanning wiring 10 and each signal wiring 11, respectively.
The electric charge accumulated in the first pixel electrode 1 is accumulated in about 23.5 fF, which is a capacitance obtained by connecting the capacitance between the first pixel electrode 1 and the second pixel electrode 2 and the capacitive element 12 in parallel. Thus, even if the specific resistance of the liquid crystal composition 50 is 5 × 10 10 Ωcm, the voltage fluctuation of the first pixel electrode 1 can be suppressed. For this reason, image quality deterioration could be prevented.

本実施例で用いた液晶組成物50は比誘電率6.7,比抵抗5×1010Ωcmなる値を有し、また、容量素子12を構成する絶縁物として用いた窒化シリコンは比誘電率6.7,比抵抗5×1016Ωcmなる値を有する。すなわち、液晶組成物50,容量素子12を構成する絶縁物ともその比抵抗は1010Ωcm以上であり、窒化シリコンの誘電率と比抵抗の積は約3×104秒と液晶組成物50の誘電率と比抵抗の積約0.03秒より大きい。また、走査配線駆動用LSIから出力される駆動信号における1垂直走査期間は通常の液晶表示装置においては約16.6msであって、約3×104秒よりはるかに小さいことを満たしている。このため、第1の画素電極1に蓄積された電荷が漏れていく時定数を十分大きくとることが可能になり、第1の画素電極1の電圧変動を十分小さく抑えることが容易になる。本実施例で用いた液晶組成物50は不純物によって汚染されにくい特性を有し、また、本実施例で用いた配向膜4は直流電荷が全く残留しない特性を有する。したがって、表示むらや残像などの画質劣化を防止することができた。 The liquid crystal composition 50 used in this example has a specific dielectric constant of 6.7 and a specific resistance of 5 × 10 10 Ωcm, and silicon nitride used as an insulator constituting the capacitor 12 has a relative dielectric constant. 6.7, specific resistance 5 × 10 16 Ωcm. That is, the specific resistance of the liquid crystal composition 50 and the insulator constituting the capacitive element 12 is 10 10 Ωcm or more, and the product of the dielectric constant and specific resistance of silicon nitride is about 3 × 10 4 seconds. The product of dielectric constant and specific resistance is greater than about 0.03 seconds. Further, one vertical scanning period in the driving signal output from the scanning wiring driving LSI is about 16.6 ms in a normal liquid crystal display device, which is much smaller than about 3 × 10 4 seconds. For this reason, it is possible to take a sufficiently large time constant for the charge accumulated in the first pixel electrode 1 to leak, and it becomes easy to suppress the voltage fluctuation of the first pixel electrode 1 to be sufficiently small. The liquid crystal composition 50 used in this example has a characteristic that it is not easily contaminated by impurities, and the alignment film 4 used in this example has a characteristic that no DC charge remains. Therefore, image quality deterioration such as display unevenness and afterimages can be prevented.

