JP3735039B2 - Wavelength multiplexed excitation Raman amplifier - Google Patents

Wavelength multiplexed excitation Raman amplifier Download PDF

Info

Publication number
JP3735039B2
JP3735039B2 JP2001042364A JP2001042364A JP3735039B2 JP 3735039 B2 JP3735039 B2 JP 3735039B2 JP 2001042364 A JP2001042364 A JP 2001042364A JP 2001042364 A JP2001042364 A JP 2001042364A JP 3735039 B2 JP3735039 B2 JP 3735039B2
Authority
JP
Japan
Prior art keywords
fiber
length
optical
wavelength
raman
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001042364A
Other languages
Japanese (ja)
Other versions
JP2002244169A (en
Inventor
壮史 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2001042364A priority Critical patent/JP3735039B2/en
Publication of JP2002244169A publication Critical patent/JP2002244169A/en
Application granted granted Critical
Publication of JP3735039B2 publication Critical patent/JP3735039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光増幅を行うための光ファイバ増幅器である波長多重励起ラマン増幅装置に関し、集中型と分布型のいずれの波長多重励起ラマン増幅装置としても使用可能なものである。
【0002】
【従来の技術】
光信号の増幅のために光ファイバ増幅器として波長多重励起ラマン増幅装置を使用した例は従来からある。波長多重励起ラマン増幅装置には集中型と分布型とがある。集中型は図3の様に、光増幅媒体として用いられる光ファイバAがモジュール筐体内Bに励起光ユニットC、WDMカプラD等と共に収納されているものであり、分布型は光増幅媒体として用いられる光ファイバがモジュール筐体外に布設されているものである。いずれの波長多重励起ラマン増幅装置も、信号伝搬媒体でありかつ光増幅媒体として用いられる光ファイバにポンプ光を入射して光増幅を行っている。
【0003】
【発明が解決しようとする課題】
従来の集中型の波長多重励起ラマン増幅装置では、光増幅媒体として用いられる光ファイバのファイバ長をラマン利得が最大になるように選択していたため、増幅効率は良かったが、ある程度の長さ以上では信号とともにノイズも増幅されてしまうため、結果的にS/Nが劣化してしまうという難点があった。
【0004】
従来の分布型の波長多重励起ラマン増幅装置では、光増幅媒体として用いられる光ファイバのファイバ長は、布設する環境によって左右されるため、必ずしも利得が最大になるようにファイバ長を選択することは難しかった。このため、所望とする増幅効率が得られなかった。
【0005】
【課題を解決するための手段】
本発明の目的は増幅効率が良く、ノイズによる光信号の劣化が少ない波長多重励起ラマン増幅装置を提供することにある。
【0006】
本発明の第1の波長多重励起ラマン増幅装置は、光増幅に光ファイバを使用する波長多重励起ラマン増幅装置において、光増幅媒体として用いられる光ファイバのファイバ長を、ファイバ長とラマン利得の微分値との関係を示すラマン利得特性と、単位長あたりのファイバ損失を示すファイバ損失特性との交差付近の長さとすることによって、S/Nが最良又はその付近となる長さに設定したものである。
【0007】
本発明の第2の波長多重励起ラマン増幅装置は、請求項1記載の波長多重励起ラマン増幅装置において、光増幅媒体として用いられる光ファイバがモジュールの筐体内に励起光源、WDM等と共に収納された集中型、又はモジュールの筐体外に布設された分布型のものである。
【0008】
【発明の実施の形態】
本発明の波長多重励起ラマン増幅装置の実施形態を図1、2に基づいて以下に説明する。光増幅媒体として用いられる光ファイバのファイバ長とラマン利得との関係は、光ファイバの種類(線種)によって異なる。例えば典型的なDCF(Dispersion Compensating Fiber :分散補償ファイバ)のファイバ長とラマン利得の微分値と単位長あたりのファイバ損失との関係を示すラマン利得特性は図1の様になり、典型的なノンゼロ分散シフトファイバのファイバ長と利得の微分値と単位長あたりのファイバ損失との関係を示すファイバ損失特性は図2の様になる。ここで図1、図2のa線は共に各ファイバのラマン利得の傾き、図1、図2のb線は共に単位長あたりのファイバ損失を表す。これらよりラマン利得はファイバ長を長くするにつれ、なだらかに上昇し、ある程度のファイバ長で最大をとり、その後減少してゆくことがわかる。一方単位長さあたりのファイバ損失は常に一定であるため、ファイバ長が長くなるほどファイバ損失も増える。ここでいずれのファイバの場合も、ある程度以上のファイバ長に対するファイバ損失(図1、図2のa線)の増加の割合は、ノイズの増加の割合と同じであることがわかっているので、分散補償ファイバでは図1のa線とb線の交差する点が、結果的にラマン利得とノイズとの差が最も大きい点、即ちS/Nの最良箇所となる。ここではそれに対応するファイバ長は略4Kmとなる。同様に、ノンゼロ分散シフトファイバでは図2のa線とb線の交差する点がラマン利得とノイズとの差が最も大きい点、即ち、S/Nの最良箇所となり、それに対応するファイバ長が最適長となる。ファイバ長とラマン利得の微分値と単位長あたりのファイバ損失との関係は図1、図2の様に線種によって異なるが、両線の交差点がS/Nの最良箇所となることは変わりがない。すなわち、本発明は既に示したファイバ種のみならず、SMF(シングルモールドファイバ)、RDF(反転分散ファイバ)、DSF(分散シフトファイバ)、HNLF(高非線形ファイバ)、など全てのファイバ種に対しても同様に当てはまるものである。
【0009】
ファイバ長を前記の様に設定した本発明の波長多重励起ラマン増幅装置は、集中型と分布型のいずれのタイプにも採用することができる。分布型の場合は、ファイバの布設環境によっては、必ずしも、a線とb線の交差点の長さに設定することができるとは限らないため、それよりも多少左右にずれた範囲の長さとすることができる。その許容範囲は最適ファイバ長をLとしたとき+-0.5L程度であり、その許容範囲の上限以上になるとノイズが多くなってS/Nが劣化し、下限以下になるとノイズは低減するが、十分なラマン利得効率が得られず、実用に耐え得ない。
【0010】
前記説明では、光ファイバ増幅器のS/Nの最良点又は、その付近のファイバ長(最適ファイバ長)を、ファイバ長とラマン利得の微分値と単位長あたりのファイバ損失との関係から求めてあるが、当然最適ファイバ長は、ファイバ長と利得特性とノイズとの関係から求めることもできる。その場合はラマン利得とノイズの差が最大の箇所、即ち、S/N最良点を最適ファイバ長とする。
【0011】
【発明の効果】
本発明の波長多重励起ラマン増幅装置は、光増幅媒体として用いられる光ファイバのファイバ長を、光ファイバ増幅器のS/Nが最良又はその付近となる長さに設定したので、次の様な効果がある。
1.光増幅媒体として用いられる光ファイバのファイバ長さを、S/Nが最良になるように設定した上で励起光を供給することにより、ラマン利得効率が良く、ノイズが少ない、良質の光増幅が可能となる。この場合、前方励起、後方励起、双方向励起のいずれの励起を行うこともできる。
2.集中型、分布型のいずれの波長多重励起ラマン増幅装置にも採用することができる。
【図面の簡単な説明】
【図1】 光ファイバ増幅器のファイバーにDCFを使用した場合のファイバ長設定説明図。
【図2】 光ファイバ増幅器のファイバーにノンゼロ分散シフトファイバを使用した場合のファイバ長設定説明図。
【図3】 集中型波長多重励起ラマン増幅装置の説明図。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength-division-pumped Raman amplifying apparatus that is an optical fiber amplifier for performing optical amplification, and can be used as either a centralized or distributed wavelength-division-pumped Raman amplifying apparatus.