さらに、本実施例で用いた配向膜4は比誘電率3.4なる値を有する。すなわち、液晶組成物層50と接する非導電性部材である配向膜4は液晶組成物層50の比誘電率6.7より小さい比誘電率を有する。電磁気学の理論によれば電界は誘電率の高い部分に集中しやすい性質を有するため、配向膜4よりも液晶組成物層50に電界が集中しやすくなる。また、電界は電極表面に対して垂直な方向に出入りする性質を有するため、第1の画素電極1および第2の画素電極2の表面近傍では基板界面に垂直な方向の縦電界成分が発生する。しかし、第1の画素電極1と第2の画素電極2の間では電界はその連続性を保つように曲がって横電界を形成する。本実施例では、第1の画素電極1および第2の画素電極2の短辺の長さを第1の画素電極1と第2の画素電極2の間の距離よりも短くしたことにより、縦電界成分の領域よりも横電界成分の領域を大きくとることができる。これらのため、液晶組成物層50に電界が集中しやすくなって、液晶組成物層50に横電界を効率良く印加でき、第1の画素電極1および第2の画素電極2の近傍において発生する基板界面に垂直な方向の電界成分を横電界成分7に比べて小さく抑えることが可能になる。したがって、第1の画素電極1および第2の画素電極2の近傍において液晶分子が立ち上がることが抑えられるため、これによる光漏れを防止することができ、斜め方向から見たコントラスト比は100以上になった。   Further, the alignment film 4 used in this example has a value of a relative dielectric constant of 3.4. That is, the alignment film 4, which is a nonconductive member in contact with the liquid crystal composition layer 50, has a relative dielectric constant smaller than that of the liquid crystal composition layer 50. According to the theory of electromagnetism, the electric field tends to concentrate on a portion having a high dielectric constant, so that the electric field tends to concentrate on the liquid crystal composition layer 50 rather than the alignment film 4. Further, since the electric field has a property of entering and exiting in a direction perpendicular to the electrode surface, a vertical electric field component in a direction perpendicular to the substrate interface is generated in the vicinity of the surfaces of the first pixel electrode 1 and the second pixel electrode 2. . However, the electric field bends between the first pixel electrode 1 and the second pixel electrode 2 so as to maintain the continuity, thereby forming a lateral electric field. In this embodiment, the lengths of the short sides of the first pixel electrode 1 and the second pixel electrode 2 are made shorter than the distance between the first pixel electrode 1 and the second pixel electrode 2, thereby The region of the transverse electric field component can be made larger than the region of the electric field component. For these reasons, the electric field tends to concentrate on the liquid crystal composition layer 50, and a lateral electric field can be efficiently applied to the liquid crystal composition layer 50, which is generated in the vicinity of the first pixel electrode 1 and the second pixel electrode 2. The electric field component in the direction perpendicular to the substrate interface can be suppressed smaller than the lateral electric field component 7. Therefore, since liquid crystal molecules are prevented from rising in the vicinity of the first pixel electrode 1 and the second pixel electrode 2, light leakage due to this can be prevented, and the contrast ratio viewed from an oblique direction is 100 or more. became.

なお、本実施例ではガラス基板を用いたが、透明なプラスチック基板のようなものでもよく、また、どちらか一方の基板はシリコン基板のような不透明なものでも構わない。また、各配線の形状は図2に示す形状に限られる訳ではない。また、ゲート絶縁膜としては窒化シリコンだけでなく、酸化シリコンや酸化アルミ,酸化タンタル,酸化チタンなどの絶縁物を用いてもよく、それらの積層物でも構わない。さらにその場合、使用した部材の誘電率や比抵抗は本実施例記載の数値でなくても本発明の要件を満たしていればよい。また、チャネル層としてはアモルファスシリコンだけでなく、多結晶シリコンやセレン化カドミウムなどの半導体を用いてもよく、アクティブ素子である薄膜トランジスタの個数は複数であっても構わない。また、各電極の寸法や距離は必ずしも本実施例の値を採用する必要はなく、アクティブマトリクス型液晶表示装置の画素ピッチや画面サイズに応じて寸法や距離を変えても構わない。また、保護膜は必ずしもエポキシ系の樹脂からなる透明な有機ポリマである必要はなく、配向膜も必ずしもポリイミド系の樹脂である必要はなく、これらの部材の誘電率や特性が本発明の要件を満たしていればよい。また、配向膜のプレチルト角やラビング角度も本実施例記載の数値でなくてもよく、部材によっては保護膜が配向膜を兼ねることも可能である。また、液晶組成物は本実施例記載の誘電率異方性や複屈折,比抵抗,比誘電率を有していなくても、比抵抗や誘電率が本発明の要件を満たしていればよい。さらに、液晶組成物分子の配向は、ホモジニアス配向,90°ツイスト配向あるいはホメオトロピック配向であってもよく、TNモード,GHモード,ECBモードなどの方式であっても構わない。また、ギャップも所望の特性が得られるように変えてよい。また、偏光板を配置する角度もラビング角度や液晶組成物分子の配向に応じて変えることができる。また、1垂直走査期間は約16.6msに限らず、本発明の要件を満たす範囲で変えても構わない。このように、本実施例は本発明を完全に制限するものではない。   In this embodiment, a glass substrate is used. However, a transparent plastic substrate may be used, and either one of the substrates may be opaque such as a silicon substrate. Further, the shape of each wiring is not limited to the shape shown in FIG. Further, as the gate insulating film, not only silicon nitride but also an insulator such as silicon oxide, aluminum oxide, tantalum oxide, and titanium oxide may be used, or a laminate thereof. Further, in that case, the dielectric constant and specific resistance of the member used may satisfy the requirements of the present invention even if they are not the numerical values described in this embodiment. The channel layer may be made of not only amorphous silicon but also a semiconductor such as polycrystalline silicon or cadmium selenide, and the number of thin film transistors serving as active elements may be plural. Further, the dimensions and distances of the respective electrodes do not necessarily need to adopt the values of this embodiment, and the dimensions and distances may be changed according to the pixel pitch and screen size of the active matrix liquid crystal display device. Further, the protective film does not necessarily need to be a transparent organic polymer made of an epoxy resin, and the alignment film does not necessarily need to be a polyimide resin, and the dielectric constant and characteristics of these members satisfy the requirements of the present invention. It only has to satisfy. Further, the pretilt angle and rubbing angle of the alignment film may not be the numerical values described in this embodiment, and the protective film may also serve as the alignment film depending on the member. Further, even if the liquid crystal composition does not have the dielectric anisotropy, birefringence, specific resistance, or specific dielectric constant described in the present example, it is sufficient that the specific resistance or dielectric constant satisfies the requirements of the present invention. . Furthermore, the alignment of the liquid crystal composition molecules may be homogeneous alignment, 90 ° twist alignment or homeotropic alignment, and may be a TN mode, GH mode, ECB mode or the like. Further, the gap may be changed so that desired characteristics can be obtained. Further, the angle at which the polarizing plate is disposed can be changed according to the rubbing angle and the orientation of the liquid crystal composition molecules. One vertical scanning period is not limited to about 16.6 ms, and may be changed within a range that satisfies the requirements of the present invention. Thus, this example does not completely limit the present invention.

[比較例1]
従来の縦電界方式であるツイステッドネマチック(TN)方式を用いたアクティブマトリクス型液晶表示装置を第1の比較例とする。図4に示すように、この方式では、アクティブ素子を形成した基板31側に透明な画素電極1をマトリクス状に配置し、これに対向する基板32の表面に表示領域全面にわたる共通電極2′を形成している。ネマチック液晶組成物50および配向膜4の材料としては実施例1と同一の部材を用い、ギャップは7.3μm、液晶分子のツイスト角は90度とした。
[Comparative Example 1]
An active matrix liquid crystal display device using a twisted nematic (TN) system, which is a conventional vertical electric field system, is used as a first comparative example. As shown in FIG. 4, in this system, transparent pixel electrodes 1 are arranged in a matrix on the substrate 31 side on which active elements are formed, and a common electrode 2 ′ covering the entire display area is formed on the surface of the substrate 32 facing the transparent pixel electrodes 1. Forming. As the material for the nematic liquid crystal composition 50 and the alignment film 4, the same members as those in Example 1 were used, the gap was 7.3 μm, and the twist angle of the liquid crystal molecules was 90 degrees.

本比較例で用いた液晶組成物50の比抵抗は5×1010Ωcmであるため、縦電界方式のアクティブマトリクス型液晶表示装置に用いるには比抵抗が低い。このため、画素電極1に蓄積された電荷が漏れやすくなり、画素電極1の電圧変動を小さく抑えることが不可能になって、画質劣化が発生した。また、本比較例で用いた配向膜4のプレチルト角は約0.5度であるため、基板31および32の表面の断差構造のある部分で液晶分子の逆チルトや逆ツイストなどの配向不良ドメインが発生した。これによる光漏れによって斜め方向だけでなく正面から見たコントラスト比も10以下に低下した。   Since the specific resistance of the liquid crystal composition 50 used in this comparative example is 5 × 10 10 Ωcm, the specific resistance is low for use in a vertical electric field type active matrix liquid crystal display device. For this reason, the charge accumulated in the pixel electrode 1 is likely to leak, making it impossible to suppress the voltage fluctuation of the pixel electrode 1 to be small, and image quality degradation has occurred. In addition, since the pretilt angle of the alignment film 4 used in this comparative example is about 0.5 degrees, alignment defects such as reverse tilt and reverse twist of the liquid crystal molecules are present in the part where the surface of the substrates 31 and 32 has a gap structure. A domain occurred. Due to this light leakage, the contrast ratio as viewed from the front as well as in the oblique direction also decreased to 10 or less.

以上のように、従来のTN方式のアクティブマトリクス型液晶表示装置では使用不可能な液晶組成物や配向膜材料も、本発明による実施例1では十分使用可能であり、液晶組成物や配向膜材料の選択の自由度が拡大する。   As described above, the liquid crystal composition and the alignment film material which cannot be used in the conventional TN type active matrix liquid crystal display device can be sufficiently used in Example 1 according to the present invention. The degree of freedom of selection increases.