[0002]
[Prior art]
An example of using a wavelength-division-pumped Raman amplifying apparatus as an optical fiber amplifier for amplification of an optical signal has been known. There are a concentrated type and a distributed type of wavelength multiplexing excitation Raman amplifying apparatus. As shown in FIG. 3, the concentrated type is one in which an optical fiber A used as an optical amplification medium is housed in a module housing B together with an excitation light unit C, a WDM coupler D, etc., and the distributed type is used as an optical amplification medium. The optical fiber is laid outside the module housing. In any wavelength multiplexing pumping Raman amplifying apparatus, pump light is incident on an optical fiber which is a signal propagation medium and used as an optical amplifying medium, and performs optical amplification.
[0003]
[Problems to be solved by the invention]
In the conventional concentrated wavelength-division-multiplexed Raman amplifying device, the fiber length of the optical fiber used as the optical amplifying medium was selected so that the Raman gain was maximized, so the amplification efficiency was good, but it was more than a certain length However, since noise is amplified together with the signal, the S / N deteriorates as a result.
[0004]
In a conventional distributed wavelength-division-multiplexed pump Raman amplifier, the fiber length of an optical fiber used as an optical amplifying medium depends on the installation environment. Therefore, it is not always necessary to select the fiber length so that the gain is maximized. was difficult. For this reason, the desired amplification efficiency could not be obtained.
[0005]
[Means for Solving the Problems]
An object of the present invention is to provide a wavelength multiplexing pump Raman amplifying apparatus with good amplification efficiency and less optical signal degradation due to noise.
[0006]
A first wavelength multiplexing pump Raman amplifying apparatus according to the present invention is a wavelength multiplexing pump Raman amplifying apparatus using an optical fiber for optical amplification, wherein the fiber length of an optical fiber used as an optical amplifying medium is determined by differentiating the fiber length and the Raman gain. By setting the length near the intersection between the Raman gain characteristic indicating the relationship with the value and the fiber loss characteristic indicating the fiber loss per unit length, the S / N is set to a length that is the best or the vicinity thereof. is there.
[0007]
According to a second wavelength-division-pumped Raman amplifying apparatus of the present invention, in the wavelength-division-pumped Raman amplifying apparatus according to claim 1, an optical fiber used as an optical amplifying medium is housed in a module housing together with a pumping light source, WDM, and the like. A centralized type or a distributed type installed outside the casing of the module.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the wavelength division multiplexing Raman amplifying device of the present invention will be described below with reference to FIGS. The relationship between the fiber length of the optical fiber used as the optical amplification medium and the Raman gain differs depending on the type (line type) of the optical fiber. For example, the Raman gain characteristic showing the relationship between the fiber length of a typical DCF (Dispersion Compensating Fiber), the differential value of the Raman gain, and the fiber loss per unit length is as shown in FIG. The fiber loss characteristic indicating the relationship between the fiber length and gain differential value of the dispersion shifted fiber and the fiber loss per unit length is as shown in FIG. Here, both a line in FIGS. 1 and 2 represent the slope of Raman gain of each fiber, and both b lines in FIGS. 1 and 2 represent fiber loss per unit length. From these, it can be seen that the Raman gain increases gently as the fiber length increases, reaches a maximum at a certain fiber length, and then decreases. On the other hand, since the fiber loss per unit length is always constant, the fiber loss increases as the fiber length increases. Here, in any fiber, it is known that the rate of increase in fiber loss (a line in FIGS. 1 and 2) with respect to a certain length of fiber length is the same as the rate of increase in noise. In the compensation fiber, the point where the a line and the b line in FIG. 1 intersect becomes the point where the difference between the Raman gain and the noise is the largest, that is, the best S / N point. Here, the corresponding fiber length is approximately 4 km. Similarly, in the non-zero dispersion shifted fiber, the point where the a line and the b line in FIG. 2 intersect is the point where the difference between the Raman gain and the noise is the largest, that is, the best S / N point, and the corresponding fiber length is optimum. Become long. The relationship between the fiber length, the differential value of Raman gain, and the fiber loss per unit length varies depending on the line type as shown in FIGS. 1 and 2, but the intersection of both lines is the best S / N point. Absent. That is, the present invention is not limited to the fiber types already shown, but for all fiber types such as SMF (single mold fiber), RDF (inverted dispersion fiber), DSF (dispersion shifted fiber), and HNLF (highly nonlinear fiber). Is equally applicable.
[0009]
The wavelength multiplexed pump Raman amplifying apparatus of the present invention in which the fiber length is set as described above can be employed for both concentrated and distributed types. In the case of the distributed type, depending on the fiber installation environment, the length of the intersection of the a line and the b line is not necessarily set, so the length is slightly shifted to the left and right. be able to. The allowable range is about + -0.5L when the optimum fiber length is L. When the upper limit of the allowable range is exceeded, the noise increases and the S / N deteriorates. Sufficient Raman gain efficiency cannot be obtained and it cannot be put into practical use.
[0010]
In the above description, the S / N best point of the optical fiber amplifier or the fiber length in the vicinity (optimum fiber length) is obtained from the relationship between the fiber length, the differential value of Raman gain, and the fiber loss per unit length. Of course, the optimum fiber length can also be obtained from the relationship between the fiber length, gain characteristics, and noise. In that case, the optimum fiber length is determined at a location where the difference between the Raman gain and the noise is maximum, that is, the S / N best point.
[0011]
【The invention's effect】
In the wavelength multiplexing pump Raman amplifying apparatus of the present invention, since the fiber length of the optical fiber used as the optical amplifying medium is set to the length at which the S / N of the optical fiber amplifier is the best or the vicinity thereof, the following effects are obtained. There is.
1. By supplying the pumping light after setting the fiber length of the optical fiber used as the optical amplifying medium so that the S / N is the best, it is possible to obtain good optical amplification with good Raman gain efficiency and low noise. It becomes possible. In this case, any of forward excitation, backward excitation, and bidirectional excitation can be performed.
2. The present invention can be employed in both concentrated and distributed wavelength multiplexing pump Raman amplifying apparatuses.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of fiber length setting when DCF is used for a fiber of an optical fiber amplifier.
FIG. 2 is an explanatory diagram of fiber length setting when a non-zero dispersion shifted fiber is used as a fiber of an optical fiber amplifier.
FIG. 3 is an explanatory diagram of a concentrated wavelength division multiplexing Raman amplifying apparatus.