[比較例2]
図5に示すような、従来の櫛歯状電極対を用いた横電界方式のアクティブマトリクス型液晶表示装置を第2の比較例とする。本比較例は、画素電極が櫛歯状電極対であることおよび容量素子を形成していないことを除いて実施例1と同一である。本方式では、電極の加工精度の点から最小寸法を4μm以下にすることが不可能であった。このため櫛歯状画素電極1,2の櫛歯に相当する部分の幅(短辺の長さ)を櫛歯どうしが噛み合う間隔(対をなす電極間の距離)と等しくとると、光の利用効率は15.2%と低下してしまい、本比較例のアクティブマトリクス型液晶表示装置の透過率は2.5%になった。また、櫛歯状画素電極1,2の近傍において発生する基板界面に垂直な方向の電界成分を横電界成分に比べて小さく抑えることが不可能になった。このため、斜め方向から見たコントラスト比が10以下に低下した。また、櫛歯状画素電極1,2に並列に容量素子を有しないため、櫛歯状画素電極1,2の電圧変動を抑えることが不可能であり、表示むらが発生した。
[Comparative Example 2]
A horizontal electric field type active matrix liquid crystal display device using a conventional comb-like electrode pair as shown in FIG. 5 is used as a second comparative example. This comparative example is the same as Example 1 except that the pixel electrode is a comb-like electrode pair and no capacitive element is formed. In this method, it was impossible to make the minimum dimension 4 μm or less from the viewpoint of electrode processing accuracy. For this reason, if the width (short side length) of the portion corresponding to the comb teeth of the comb-like pixel electrodes 1 and 2 is set equal to the interval between the comb teeth (the distance between the paired electrodes), the use of light The efficiency decreased to 15.2%, and the transmittance of the active matrix type liquid crystal display device of this comparative example was 2.5%. In addition, the electric field component in the direction perpendicular to the substrate interface generated in the vicinity of the comb-like pixel electrodes 1 and 2 cannot be suppressed to be smaller than the lateral electric field component. For this reason, the contrast ratio seen from the diagonal direction fell to 10 or less. In addition, since no capacitive element is provided in parallel with the comb-like pixel electrodes 1 and 2, it is impossible to suppress voltage fluctuations of the comb-like pixel electrodes 1 and 2, and display unevenness occurs.

以上のように、従来の櫛歯状電極対を用いた場合には、本発明による実施例1に比べて、光の利用効率が低下して明るさが低下し、画素電極の電圧変動によって表示むらが発生し、斜め方向から見たコントラスト比が低下した。   As described above, when the conventional comb-like electrode pair is used, the light use efficiency is lowered and the brightness is lowered as compared with the first embodiment according to the present invention. Unevenness occurred and the contrast ratio viewed from an oblique direction decreased.

[比較例3]
本比較例は容量素子を構成する絶縁物の比抵抗が5×109Ωcmと低いこと以外は実施例1と同一である。この場合、容量素子12を構成する絶縁物の比抵抗と誘電率の積は約0.003秒(=3ms)であり、液晶組成物層50の比抵抗と誘電率の積0.03秒より小さい。通常の液晶表示装置においては走査配線駆動用LSIから出力される駆動信号における1垂直走査期間は約16.6msであって、この1垂直走査期間を約3msより小さく設定すると走査配線駆動用LSIおよび信号配線駆動用LSIを通常の5倍以上の高速で動作するようにする必要があり、非常に高価なLSIを用いなければならないという問題が生じる。逆に、走査配線駆動用LSIから出力される駆動信号における1垂直走査期間を約16.6msのままに設定すると、本比較例では、第1の画素電極1に並列に容量素子12を有していても、第1の画素電極1に蓄積された電荷が漏れていく時定数を十分大きくとることが不可能になる。このため、第1の画素電極1の電圧変動を十分小さく抑えることが不可能であり、表示むらが発生した。
[Comparative Example 3]
This comparative example is the same as Example 1 except that the specific resistance of the insulator constituting the capacitive element is as low as 5 × 10 9 Ωcm. In this case, the product of the specific resistance and the dielectric constant of the insulator constituting the capacitive element 12 is about 0.003 seconds (= 3 ms), and the product of the specific resistance and the dielectric constant of the liquid crystal composition layer 50 is 0.03 seconds. small. In a normal liquid crystal display device, one vertical scanning period in the drive signal output from the scanning wiring driving LSI is about 16.6 ms. If this one vertical scanning period is set to be smaller than about 3 ms, the scanning wiring driving LSI and It is necessary to operate the signal line driving LSI at a speed five times higher than usual, which causes a problem that a very expensive LSI must be used. On the contrary, if one vertical scanning period in the drive signal output from the scanning wiring driving LSI is set to about 16.6 ms, the comparative example includes the capacitive element 12 in parallel with the first pixel electrode 1. Even in such a case, it is impossible to take a sufficiently large time constant for the charge accumulated in the first pixel electrode 1 to leak. For this reason, it is impossible to suppress the voltage fluctuation of the first pixel electrode 1 sufficiently small, and display unevenness occurs.

[比較例4]
本比較例は液晶組成物層の比抵抗が5×109Ωcmと低いこと以外は実施例1と同一である。この場合、第1の画素電極1に並列に容量素子12を有していても、液晶層の抵抗が小さいため、第1の画素電極1に蓄積された電荷が漏れていく時定数を十分大きくとることが不可能になる。このため、第1の画素電極1の電圧変動を十分小さく抑えることが不可能であり、表示むらが発生した。
[Comparative Example 4]
This comparative example is the same as Example 1 except that the specific resistance of the liquid crystal composition layer is as low as 5 × 10 9 Ωcm. In this case, even if the capacitor 12 is provided in parallel with the first pixel electrode 1, the resistance of the liquid crystal layer is small, so that the time constant at which the charge accumulated in the first pixel electrode 1 leaks is sufficiently large. It becomes impossible to take. For this reason, it is impossible to suppress the voltage fluctuation of the first pixel electrode 1 sufficiently small, and display unevenness occurs.

本実施例の構成は下記の要件を除けば実施例1と同一である。   The configuration of the present embodiment is the same as that of the first embodiment except for the following requirements.

図6(a)は本実施例におけるアクティブマトリクス型液晶表示装置の平面図の一部である。図6(b)は図6(a)のA−A′における断面図、図6(c)は図6(a)のB−B′における断面図である。実施例1において画素電極1と走査配線10で窒化シリコンからなるゲート絶縁膜13を挟む構造であった容量素子12を、図6(c)に示すように、第1の画素電極1と第2の画素電極2で液晶組成物層50を挟む構造に変えた。本実施例では、容量素子12の静電容量を第1の画素電極1と第2の画素電極2の間の静電容量と完全に並列接続することが可能になるため、信号配線10の電圧変動の影響は第1の画素電極1に及ばなくなる。このため、第1の画素電極1の電圧変動をさらに抑えることができ、表示むらは発生しなかった。   FIG. 6A is a part of a plan view of the active matrix liquid crystal display device in this embodiment. 6B is a cross-sectional view taken along the line AA ′ in FIG. 6A, and FIG. 6C is a cross-sectional view taken along the line BB ′ in FIG. As shown in FIG. 6C, the capacitor element 12 having the structure in which the gate insulating film 13 made of silicon nitride is sandwiched between the pixel electrode 1 and the scanning wiring 10 in the first embodiment is used. The structure is such that the liquid crystal composition layer 50 is sandwiched between the pixel electrodes 2. In the present embodiment, the capacitance of the capacitive element 12 can be completely connected in parallel with the capacitance between the first pixel electrode 1 and the second pixel electrode 2. The influence of the fluctuation does not reach the first pixel electrode 1. For this reason, voltage fluctuations of the first pixel electrode 1 can be further suppressed, and display unevenness does not occur.

本実施例におけるアクティブマトリクス型液晶表示装置でも画質劣化は発生せず、実施例1と同様の効果が得られた。   Even in the active matrix liquid crystal display device of this example, image quality did not deteriorate, and the same effect as in Example 1 was obtained.

本実施例の構成は下記の要件を除けば実施例1と同一である。   The configuration of the present embodiment is the same as that of the first embodiment except for the following requirements.