Claims (2)

光増幅を行うために使用される波長多重励起ラマン増幅装置において、光増幅媒体として用いられる光ファイバのファイバ長を、ファイバ長とラマン利得の微分値との関係を示すラマン利得特性と、単位長あたりのファイバ損失を示すファイバ損失特性との交差付近の長さとすることによって、光ファイバ増幅器のS/Nを最良又はその付近となる長さに設定したことを特徴とする波長多重励起ラマン増幅装置。In a wavelength-division-pumped Raman amplifying apparatus used for optical amplification, the fiber length of an optical fiber used as an optical amplifying medium, the Raman gain characteristic indicating the relationship between the fiber length and the differential value of Raman gain, and the unit length A wavelength-division-pumped Raman amplifying apparatus characterized in that the S / N of the optical fiber amplifier is set to the best or near length by setting the length in the vicinity of the intersection with the fiber loss characteristic indicating the per-fiber loss. . 請求項1記載の波長多重励起ラマン増幅装置において、光ファイバ増幅器としての光ファイバがモジュールの筐体内に励起光源、WDM等が共に収納された集中型、又はモジュールの筐体外に光増幅媒体として用いられる光ファイバが布設された分布型であることを特徴とする波長多重励起ラマン増幅装置。  2. The wavelength division multiplexing Raman amplifying apparatus according to claim 1, wherein an optical fiber as an optical fiber amplifier is used as a centralized type in which a pumping light source, WDM, etc. are housed in a module housing, or as an optical amplification medium outside the module housing. A wavelength-division-pumped Raman amplifying apparatus characterized in that the optical fiber to be distributed is a distributed type.
JP2001042364A 2001-02-19 2001-02-19 Wavelength multiplexed excitation Raman amplifier Expired - Lifetime JP3735039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042364A JP3735039B2 (en) 2001-02-19 2001-02-19 Wavelength multiplexed excitation Raman amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042364A JP3735039B2 (en) 2001-02-19 2001-02-19 Wavelength multiplexed excitation Raman amplifier

Publications (2)

Publication Number Publication Date
JP2002244169A JP2002244169A (en) 2002-08-28
JP3735039B2 true JP3735039B2 (en) 2006-01-11

Family

ID=18904668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042364A Expired - Lifetime JP3735039B2 (en) 2001-02-19 2001-02-19 Wavelength multiplexed excitation Raman amplifier

Country Status (1)

Country Link
JP (1) JP3735039B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100487190B1 (en) 2003-04-22 2005-05-04 삼성전자주식회사 Raman optical amplifier

Also Published As

Publication number Publication date
JP2002244169A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
CA2257518C (en) Split-pumped dual stage optical fiber amplifier
US6657774B1 (en) Amplifier system with distributed and discrete Raman fiber amplifiers
JP2001223420A (en) Raman amplifier, optical transmission system and optical fiber
JPH11119030A (en) Dispersion compensating device
JP2001237777A (en) Light transmission path
US6483633B2 (en) Raman amplifier
JP4137211B2 (en) Dispersion compensating fiber and optical amplifier using the same
JPH09181382A (en) Optical amplifier
JP3735039B2 (en) Wavelength multiplexed excitation Raman amplifier
US7095552B2 (en) Raman optical fiber amplifier using erbium doped fiber
US6384962B1 (en) Method and apparatus to perform automatic gain equalization using raman amplifiers
US20020034357A1 (en) Amplifier unit for a wavelength-division multiplex transmission system and also a method for amplifying optical signals
US6785043B2 (en) Dispersion-compensated optical fiber amplifier
KR100446541B1 (en) Dispersion-compensated raman optical fiber amplifier
US20080074733A1 (en) Raman amplifier and optical communication system including the same
JP2004193611A (en) Wide-band amplifier using erbium-doped optical fiber
US7139489B2 (en) System and method of dispersion compensation in optical communication systems
JP2001222036A (en) Raman amplification and optical signal transmission method utilizing the same
JP3850857B2 (en) Method for optical communication and optical receiver
JP3961266B2 (en) Optical amplifier
JP3609968B2 (en) Optical amplifier
JP2008153558A (en) Light transmission system and its signal spectrum correction method
JP2005093982A (en) Optical fiber amplifier
JP4336345B2 (en) Optical amplifier
JP4509035B2 (en) Optical fiber communication system using optical amplification.

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051020

R151 Written notification of patent or utility model registration

Ref document number: 3735039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term