一対の基板両方にそれぞれ配置していた電極群をすべて一方の基板上に形成した。図7(a)は本実施例におけるアクティブマトリクス型液晶表示装置の平面図の一部である。図7(b)は図7(a)のA−A′における断面図、図7(c)は図7(a)のB−B′における断面図である。アクティブ素子を形成した基板31上に第2の画素電極2を形成した。一般にホトマスクのアライメント精度は相対向する2枚の基板間のアライメント精度に比べて著しく高い。本実施例では4種の電極群のいずれをも一方の基板31上に形成することから、第1の画素電極1と第2の画素電極2の間のアライメントがホトマスクのみで行われるため、実施例1,2の場合に比べて両電極間のアライメントずれが小さく抑制される。これにより本実施例では、1枚のアクティブマトリクス型液晶表示装置内における第1の画素電極1と第2の画素電極2の間の静電容量のバラツキを抑えることができ、表示むらは全く発生しなかったまた、対向する基板32上には一切導電性部材は設けていない。したがって、本実施例の構成においては仮にアクティブマトリクス型液晶表示装置の製造工程中に導電性の異物が混入したとしてもー方の基板上の電極と他方の基板上の電極の間の短絡の可能性がなく、これによる不良が発生しなかった。   All electrode groups arranged on both of the pair of substrates were formed on one substrate. FIG. 7A is a part of a plan view of the active matrix liquid crystal display device in this embodiment. 7B is a cross-sectional view taken along the line AA ′ in FIG. 7A, and FIG. 7C is a cross-sectional view taken along the line BB ′ in FIG. The second pixel electrode 2 was formed on the substrate 31 on which the active element was formed. In general, the alignment accuracy of a photomask is significantly higher than the alignment accuracy between two opposing substrates. In this embodiment, since all of the four types of electrode groups are formed on one substrate 31, the alignment between the first pixel electrode 1 and the second pixel electrode 2 is performed only by the photomask. Compared to the cases of Examples 1 and 2, the misalignment between both electrodes is suppressed to be small. As a result, in this embodiment, variation in capacitance between the first pixel electrode 1 and the second pixel electrode 2 in one active matrix type liquid crystal display device can be suppressed, and display unevenness is generated at all. In addition, no conductive member is provided on the opposing substrate 32. Therefore, in the configuration of this embodiment, even if conductive foreign matter is mixed in during the manufacturing process of the active matrix type liquid crystal display device, a short circuit between the electrode on one substrate and the electrode on the other substrate is possible. There was no property, and no defect was caused by this.

本実施例においても画質劣化は発生せず、実施例1と同様の効果が得られた。   Also in this example, image quality degradation did not occur, and the same effect as in Example 1 was obtained.

本実施例の構成は下記の要件を除けば実施例3と同一である。
図8(a)は本実施例におけるアクティブマトリクス型液晶表示装置の平面図の一部である。図8(b)は図8(a)のA−A′における断面図、図8(c)は図8(a)のB−B′における断面図である。実施例3における第2の画素電極に、アモルファスシリコンからなるチャネル層16および共通配線22を設けてアクティブ素子を形成して接続し、第1の画素電極1と第2の画素電極2との間で電界7が印加される構成とした。すなわち、本実施例においては従来のアクティブマトリクス型液晶表示装置における共通電極に相当する電極は設けていない。対をなす画素電極1,2はそれぞれアクティブ素子に接続しているが、共通の走査配線10によって駆動されるため、第1の画素電極1と信号配線11間および第2の画素電極2と共通配線22間はそれぞれ同じにオン−オフのスイチング動作をする。したがって、実質的に第1の画素電極1と第2の画素電極2,信号配線11と共通配線22はそれぞれ等価であり、画像信号は信号配線11を通しても、共通配線22を通しても、あるいは信号配線11と共通配線22に振り分けても供給することができる。
The configuration of the present embodiment is the same as that of the third embodiment except for the following requirements.
FIG. 8A is a part of a plan view of the active matrix liquid crystal display device in this embodiment. 8B is a cross-sectional view taken along the line AA ′ of FIG. 8A, and FIG. 8C is a cross-sectional view taken along the line BB ′ of FIG. 8A. An active element is formed and connected to the second pixel electrode in the third embodiment by providing the channel layer 16 and the common wiring 22 made of amorphous silicon, and the first pixel electrode 1 and the second pixel electrode 2 are connected. The electric field 7 is applied. That is, in this embodiment, no electrode corresponding to the common electrode in the conventional active matrix type liquid crystal display device is provided. The paired pixel electrodes 1 and 2 are connected to the active elements, respectively, but are driven by the common scanning wiring 10, so that they are common between the first pixel electrode 1 and the signal wiring 11 and the second pixel electrode 2. The wiring 22 performs the same on / off switching operation. Therefore, the first pixel electrode 1 and the second pixel electrode 2, the signal wiring 11 and the common wiring 22 are substantially equivalent, and the image signal is transmitted through the signal wiring 11, the common wiring 22, or the signal wiring. 11 and common wiring 22 can also be supplied.

本実施例では、液晶組成物層から見て第1の画素電極1と第2の画素電極2は全く等価であるため、図8(c)に示すように、第2の画素電極2についても走査配線10でゲート絶縁膜13を挟む構造として容量素子12を並列接続になるように形成した。このため容量素子12のサイズは実施例1,3に比べて1/2にすることができた。したがって、光の利用効率は55.1%と実施例3に比べてさらに向上することができ、本実施例によるアクティブマトリクス型液晶表示装置の透過率は9.2%になった。   In this embodiment, since the first pixel electrode 1 and the second pixel electrode 2 are completely equivalent as viewed from the liquid crystal composition layer, the second pixel electrode 2 is also shown in FIG. 8C. The capacitor element 12 was formed in parallel connection so that the gate insulating film 13 was sandwiched between the scanning wirings 10. For this reason, the size of the capacitive element 12 could be halved compared to the first and third embodiments. Therefore, the light utilization efficiency was 55.1%, which can be further improved as compared with Example 3. The transmittance of the active matrix liquid crystal display device according to this example was 9.2%.

本実施例においても画質劣化は発生せず、実施例3と同様の効果が得られた。   In this example, image quality degradation did not occur, and the same effect as in Example 3 was obtained.

本発明の実施例1のアクティブマトリクス型液晶表示装置の説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram of an active matrix liquid crystal display device according to a first embodiment of the present invention. 横電界方式の液晶表示装置における液晶分子の動作を示す図。FIG. 5 shows operation of liquid crystal molecules in a horizontal electric field liquid crystal display device. 横電界方式の液晶表示装置における電気光学特性を示す図。FIG. 6 is a diagram illustrating electro-optical characteristics in a horizontal electric field liquid crystal display device. 比較例1のアクティブマトリクス型液晶表示装置の説明図。FIG. 10 is an explanatory diagram of an active matrix liquid crystal display device of Comparative Example 1; 比較例2のアクティブマトリクス型液晶表示装置の説明図。Explanatory drawing of the active matrix type liquid crystal display device of the comparative example 2. FIG. 本発明の実施例2のアクティブマトリクス型液晶表示装置の説明図。Explanatory drawing of the active matrix type liquid crystal display device of Example 2 of this invention. 本発明の実施例3のアクティブマトリクス型液晶表示装置の説明図。Explanatory drawing of the active matrix type liquid crystal display device of Example 3 of this invention. 本発明の実施例4のアクティブマトリクス型液晶表示装置の説明図。Explanatory drawing of the active matrix type liquid crystal display device of Example 4 of this invention.

符号の説明Explanation of symbols

1…第1の画素電極、2…第2の画素電極、2′…共通電極、3…基板、4…配向膜、5…液晶分子、6…偏光板、7…印加電界の方向、8…界面上の液晶分子長軸配向方向(ラビング方向)、10…走査配線、11…信号配線、12…容量素子、13…ゲート絶縁膜、14,15…保護膜となる有機ポリマ、16…チャネル層、17…カラーフィルタ、18…遮光層、22…共通配線、31,32…基板、50…液晶組成物層。   DESCRIPTION OF SYMBOLS 1 ... 1st pixel electrode, 2 ... 2nd pixel electrode, 2 '... Common electrode, 3 ... Substrate, 4 ... Alignment film, 5 ... Liquid crystal molecule, 6 ... Polarizing plate, 7 ... Direction of applied electric field, 8 ... Liquid crystal molecule long axis alignment direction (rubbing direction) on the interface, 10 ... scanning wiring, 11 ... signal wiring, 12 ... capacitor element, 13 ... gate insulating film, 14, 15 ... organic polymer as protective film, 16 ... channel layer , 17 ... color filter, 18 ... light shielding layer, 22 ... common wiring, 31, 32 ... substrate, 50 ... liquid crystal composition layer.

Claims (4)

第1と第2の基板と、前記基板間に挟持された液晶組成物層と、前記第1の基板に配置された複数の走査配線および信号配線と、前記第1の基板に配置された複数の第1の画素電極と、前記第2の基板に配置された複数のストライプ状の第2の画素電極を有し、
前記第1の画素電極と前記第2の画素電極の間で前記液晶組成物層に対し電界が印加され、
前記第2の画素電極は隣接する前記第1の画素電極間の空間に配置され、
前記第1の画素電極は隣接する前記第2の画素電極間の空間に配置され、
前記第2の画素電極は有機ポリマの上に形成され、前記第1の画素電極は窒化シリコン上に形成され、かつ前記第2の画素電極は前記第1の画素電極より太く形成されていることを特徴とする液晶表示装置。
First and second substrates, a liquid crystal composition layer sandwiched between the substrates, a plurality of scanning wirings and signal wirings disposed on the first substrate, and a plurality disposed on the first substrate And a plurality of stripe-shaped second pixel electrodes disposed on the second substrate,
An electric field is applied to the liquid crystal composition layer between the first pixel electrode and the second pixel electrode,
The second pixel electrode is disposed in a space between the adjacent first pixel electrodes;
The first pixel electrode is disposed in a space between the adjacent second pixel electrodes;
The second pixel electrode is formed on the organic polymer, wherein the first pixel electrode is formed on a silicon nitride, and the second image Motoden poles are formed thicker than the first pixel electrode A liquid crystal display device.
前記表示装置がノーマリークローズ特性を有することを特徴とする請求項1記載の液晶表示装置。   The liquid crystal display device according to claim 1, wherein the display device has a normally closed characteristic. 前記第1の画素電極と前記第2の画素電極の間で曲がった電界を形成することを特徴とする請求項1記載の液晶表示装置。   2. The liquid crystal display device according to claim 1, wherein a bent electric field is formed between the first pixel electrode and the second pixel electrode. 前記第1の画素電極と前記第2の画素電極の間で曲がった電界を形成することを特徴とする請求項2記載の液晶表示装置。
3. The liquid crystal display device according to claim 2, wherein a bent electric field is formed between the first pixel electrode and the second pixel electrode.
JP2004076283A 1993-01-20 2004-03-17 Active matrix liquid crystal display device Expired - Lifetime JP3735107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076283A JP3735107B2 (en) 1993-01-20 2004-03-17 Active matrix liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP735593 1993-01-20
JP2004076283A JP3735107B2 (en) 1993-01-20 2004-03-17 Active matrix liquid crystal display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002025053A Division JP3915529B2 (en) 1993-01-20 2002-02-01 Active matrix liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2004240439A JP2004240439A (en) 2004-08-26
JP3735107B2 true JP3735107B2 (en) 2006-01-18

Family

ID=32964194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076283A Expired - Lifetime JP3735107B2 (en) 1993-01-20 2004-03-17 Active matrix liquid crystal display device

Country Status (1)

Country Link
JP (1) JP3735107B2 (en)

Also Published As

Publication number Publication date
JP2004240439A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP3296913B2 (en) Active matrix type liquid crystal display
EP0916992B1 (en) A liquid crystal display device
JP2859093B2 (en) Liquid crystal display
JP4731206B2 (en) Liquid crystal display
US8436972B2 (en) In-plane switching type liquid crystal display device
JP3234357B2 (en) Liquid crystal display
US7027023B2 (en) Liquid crystal display panel, liquid crystal display device, and liquid crystal television
EP1122587A1 (en) Active matrix type liquid crystal display system
US7224414B2 (en) Active matrix liquid crystal display device
JP4658622B2 (en) Substrate for liquid crystal display device and liquid crystal display device
JP3039517B2 (en) Active matrix liquid crystal display
US20040257510A1 (en) In-plane switching mode liquid crystal display device and method of manufacturing the same
KR100593314B1 (en) liquid crystal display device
JPH06294971A (en) Liquid-crystal display device
JP3754179B2 (en) Liquid crystal display
KR100430376B1 (en) Liquid crystal display
KR20090126466A (en) Fringe-field switching liquid crystal device
KR20020079397A (en) Liquid crystal display device and driving method for the same
JPH08146468A (en) Liquid crystal display device
JP3735107B2 (en) Active matrix liquid crystal display device
JP3847403B2 (en) Liquid crystal display
JP3915529B2 (en) Active matrix liquid crystal display device
US20120086685A1 (en) Thin film transtistor array panel and liquid crystal display
JPH1096926A (en) Liquid crystal display device
KR100658074B1 (en) Cross field switching mode lcd improved transmittance and residual image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040412

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term